rust/src/operator.rs
2018-09-17 10:02:31 +02:00

310 lines
14 KiB
Rust

use rustc::ty::{Ty, layout::TyLayout};
use rustc::mir;
use super::*;
pub trait EvalContextExt<'tcx> {
fn ptr_op(
&self,
bin_op: mir::BinOp,
left: Scalar,
left_layout: TyLayout<'tcx>,
right: Scalar,
right_layout: TyLayout<'tcx>,
) -> EvalResult<'tcx, (Scalar, bool)>;
fn ptr_int_arithmetic(
&self,
bin_op: mir::BinOp,
left: Pointer,
right: u128,
signed: bool,
) -> EvalResult<'tcx, (Scalar, bool)>;
fn ptr_eq(
&self,
left: Scalar,
right: Scalar,
size: Size,
) -> EvalResult<'tcx, bool>;
fn pointer_offset_inbounds(
&self,
ptr: Scalar,
pointee_ty: Ty<'tcx>,
offset: i64,
) -> EvalResult<'tcx, Scalar>;
}
impl<'a, 'mir, 'tcx> EvalContextExt<'tcx> for EvalContext<'a, 'mir, 'tcx, super::Evaluator<'tcx>> {
fn ptr_op(
&self,
bin_op: mir::BinOp,
left: Scalar,
left_layout: TyLayout<'tcx>,
right: Scalar,
right_layout: TyLayout<'tcx>,
) -> EvalResult<'tcx, (Scalar, bool)> {
use rustc::mir::BinOp::*;
trace!("ptr_op: {:?} {:?} {:?}", left, bin_op, right);
debug_assert!(left.is_ptr() || right.is_ptr() || bin_op == Offset);
match bin_op {
Offset => {
let pointee_ty = left_layout.ty
.builtin_deref(true)
.expect("Offset called on non-ptr type")
.ty;
let ptr = self.pointer_offset_inbounds(
left,
pointee_ty,
right.to_isize(self)?,
)?;
Ok((ptr, false))
}
// These work on anything
Eq =>
Ok((Scalar::from_bool(self.ptr_eq(left, right, left_layout.size)?), false)),
Ne =>
Ok((Scalar::from_bool(!self.ptr_eq(left, right, left_layout.size)?), false)),
// These need both to be pointer, and fail if they are not in the same location
Lt | Le | Gt | Ge | Sub if left.is_ptr() && right.is_ptr() => {
let left = left.to_ptr().expect("we checked is_ptr");
let right = right.to_ptr().expect("we checked is_ptr");
if left.alloc_id == right.alloc_id {
let res = match bin_op {
Lt => left.offset < right.offset,
Le => left.offset <= right.offset,
Gt => left.offset > right.offset,
Ge => left.offset >= right.offset,
Sub => {
// subtract the offsets
let left_offset = Scalar::from_uint(left.offset.bytes(), self.memory.pointer_size());
let right_offset = Scalar::from_uint(right.offset.bytes(), self.memory.pointer_size());
let layout = self.layout_of(self.tcx.types.usize)?;
return self.binary_op(
Sub,
left_offset, layout,
right_offset, layout,
)
}
_ => bug!("We already established it has to be one of these operators."),
};
Ok((Scalar::from_bool(res), false))
} else {
// Both are pointers, but from different allocations.
err!(InvalidPointerMath)
}
}
// These work if the left operand is a pointer, and the right an integer
Add | BitAnd | Sub | Rem if left.is_ptr() && right.is_bits() => {
// Cast to i128 is fine as we checked the kind to be ptr-sized
self.ptr_int_arithmetic(
bin_op,
left.to_ptr().expect("we checked is_ptr"),
right.to_bits(self.memory.pointer_size()).expect("we checked is_bits"),
right_layout.abi.is_signed(),
)
}
// Commutative operators also work if the integer is on the left
Add | BitAnd if left.is_bits() && right.is_ptr() => {
// This is a commutative operation, just swap the operands
self.ptr_int_arithmetic(
bin_op,
right.to_ptr().expect("we checked is_ptr"),
left.to_bits(self.memory.pointer_size()).expect("we checked is_bits"),
left_layout.abi.is_signed(),
)
}
// Nothing else works
_ => err!(InvalidPointerMath),
}
}
fn ptr_eq(
&self,
left: Scalar,
right: Scalar,
size: Size,
) -> EvalResult<'tcx, bool> {
Ok(match (left, right) {
(Scalar::Bits { .. }, Scalar::Bits { .. }) =>
left.to_bits(size)? == right.to_bits(size)?,
(Scalar::Ptr(left), Scalar::Ptr(right)) => {
// Comparison illegal if one of them is out-of-bounds, *unless* they
// are in the same allocation.
if left.alloc_id == right.alloc_id {
left.offset == right.offset
} else {
// This accepts one-past-the end. So technically there is still
// some non-determinism that we do not fully rule out when two
// allocations sit right next to each other. The C/C++ standards are
// somewhat fuzzy about this case, so I think for now this check is
// "good enough".
self.memory.check_bounds(left, false)?;
self.memory.check_bounds(right, false)?;
// Two live in-bounds pointers, we can compare across allocations
left == right
}
}
// Comparing ptr and integer
(Scalar::Ptr(ptr), Scalar::Bits { bits, size }) |
(Scalar::Bits { bits, size }, Scalar::Ptr(ptr)) => {
assert_eq!(size as u64, self.pointer_size().bytes());
let bits = bits as u64;
let (alloc_size, alloc_align) = self.memory.get_size_and_align(ptr.alloc_id)?;
// Case I: Comparing with NULL
if bits == 0 {
// Test if the ptr is in-bounds. Then it cannot be NULL.
if ptr.offset <= alloc_size {
return Ok(false);
}
}
// Case II: Alignment gives it away
if ptr.offset.bytes() % alloc_align.abi() == 0 {
// The offset maintains the allocation alignment, so we know `base+offset`
// is aligned by `alloc_align`.
// FIXME: We could be even more general, e.g. offset 2 into a 4-aligned
// allocation cannot equal 3.
if bits % alloc_align.abi() != 0 {
// The integer is *not* aligned. So they cannot be equal.
return Ok(false);
}
}
// Case III: The integer is too big, and the allocation goes on a bit
// without wrapping around the address space.
{
// Compute the highest address at which this allocation could live.
// Substract one more, because it must be possible to add the size
// to the base address without overflowing -- IOW, the very last address
// of the address space is never dereferencable (but it can be in-bounds, i.e.,
// one-past-the-end).
let max_base_addr =
((1u128 << self.pointer_size().bits())
- u128::from(alloc_size.bytes())
- 1
) as u64;
if let Some(max_addr) = max_base_addr.checked_add(ptr.offset.bytes()) {
if bits > max_addr {
// The integer is too big, this cannot possibly be equal
return Ok(false)
}
}
}
// None of the supported cases.
return err!(InvalidPointerMath);
}
})
}
fn ptr_int_arithmetic(
&self,
bin_op: mir::BinOp,
left: Pointer,
right: u128,
signed: bool,
) -> EvalResult<'tcx, (Scalar, bool)> {
use rustc::mir::BinOp::*;
fn map_to_primval((res, over): (Pointer, bool)) -> (Scalar, bool) {
(Scalar::Ptr(res), over)
}
Ok(match bin_op {
Sub =>
// The only way this can overflow is by underflowing, so signdeness of the right operands does not matter
map_to_primval(left.overflowing_signed_offset(-(right as i128), self)),
Add if signed =>
map_to_primval(left.overflowing_signed_offset(right as i128, self)),
Add if !signed =>
map_to_primval(left.overflowing_offset(Size::from_bytes(right as u64), self)),
BitAnd if !signed => {
let ptr_base_align = self.memory.get(left.alloc_id)?.align.abi();
let base_mask = {
// FIXME: Use interpret::truncate, once that takes a Size instead of a Layout
let shift = 128 - self.memory.pointer_size().bits();
let value = !(ptr_base_align as u128 - 1);
// truncate (shift left to drop out leftover values, shift right to fill with zeroes)
(value << shift) >> shift
};
let ptr_size = self.memory.pointer_size().bytes() as u8;
trace!("Ptr BitAnd, align {}, operand {:#010x}, base_mask {:#010x}",
ptr_base_align, right, base_mask);
if right & base_mask == base_mask {
// Case 1: The base address bits are all preserved, i.e., right is all-1 there
let offset = (left.offset.bytes() as u128 & right) as u64;
(Scalar::Ptr(Pointer::new(left.alloc_id, Size::from_bytes(offset))), false)
} else if right & base_mask == 0 {
// Case 2: The base address bits are all taken away, i.e., right is all-0 there
(Scalar::Bits { bits: (left.offset.bytes() as u128) & right, size: ptr_size }, false)
} else {
return err!(ReadPointerAsBytes);
}
}
Rem if !signed => {
// Doing modulo a divisor of the alignment is allowed.
// (Intuition: Modulo a divisor leaks less information.)
let ptr_base_align = self.memory.get(left.alloc_id)?.align.abi();
let right = right as u64;
let ptr_size = self.memory.pointer_size().bytes() as u8;
if right == 1 {
// modulo 1 is always 0
(Scalar::Bits { bits: 0, size: ptr_size }, false)
} else if ptr_base_align % right == 0 {
// the base address would be cancelled out by the modulo operation, so we can
// just take the modulo of the offset
(Scalar::Bits { bits: (left.offset.bytes() % right) as u128, size: ptr_size }, false)
} else {
return err!(ReadPointerAsBytes);
}
}
_ => {
let msg = format!("unimplemented binary op on pointer {:?}: {:?}, {:?} ({})", bin_op, left, right, if signed { "signed" } else { "unsigned" });
return err!(Unimplemented(msg));
}
})
}
/// This function raises an error if the offset moves the pointer outside of its allocation. We consider
/// ZSTs their own huge allocation that doesn't overlap with anything (and nothing moves in there because the size is 0).
/// We also consider the NULL pointer its own separate allocation, and all the remaining integers pointers their own
/// allocation.
fn pointer_offset_inbounds(
&self,
ptr: Scalar,
pointee_ty: Ty<'tcx>,
offset: i64,
) -> EvalResult<'tcx, Scalar> {
if ptr.is_null() {
// NULL pointers must only be offset by 0
return if offset == 0 {
Ok(ptr)
} else {
err!(InvalidNullPointerUsage)
};
}
// FIXME: assuming here that type size is < i64::max_value()
let pointee_size = self.layout_of(pointee_ty)?.size.bytes() as i64;
let offset = offset.checked_mul(pointee_size).ok_or_else(|| EvalErrorKind::Overflow(mir::BinOp::Mul))?;
// Now let's see what kind of pointer this is
if let Scalar::Ptr(ptr) = ptr {
// Both old and new pointer must be in-bounds.
// (Of the same allocation, but that part is trivial with our representation.)
self.memory.check_bounds(ptr, false)?;
let ptr = ptr.signed_offset(offset, self)?;
self.memory.check_bounds(ptr, false)?;
Ok(Scalar::Ptr(ptr))
} else {
// An integer pointer. They can move around freely, as long as they do not overflow
// (which ptr_signed_offset checks).
ptr.ptr_signed_offset(offset, self)
}
}
}