rust/src/libstd/comm.rs
2013-11-27 15:10:12 +10:00

311 lines
7.3 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
Message passing
*/
#[allow(missing_doc)];
use clone::Clone;
use iter::Iterator;
use kinds::Send;
use option::Option;
use rtcomm = rt::comm;
/// A trait for things that can send multiple messages.
pub trait GenericChan<T> {
/// Sends a message.
fn send(&self, x: T);
}
/// Things that can send multiple messages and can detect when the receiver
/// is closed
pub trait GenericSmartChan<T> {
/// Sends a message, or report if the receiver has closed the connection.
fn try_send(&self, x: T) -> bool;
}
/// Trait for non-rescheduling send operations, similar to `send_deferred` on ChanOne.
pub trait SendDeferred<T> {
fn send_deferred(&self, val: T);
fn try_send_deferred(&self, val: T) -> bool;
}
/// A trait for things that can receive multiple messages.
pub trait GenericPort<T> {
/// Receives a message, or fails if the connection closes.
fn recv(&self) -> T;
/// Receives a message, or returns `none` if
/// the connection is closed or closes.
fn try_recv(&self) -> Option<T>;
/// Returns an iterator that breaks once the connection closes.
///
/// # Example
///
/// ~~~rust
/// do spawn {
/// for x in port.recv_iter() {
/// if pred(x) { break; }
/// println!("{}", x);
/// }
/// }
/// ~~~
fn recv_iter<'a>(&'a self) -> RecvIterator<'a, Self> {
RecvIterator { port: self }
}
}
pub struct RecvIterator<'a, P> {
priv port: &'a P,
}
impl<'a, T, P: GenericPort<T>> Iterator<T> for RecvIterator<'a, P> {
fn next(&mut self) -> Option<T> {
self.port.try_recv()
}
}
/// Ports that can `peek`
pub trait Peekable<T> {
/// Returns true if a message is available
fn peek(&self) -> bool;
}
pub struct PortOne<T> { priv x: rtcomm::PortOne<T> }
pub struct ChanOne<T> { priv x: rtcomm::ChanOne<T> }
pub fn oneshot<T: Send>() -> (PortOne<T>, ChanOne<T>) {
let (p, c) = rtcomm::oneshot();
(PortOne { x: p }, ChanOne { x: c })
}
pub struct Port<T> { priv x: rtcomm::Port<T> }
pub struct Chan<T> { priv x: rtcomm::Chan<T> }
pub fn stream<T: Send>() -> (Port<T>, Chan<T>) {
let (p, c) = rtcomm::stream();
(Port { x: p }, Chan { x: c })
}
impl<T: Send> ChanOne<T> {
pub fn send(self, val: T) {
let ChanOne { x: c } = self;
c.send(val)
}
pub fn try_send(self, val: T) -> bool {
let ChanOne { x: c } = self;
c.try_send(val)
}
pub fn send_deferred(self, val: T) {
let ChanOne { x: c } = self;
c.send_deferred(val)
}
pub fn try_send_deferred(self, val: T) -> bool {
let ChanOne{ x: c } = self;
c.try_send_deferred(val)
}
}
impl<T: Send> PortOne<T> {
pub fn recv(self) -> T {
let PortOne { x: p } = self;
p.recv()
}
pub fn try_recv(self) -> Option<T> {
let PortOne { x: p } = self;
p.try_recv()
}
}
impl<T: Send> Peekable<T> for PortOne<T> {
fn peek(&self) -> bool {
let &PortOne { x: ref p } = self;
p.peek()
}
}
impl<T: Send> GenericChan<T> for Chan<T> {
fn send(&self, val: T) {
let &Chan { x: ref c } = self;
c.send(val)
}
}
impl<T: Send> GenericSmartChan<T> for Chan<T> {
fn try_send(&self, val: T) -> bool {
let &Chan { x: ref c } = self;
c.try_send(val)
}
}
impl<T: Send> SendDeferred<T> for Chan<T> {
fn send_deferred(&self, val: T) {
let &Chan { x: ref c } = self;
c.send_deferred(val)
}
fn try_send_deferred(&self, val: T) -> bool {
let &Chan { x: ref c } = self;
c.try_send_deferred(val)
}
}
impl<T: Send> GenericPort<T> for Port<T> {
fn recv(&self) -> T {
let &Port { x: ref p } = self;
p.recv()
}
fn try_recv(&self) -> Option<T> {
let &Port { x: ref p } = self;
p.try_recv()
}
}
impl<T: Send> Peekable<T> for Port<T> {
fn peek(&self) -> bool {
let &Port { x: ref p } = self;
p.peek()
}
}
pub struct SharedChan<T> { priv x: rtcomm::SharedChan<T> }
impl<T: Send> SharedChan<T> {
pub fn new(c: Chan<T>) -> SharedChan<T> {
let Chan { x: c } = c;
SharedChan { x: rtcomm::SharedChan::new(c) }
}
}
impl<T: Send> GenericChan<T> for SharedChan<T> {
fn send(&self, val: T) {
let &SharedChan { x: ref c } = self;
c.send(val)
}
}
impl<T: Send> GenericSmartChan<T> for SharedChan<T> {
fn try_send(&self, val: T) -> bool {
let &SharedChan { x: ref c } = self;
c.try_send(val)
}
}
impl<T: Send> SendDeferred<T> for SharedChan<T> {
fn send_deferred(&self, val: T) {
let &SharedChan { x: ref c } = self;
c.send_deferred(val)
}
fn try_send_deferred(&self, val: T) -> bool {
let &SharedChan { x: ref c } = self;
c.try_send_deferred(val)
}
}
impl<T: Send> Clone for SharedChan<T> {
fn clone(&self) -> SharedChan<T> {
let &SharedChan { x: ref c } = self;
SharedChan { x: c.clone() }
}
}
pub struct SharedPort<T> { priv x: rtcomm::SharedPort<T> }
impl<T: Send> SharedPort<T> {
pub fn new(p: Port<T>) -> SharedPort<T> {
let Port { x: p } = p;
SharedPort { x: rtcomm::SharedPort::new(p) }
}
}
impl<T: Send> GenericPort<T> for SharedPort<T> {
fn recv(&self) -> T {
let &SharedPort { x: ref p } = self;
p.recv()
}
fn try_recv(&self) -> Option<T> {
let &SharedPort { x: ref p } = self;
p.try_recv()
}
}
impl<T: Send> Clone for SharedPort<T> {
fn clone(&self) -> SharedPort<T> {
let &SharedPort { x: ref p } = self;
SharedPort { x: p.clone() }
}
}
#[cfg(test)]
mod tests {
use comm::*;
use prelude::*;
#[test]
fn test_nested_recv_iter() {
let (port, chan) = stream::<int>();
let (total_port, total_chan) = oneshot::<int>();
do spawn {
let mut acc = 0;
for x in port.recv_iter() {
acc += x;
for x in port.recv_iter() {
acc += x;
for x in port.try_recv().move_iter() {
acc += x;
total_chan.send(acc);
}
}
}
}
chan.send(3);
chan.send(1);
chan.send(2);
assert_eq!(total_port.recv(), 6);
}
#[test]
fn test_recv_iter_break() {
let (port, chan) = stream::<int>();
let (count_port, count_chan) = oneshot::<int>();
do spawn {
let mut count = 0;
for x in port.recv_iter() {
if count >= 3 {
count_chan.send(count);
break;
} else {
count += x;
}
}
}
chan.send(2);
chan.send(2);
chan.send(2);
chan.send(2);
assert_eq!(count_port.recv(), 4);
}
}