1226 lines
45 KiB
Rust
1226 lines
45 KiB
Rust
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! A different sort of visitor for walking fn bodies. Unlike the
|
|
//! normal visitor, which just walks the entire body in one shot, the
|
|
//! `ExprUseVisitor` determines how expressions are being used.
|
|
|
|
pub use self::MutateMode::*;
|
|
pub use self::LoanCause::*;
|
|
pub use self::ConsumeMode::*;
|
|
pub use self::MoveReason::*;
|
|
pub use self::MatchMode::*;
|
|
use self::TrackMatchMode::*;
|
|
use self::OverloadedCallType::*;
|
|
|
|
use middle::{def, pat_util};
|
|
use middle::def_id::{DefId};
|
|
use middle::infer;
|
|
use middle::mem_categorization as mc;
|
|
use middle::ty;
|
|
|
|
use rustc_front::hir;
|
|
|
|
use syntax::ast;
|
|
use syntax::ptr::P;
|
|
use syntax::codemap::Span;
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// The Delegate trait
|
|
|
|
/// This trait defines the callbacks you can expect to receive when
|
|
/// employing the ExprUseVisitor.
|
|
pub trait Delegate<'tcx> {
|
|
// The value found at `cmt` is either copied or moved, depending
|
|
// on mode.
|
|
fn consume(&mut self,
|
|
consume_id: ast::NodeId,
|
|
consume_span: Span,
|
|
cmt: mc::cmt<'tcx>,
|
|
mode: ConsumeMode);
|
|
|
|
// The value found at `cmt` has been determined to match the
|
|
// pattern binding `matched_pat`, and its subparts are being
|
|
// copied or moved depending on `mode`. Note that `matched_pat`
|
|
// is called on all variant/structs in the pattern (i.e., the
|
|
// interior nodes of the pattern's tree structure) while
|
|
// consume_pat is called on the binding identifiers in the pattern
|
|
// (which are leaves of the pattern's tree structure).
|
|
//
|
|
// Note that variants/structs and identifiers are disjoint; thus
|
|
// `matched_pat` and `consume_pat` are never both called on the
|
|
// same input pattern structure (though of `consume_pat` can be
|
|
// called on a subpart of an input passed to `matched_pat).
|
|
fn matched_pat(&mut self,
|
|
matched_pat: &hir::Pat,
|
|
cmt: mc::cmt<'tcx>,
|
|
mode: MatchMode);
|
|
|
|
// The value found at `cmt` is either copied or moved via the
|
|
// pattern binding `consume_pat`, depending on mode.
|
|
fn consume_pat(&mut self,
|
|
consume_pat: &hir::Pat,
|
|
cmt: mc::cmt<'tcx>,
|
|
mode: ConsumeMode);
|
|
|
|
// The value found at `borrow` is being borrowed at the point
|
|
// `borrow_id` for the region `loan_region` with kind `bk`.
|
|
fn borrow(&mut self,
|
|
borrow_id: ast::NodeId,
|
|
borrow_span: Span,
|
|
cmt: mc::cmt<'tcx>,
|
|
loan_region: ty::Region,
|
|
bk: ty::BorrowKind,
|
|
loan_cause: LoanCause);
|
|
|
|
// The local variable `id` is declared but not initialized.
|
|
fn decl_without_init(&mut self,
|
|
id: ast::NodeId,
|
|
span: Span);
|
|
|
|
// The path at `cmt` is being assigned to.
|
|
fn mutate(&mut self,
|
|
assignment_id: ast::NodeId,
|
|
assignment_span: Span,
|
|
assignee_cmt: mc::cmt<'tcx>,
|
|
mode: MutateMode);
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Debug)]
|
|
pub enum LoanCause {
|
|
ClosureCapture(Span),
|
|
AddrOf,
|
|
AutoRef,
|
|
AutoUnsafe,
|
|
RefBinding,
|
|
OverloadedOperator,
|
|
ClosureInvocation,
|
|
ForLoop,
|
|
MatchDiscriminant
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Debug)]
|
|
pub enum ConsumeMode {
|
|
Copy, // reference to x where x has a type that copies
|
|
Move(MoveReason), // reference to x where x has a type that moves
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Debug)]
|
|
pub enum MoveReason {
|
|
DirectRefMove,
|
|
PatBindingMove,
|
|
CaptureMove,
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Debug)]
|
|
pub enum MatchMode {
|
|
NonBindingMatch,
|
|
BorrowingMatch,
|
|
CopyingMatch,
|
|
MovingMatch,
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Debug)]
|
|
enum TrackMatchMode {
|
|
Unknown,
|
|
Definite(MatchMode),
|
|
Conflicting,
|
|
}
|
|
|
|
impl TrackMatchMode {
|
|
// Builds up the whole match mode for a pattern from its constituent
|
|
// parts. The lattice looks like this:
|
|
//
|
|
// Conflicting
|
|
// / \
|
|
// / \
|
|
// Borrowing Moving
|
|
// \ /
|
|
// \ /
|
|
// Copying
|
|
// |
|
|
// NonBinding
|
|
// |
|
|
// Unknown
|
|
//
|
|
// examples:
|
|
//
|
|
// * `(_, some_int)` pattern is Copying, since
|
|
// NonBinding + Copying => Copying
|
|
//
|
|
// * `(some_int, some_box)` pattern is Moving, since
|
|
// Copying + Moving => Moving
|
|
//
|
|
// * `(ref x, some_box)` pattern is Conflicting, since
|
|
// Borrowing + Moving => Conflicting
|
|
//
|
|
// Note that the `Unknown` and `Conflicting` states are
|
|
// represented separately from the other more interesting
|
|
// `Definite` states, which simplifies logic here somewhat.
|
|
fn lub(&mut self, mode: MatchMode) {
|
|
*self = match (*self, mode) {
|
|
// Note that clause order below is very significant.
|
|
(Unknown, new) => Definite(new),
|
|
(Definite(old), new) if old == new => Definite(old),
|
|
|
|
(Definite(old), NonBindingMatch) => Definite(old),
|
|
(Definite(NonBindingMatch), new) => Definite(new),
|
|
|
|
(Definite(old), CopyingMatch) => Definite(old),
|
|
(Definite(CopyingMatch), new) => Definite(new),
|
|
|
|
(Definite(_), _) => Conflicting,
|
|
(Conflicting, _) => *self,
|
|
};
|
|
}
|
|
|
|
fn match_mode(&self) -> MatchMode {
|
|
match *self {
|
|
Unknown => NonBindingMatch,
|
|
Definite(mode) => mode,
|
|
Conflicting => {
|
|
// Conservatively return MovingMatch to let the
|
|
// compiler continue to make progress.
|
|
MovingMatch
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Debug)]
|
|
pub enum MutateMode {
|
|
Init,
|
|
JustWrite, // x = y
|
|
WriteAndRead, // x += y
|
|
}
|
|
|
|
#[derive(Copy, Clone)]
|
|
enum OverloadedCallType {
|
|
FnOverloadedCall,
|
|
FnMutOverloadedCall,
|
|
FnOnceOverloadedCall,
|
|
}
|
|
|
|
impl OverloadedCallType {
|
|
fn from_trait_id(tcx: &ty::ctxt, trait_id: DefId)
|
|
-> OverloadedCallType {
|
|
for &(maybe_function_trait, overloaded_call_type) in &[
|
|
(tcx.lang_items.fn_once_trait(), FnOnceOverloadedCall),
|
|
(tcx.lang_items.fn_mut_trait(), FnMutOverloadedCall),
|
|
(tcx.lang_items.fn_trait(), FnOverloadedCall)
|
|
] {
|
|
match maybe_function_trait {
|
|
Some(function_trait) if function_trait == trait_id => {
|
|
return overloaded_call_type
|
|
}
|
|
_ => continue,
|
|
}
|
|
}
|
|
|
|
tcx.sess.bug("overloaded call didn't map to known function trait")
|
|
}
|
|
|
|
fn from_method_id(tcx: &ty::ctxt, method_id: DefId)
|
|
-> OverloadedCallType {
|
|
let method = tcx.impl_or_trait_item(method_id);
|
|
OverloadedCallType::from_trait_id(tcx, method.container().id())
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// The ExprUseVisitor type
|
|
//
|
|
// This is the code that actually walks the tree. Like
|
|
// mem_categorization, it requires a TYPER, which is a type that
|
|
// supplies types from the tree. After type checking is complete, you
|
|
// can just use the tcx as the typer.
|
|
//
|
|
// FIXME(stage0): the :'t here is probably only important for stage0
|
|
pub struct ExprUseVisitor<'d, 't, 'a: 't, 'tcx:'a+'d+'t> {
|
|
typer: &'t infer::InferCtxt<'a, 'tcx>,
|
|
mc: mc::MemCategorizationContext<'t, 'a, 'tcx>,
|
|
delegate: &'d mut (Delegate<'tcx>+'d),
|
|
}
|
|
|
|
// If the TYPER results in an error, it's because the type check
|
|
// failed (or will fail, when the error is uncovered and reported
|
|
// during writeback). In this case, we just ignore this part of the
|
|
// code.
|
|
//
|
|
// Note that this macro appears similar to try!(), but, unlike try!(),
|
|
// it does not propagate the error.
|
|
macro_rules! return_if_err {
|
|
($inp: expr) => (
|
|
match $inp {
|
|
Ok(v) => v,
|
|
Err(()) => {
|
|
debug!("mc reported err");
|
|
return
|
|
}
|
|
}
|
|
)
|
|
}
|
|
|
|
/// Whether the elements of an overloaded operation are passed by value or by reference
|
|
enum PassArgs {
|
|
ByValue,
|
|
ByRef,
|
|
}
|
|
|
|
impl<'d,'t,'a,'tcx> ExprUseVisitor<'d,'t,'a,'tcx> {
|
|
pub fn new(delegate: &'d mut Delegate<'tcx>,
|
|
typer: &'t infer::InferCtxt<'a, 'tcx>)
|
|
-> ExprUseVisitor<'d,'t,'a,'tcx>
|
|
{
|
|
let result = ExprUseVisitor {
|
|
typer: typer,
|
|
mc: mc::MemCategorizationContext::new(typer),
|
|
delegate: delegate,
|
|
};
|
|
|
|
result
|
|
}
|
|
|
|
pub fn walk_fn(&mut self,
|
|
decl: &hir::FnDecl,
|
|
body: &hir::Block) {
|
|
self.walk_arg_patterns(decl, body);
|
|
self.walk_block(body);
|
|
}
|
|
|
|
fn walk_arg_patterns(&mut self,
|
|
decl: &hir::FnDecl,
|
|
body: &hir::Block) {
|
|
for arg in &decl.inputs {
|
|
let arg_ty = return_if_err!(self.typer.node_ty(arg.pat.id));
|
|
|
|
let fn_body_scope = self.tcx().region_maps.node_extent(body.id);
|
|
let arg_cmt = self.mc.cat_rvalue(
|
|
arg.id,
|
|
arg.pat.span,
|
|
ty::ReScope(fn_body_scope), // Args live only as long as the fn body.
|
|
arg_ty);
|
|
|
|
self.walk_irrefutable_pat(arg_cmt, &*arg.pat);
|
|
}
|
|
}
|
|
|
|
fn tcx(&self) -> &'t ty::ctxt<'tcx> {
|
|
self.typer.tcx
|
|
}
|
|
|
|
fn delegate_consume(&mut self,
|
|
consume_id: ast::NodeId,
|
|
consume_span: Span,
|
|
cmt: mc::cmt<'tcx>) {
|
|
debug!("delegate_consume(consume_id={}, cmt={:?})",
|
|
consume_id, cmt);
|
|
|
|
let mode = copy_or_move(self.typer, &cmt, DirectRefMove);
|
|
self.delegate.consume(consume_id, consume_span, cmt, mode);
|
|
}
|
|
|
|
fn consume_exprs(&mut self, exprs: &Vec<P<hir::Expr>>) {
|
|
for expr in exprs {
|
|
self.consume_expr(&**expr);
|
|
}
|
|
}
|
|
|
|
pub fn consume_expr(&mut self, expr: &hir::Expr) {
|
|
debug!("consume_expr(expr={:?})", expr);
|
|
|
|
let cmt = return_if_err!(self.mc.cat_expr(expr));
|
|
self.delegate_consume(expr.id, expr.span, cmt);
|
|
self.walk_expr(expr);
|
|
}
|
|
|
|
fn mutate_expr(&mut self,
|
|
assignment_expr: &hir::Expr,
|
|
expr: &hir::Expr,
|
|
mode: MutateMode) {
|
|
let cmt = return_if_err!(self.mc.cat_expr(expr));
|
|
self.delegate.mutate(assignment_expr.id, assignment_expr.span, cmt, mode);
|
|
self.walk_expr(expr);
|
|
}
|
|
|
|
fn borrow_expr(&mut self,
|
|
expr: &hir::Expr,
|
|
r: ty::Region,
|
|
bk: ty::BorrowKind,
|
|
cause: LoanCause) {
|
|
debug!("borrow_expr(expr={:?}, r={:?}, bk={:?})",
|
|
expr, r, bk);
|
|
|
|
let cmt = return_if_err!(self.mc.cat_expr(expr));
|
|
self.delegate.borrow(expr.id, expr.span, cmt, r, bk, cause);
|
|
|
|
// Note: Unlike consume, we can ignore ExprParen. cat_expr
|
|
// already skips over them, and walk will uncover any
|
|
// attachments or whatever.
|
|
self.walk_expr(expr)
|
|
}
|
|
|
|
fn select_from_expr(&mut self, expr: &hir::Expr) {
|
|
self.walk_expr(expr)
|
|
}
|
|
|
|
pub fn walk_expr(&mut self, expr: &hir::Expr) {
|
|
debug!("walk_expr(expr={:?})", expr);
|
|
|
|
self.walk_adjustment(expr);
|
|
|
|
match expr.node {
|
|
hir::ExprParen(ref subexpr) => {
|
|
self.walk_expr(&**subexpr)
|
|
}
|
|
|
|
hir::ExprPath(..) => { }
|
|
|
|
hir::ExprUnary(hir::UnDeref, ref base) => { // *base
|
|
if !self.walk_overloaded_operator(expr, &**base, Vec::new(), PassArgs::ByRef) {
|
|
self.select_from_expr(&**base);
|
|
}
|
|
}
|
|
|
|
hir::ExprField(ref base, _) => { // base.f
|
|
self.select_from_expr(&**base);
|
|
}
|
|
|
|
hir::ExprTupField(ref base, _) => { // base.<n>
|
|
self.select_from_expr(&**base);
|
|
}
|
|
|
|
hir::ExprIndex(ref lhs, ref rhs) => { // lhs[rhs]
|
|
if !self.walk_overloaded_operator(expr,
|
|
&**lhs,
|
|
vec![&**rhs],
|
|
PassArgs::ByValue) {
|
|
self.select_from_expr(&**lhs);
|
|
self.consume_expr(&**rhs);
|
|
}
|
|
}
|
|
|
|
hir::ExprRange(ref start, ref end) => {
|
|
start.as_ref().map(|e| self.consume_expr(&**e));
|
|
end.as_ref().map(|e| self.consume_expr(&**e));
|
|
}
|
|
|
|
hir::ExprCall(ref callee, ref args) => { // callee(args)
|
|
self.walk_callee(expr, &**callee);
|
|
self.consume_exprs(args);
|
|
}
|
|
|
|
hir::ExprMethodCall(_, _, ref args) => { // callee.m(args)
|
|
self.consume_exprs(args);
|
|
}
|
|
|
|
hir::ExprStruct(_, ref fields, ref opt_with) => {
|
|
self.walk_struct_expr(expr, fields, opt_with);
|
|
}
|
|
|
|
hir::ExprTup(ref exprs) => {
|
|
self.consume_exprs(exprs);
|
|
}
|
|
|
|
hir::ExprIf(ref cond_expr, ref then_blk, ref opt_else_expr) => {
|
|
self.consume_expr(&**cond_expr);
|
|
self.walk_block(&**then_blk);
|
|
if let Some(ref else_expr) = *opt_else_expr {
|
|
self.consume_expr(&**else_expr);
|
|
}
|
|
}
|
|
|
|
hir::ExprMatch(ref discr, ref arms, _) => {
|
|
let discr_cmt = return_if_err!(self.mc.cat_expr(&**discr));
|
|
self.borrow_expr(&**discr, ty::ReEmpty, ty::ImmBorrow, MatchDiscriminant);
|
|
|
|
// treatment of the discriminant is handled while walking the arms.
|
|
for arm in arms {
|
|
let mode = self.arm_move_mode(discr_cmt.clone(), arm);
|
|
let mode = mode.match_mode();
|
|
self.walk_arm(discr_cmt.clone(), arm, mode);
|
|
}
|
|
}
|
|
|
|
hir::ExprVec(ref exprs) => {
|
|
self.consume_exprs(exprs);
|
|
}
|
|
|
|
hir::ExprAddrOf(m, ref base) => { // &base
|
|
// make sure that the thing we are pointing out stays valid
|
|
// for the lifetime `scope_r` of the resulting ptr:
|
|
let expr_ty = return_if_err!(self.typer.node_ty(expr.id));
|
|
if let ty::TyRef(&r, _) = expr_ty.sty {
|
|
let bk = ty::BorrowKind::from_mutbl(m);
|
|
self.borrow_expr(&**base, r, bk, AddrOf);
|
|
}
|
|
}
|
|
|
|
hir::ExprInlineAsm(ref ia) => {
|
|
for &(_, ref input) in &ia.inputs {
|
|
self.consume_expr(&**input);
|
|
}
|
|
|
|
for &(_, ref output, is_rw) in &ia.outputs {
|
|
self.mutate_expr(expr, &**output,
|
|
if is_rw { WriteAndRead } else { JustWrite });
|
|
}
|
|
}
|
|
|
|
hir::ExprBreak(..) |
|
|
hir::ExprAgain(..) |
|
|
hir::ExprLit(..) => {}
|
|
|
|
hir::ExprLoop(ref blk, _) => {
|
|
self.walk_block(&**blk);
|
|
}
|
|
|
|
hir::ExprWhile(ref cond_expr, ref blk, _) => {
|
|
self.consume_expr(&**cond_expr);
|
|
self.walk_block(&**blk);
|
|
}
|
|
|
|
hir::ExprUnary(op, ref lhs) => {
|
|
let pass_args = if ::rustc_front::util::is_by_value_unop(op) {
|
|
PassArgs::ByValue
|
|
} else {
|
|
PassArgs::ByRef
|
|
};
|
|
|
|
if !self.walk_overloaded_operator(expr, &**lhs, Vec::new(), pass_args) {
|
|
self.consume_expr(&**lhs);
|
|
}
|
|
}
|
|
|
|
hir::ExprBinary(op, ref lhs, ref rhs) => {
|
|
let pass_args = if ::rustc_front::util::is_by_value_binop(op.node) {
|
|
PassArgs::ByValue
|
|
} else {
|
|
PassArgs::ByRef
|
|
};
|
|
|
|
if !self.walk_overloaded_operator(expr, &**lhs, vec![&**rhs], pass_args) {
|
|
self.consume_expr(&**lhs);
|
|
self.consume_expr(&**rhs);
|
|
}
|
|
}
|
|
|
|
hir::ExprBlock(ref blk) => {
|
|
self.walk_block(&**blk);
|
|
}
|
|
|
|
hir::ExprRet(ref opt_expr) => {
|
|
if let Some(ref expr) = *opt_expr {
|
|
self.consume_expr(&**expr);
|
|
}
|
|
}
|
|
|
|
hir::ExprAssign(ref lhs, ref rhs) => {
|
|
self.mutate_expr(expr, &**lhs, JustWrite);
|
|
self.consume_expr(&**rhs);
|
|
}
|
|
|
|
hir::ExprCast(ref base, _) => {
|
|
self.consume_expr(&**base);
|
|
}
|
|
|
|
hir::ExprAssignOp(_, ref lhs, ref rhs) => {
|
|
// This will have to change if/when we support
|
|
// overloaded operators for `+=` and so forth.
|
|
self.mutate_expr(expr, &**lhs, WriteAndRead);
|
|
self.consume_expr(&**rhs);
|
|
}
|
|
|
|
hir::ExprRepeat(ref base, ref count) => {
|
|
self.consume_expr(&**base);
|
|
self.consume_expr(&**count);
|
|
}
|
|
|
|
hir::ExprClosure(..) => {
|
|
self.walk_captures(expr)
|
|
}
|
|
|
|
hir::ExprBox(ref place, ref base) => {
|
|
match *place {
|
|
Some(ref place) => self.consume_expr(&**place),
|
|
None => {}
|
|
}
|
|
self.consume_expr(&**base);
|
|
if place.is_some() {
|
|
self.tcx().sess.span_bug(
|
|
expr.span,
|
|
"box with explicit place remains after expansion");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn walk_callee(&mut self, call: &hir::Expr, callee: &hir::Expr) {
|
|
let callee_ty = return_if_err!(self.typer.expr_ty_adjusted(callee));
|
|
debug!("walk_callee: callee={:?} callee_ty={:?}",
|
|
callee, callee_ty);
|
|
let call_scope = self.tcx().region_maps.node_extent(call.id);
|
|
match callee_ty.sty {
|
|
ty::TyBareFn(..) => {
|
|
self.consume_expr(callee);
|
|
}
|
|
ty::TyError => { }
|
|
_ => {
|
|
let overloaded_call_type =
|
|
match self.typer.node_method_id(ty::MethodCall::expr(call.id)) {
|
|
Some(method_id) => {
|
|
OverloadedCallType::from_method_id(self.tcx(), method_id)
|
|
}
|
|
None => {
|
|
self.tcx().sess.span_bug(
|
|
callee.span,
|
|
&format!("unexpected callee type {}", callee_ty))
|
|
}
|
|
};
|
|
match overloaded_call_type {
|
|
FnMutOverloadedCall => {
|
|
self.borrow_expr(callee,
|
|
ty::ReScope(call_scope),
|
|
ty::MutBorrow,
|
|
ClosureInvocation);
|
|
}
|
|
FnOverloadedCall => {
|
|
self.borrow_expr(callee,
|
|
ty::ReScope(call_scope),
|
|
ty::ImmBorrow,
|
|
ClosureInvocation);
|
|
}
|
|
FnOnceOverloadedCall => self.consume_expr(callee),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn walk_stmt(&mut self, stmt: &hir::Stmt) {
|
|
match stmt.node {
|
|
hir::StmtDecl(ref decl, _) => {
|
|
match decl.node {
|
|
hir::DeclLocal(ref local) => {
|
|
self.walk_local(&**local);
|
|
}
|
|
|
|
hir::DeclItem(_) => {
|
|
// we don't visit nested items in this visitor,
|
|
// only the fn body we were given.
|
|
}
|
|
}
|
|
}
|
|
|
|
hir::StmtExpr(ref expr, _) |
|
|
hir::StmtSemi(ref expr, _) => {
|
|
self.consume_expr(&**expr);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn walk_local(&mut self, local: &hir::Local) {
|
|
match local.init {
|
|
None => {
|
|
let delegate = &mut self.delegate;
|
|
pat_util::pat_bindings(&self.typer.tcx.def_map, &*local.pat,
|
|
|_, id, span, _| {
|
|
delegate.decl_without_init(id, span);
|
|
})
|
|
}
|
|
|
|
Some(ref expr) => {
|
|
// Variable declarations with
|
|
// initializers are considered
|
|
// "assigns", which is handled by
|
|
// `walk_pat`:
|
|
self.walk_expr(&**expr);
|
|
let init_cmt = return_if_err!(self.mc.cat_expr(&**expr));
|
|
self.walk_irrefutable_pat(init_cmt, &*local.pat);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Indicates that the value of `blk` will be consumed, meaning either copied or moved
|
|
/// depending on its type.
|
|
fn walk_block(&mut self, blk: &hir::Block) {
|
|
debug!("walk_block(blk.id={})", blk.id);
|
|
|
|
for stmt in &blk.stmts {
|
|
self.walk_stmt(&**stmt);
|
|
}
|
|
|
|
if let Some(ref tail_expr) = blk.expr {
|
|
self.consume_expr(&**tail_expr);
|
|
}
|
|
}
|
|
|
|
fn walk_struct_expr(&mut self,
|
|
_expr: &hir::Expr,
|
|
fields: &Vec<hir::Field>,
|
|
opt_with: &Option<P<hir::Expr>>) {
|
|
// Consume the expressions supplying values for each field.
|
|
for field in fields {
|
|
self.consume_expr(&*field.expr);
|
|
}
|
|
|
|
let with_expr = match *opt_with {
|
|
Some(ref w) => &**w,
|
|
None => { return; }
|
|
};
|
|
|
|
let with_cmt = return_if_err!(self.mc.cat_expr(&*with_expr));
|
|
|
|
// Select just those fields of the `with`
|
|
// expression that will actually be used
|
|
if let ty::TyStruct(def, substs) = with_cmt.ty.sty {
|
|
// Consume those fields of the with expression that are needed.
|
|
for with_field in &def.struct_variant().fields {
|
|
if !contains_field_named(with_field, fields) {
|
|
let cmt_field = self.mc.cat_field(
|
|
&*with_expr,
|
|
with_cmt.clone(),
|
|
with_field.name,
|
|
with_field.ty(self.tcx(), substs)
|
|
);
|
|
self.delegate_consume(with_expr.id, with_expr.span, cmt_field);
|
|
}
|
|
}
|
|
} else {
|
|
// the base expression should always evaluate to a
|
|
// struct; however, when EUV is run during typeck, it
|
|
// may not. This will generate an error earlier in typeck,
|
|
// so we can just ignore it.
|
|
if !self.tcx().sess.has_errors() {
|
|
self.tcx().sess.span_bug(
|
|
with_expr.span,
|
|
"with expression doesn't evaluate to a struct");
|
|
}
|
|
};
|
|
|
|
// walk the with expression so that complex expressions
|
|
// are properly handled.
|
|
self.walk_expr(with_expr);
|
|
|
|
fn contains_field_named(field: ty::FieldDef,
|
|
fields: &Vec<hir::Field>)
|
|
-> bool
|
|
{
|
|
fields.iter().any(
|
|
|f| f.ident.node.name == field.name)
|
|
}
|
|
}
|
|
|
|
// Invoke the appropriate delegate calls for anything that gets
|
|
// consumed or borrowed as part of the automatic adjustment
|
|
// process.
|
|
fn walk_adjustment(&mut self, expr: &hir::Expr) {
|
|
let typer = self.typer;
|
|
//NOTE(@jroesch): mixed RefCell borrow causes crash
|
|
let adj = typer.adjustments().get(&expr.id).map(|x| x.clone());
|
|
if let Some(adjustment) = adj {
|
|
match adjustment {
|
|
ty::AdjustReifyFnPointer |
|
|
ty::AdjustUnsafeFnPointer => {
|
|
// Creating a closure/fn-pointer or unsizing consumes
|
|
// the input and stores it into the resulting rvalue.
|
|
debug!("walk_adjustment(AdjustReifyFnPointer|AdjustUnsafeFnPointer)");
|
|
let cmt_unadjusted =
|
|
return_if_err!(self.mc.cat_expr_unadjusted(expr));
|
|
self.delegate_consume(expr.id, expr.span, cmt_unadjusted);
|
|
}
|
|
ty::AdjustDerefRef(ref adj) => {
|
|
self.walk_autoderefref(expr, adj);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Autoderefs for overloaded Deref calls in fact reference their receiver. That is, if we have
|
|
/// `(*x)` where `x` is of type `Rc<T>`, then this in fact is equivalent to `x.deref()`. Since
|
|
/// `deref()` is declared with `&self`, this is an autoref of `x`.
|
|
fn walk_autoderefs(&mut self,
|
|
expr: &hir::Expr,
|
|
autoderefs: usize) {
|
|
debug!("walk_autoderefs expr={:?} autoderefs={}", expr, autoderefs);
|
|
|
|
for i in 0..autoderefs {
|
|
let deref_id = ty::MethodCall::autoderef(expr.id, i as u32);
|
|
match self.typer.node_method_ty(deref_id) {
|
|
None => {}
|
|
Some(method_ty) => {
|
|
let cmt = return_if_err!(self.mc.cat_expr_autoderefd(expr, i));
|
|
|
|
// the method call infrastructure should have
|
|
// replaced all late-bound regions with variables:
|
|
let self_ty = method_ty.fn_sig().input(0);
|
|
let self_ty = self.tcx().no_late_bound_regions(&self_ty).unwrap();
|
|
|
|
let (m, r) = match self_ty.sty {
|
|
ty::TyRef(r, ref m) => (m.mutbl, r),
|
|
_ => self.tcx().sess.span_bug(expr.span,
|
|
&format!("bad overloaded deref type {:?}",
|
|
method_ty))
|
|
};
|
|
let bk = ty::BorrowKind::from_mutbl(m);
|
|
self.delegate.borrow(expr.id, expr.span, cmt,
|
|
*r, bk, AutoRef);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn walk_autoderefref(&mut self,
|
|
expr: &hir::Expr,
|
|
adj: &ty::AutoDerefRef<'tcx>) {
|
|
debug!("walk_autoderefref expr={:?} adj={:?}",
|
|
expr,
|
|
adj);
|
|
|
|
self.walk_autoderefs(expr, adj.autoderefs);
|
|
|
|
let cmt_derefd =
|
|
return_if_err!(self.mc.cat_expr_autoderefd(expr, adj.autoderefs));
|
|
|
|
let cmt_refd =
|
|
self.walk_autoref(expr, cmt_derefd, adj.autoref);
|
|
|
|
if adj.unsize.is_some() {
|
|
// Unsizing consumes the thin pointer and produces a fat one.
|
|
self.delegate_consume(expr.id, expr.span, cmt_refd);
|
|
}
|
|
}
|
|
|
|
|
|
/// Walks the autoref `opt_autoref` applied to the autoderef'd
|
|
/// `expr`. `cmt_derefd` is the mem-categorized form of `expr`
|
|
/// after all relevant autoderefs have occurred. Because AutoRefs
|
|
/// can be recursive, this function is recursive: it first walks
|
|
/// deeply all the way down the autoref chain, and then processes
|
|
/// the autorefs on the way out. At each point, it returns the
|
|
/// `cmt` for the rvalue that will be produced by introduced an
|
|
/// autoref.
|
|
fn walk_autoref(&mut self,
|
|
expr: &hir::Expr,
|
|
cmt_base: mc::cmt<'tcx>,
|
|
opt_autoref: Option<ty::AutoRef<'tcx>>)
|
|
-> mc::cmt<'tcx>
|
|
{
|
|
debug!("walk_autoref(expr.id={} cmt_derefd={:?} opt_autoref={:?})",
|
|
expr.id,
|
|
cmt_base,
|
|
opt_autoref);
|
|
|
|
let cmt_base_ty = cmt_base.ty;
|
|
|
|
let autoref = match opt_autoref {
|
|
Some(ref autoref) => autoref,
|
|
None => {
|
|
// No AutoRef.
|
|
return cmt_base;
|
|
}
|
|
};
|
|
|
|
match *autoref {
|
|
ty::AutoPtr(r, m) => {
|
|
self.delegate.borrow(expr.id,
|
|
expr.span,
|
|
cmt_base,
|
|
*r,
|
|
ty::BorrowKind::from_mutbl(m),
|
|
AutoRef);
|
|
}
|
|
|
|
ty::AutoUnsafe(m) => {
|
|
debug!("walk_autoref: expr.id={} cmt_base={:?}",
|
|
expr.id,
|
|
cmt_base);
|
|
|
|
// Converting from a &T to *T (or &mut T to *mut T) is
|
|
// treated as borrowing it for the enclosing temporary
|
|
// scope.
|
|
let r = ty::ReScope(self.tcx().region_maps.node_extent(expr.id));
|
|
|
|
self.delegate.borrow(expr.id,
|
|
expr.span,
|
|
cmt_base,
|
|
r,
|
|
ty::BorrowKind::from_mutbl(m),
|
|
AutoUnsafe);
|
|
}
|
|
}
|
|
|
|
// Construct the categorization for the result of the autoref.
|
|
// This is always an rvalue, since we are producing a new
|
|
// (temporary) indirection.
|
|
|
|
let adj_ty = cmt_base_ty.adjust_for_autoref(self.tcx(), opt_autoref);
|
|
|
|
self.mc.cat_rvalue_node(expr.id, expr.span, adj_ty)
|
|
}
|
|
|
|
|
|
// When this returns true, it means that the expression *is* a
|
|
// method-call (i.e. via the operator-overload). This true result
|
|
// also implies that walk_overloaded_operator already took care of
|
|
// recursively processing the input arguments, and thus the caller
|
|
// should not do so.
|
|
fn walk_overloaded_operator(&mut self,
|
|
expr: &hir::Expr,
|
|
receiver: &hir::Expr,
|
|
rhs: Vec<&hir::Expr>,
|
|
pass_args: PassArgs)
|
|
-> bool
|
|
{
|
|
if !self.typer.is_method_call(expr.id) {
|
|
return false;
|
|
}
|
|
|
|
match pass_args {
|
|
PassArgs::ByValue => {
|
|
self.consume_expr(receiver);
|
|
for &arg in &rhs {
|
|
self.consume_expr(arg);
|
|
}
|
|
|
|
return true;
|
|
},
|
|
PassArgs::ByRef => {},
|
|
}
|
|
|
|
self.walk_expr(receiver);
|
|
|
|
// Arguments (but not receivers) to overloaded operator
|
|
// methods are implicitly autoref'd which sadly does not use
|
|
// adjustments, so we must hardcode the borrow here.
|
|
|
|
let r = ty::ReScope(self.tcx().region_maps.node_extent(expr.id));
|
|
let bk = ty::ImmBorrow;
|
|
|
|
for &arg in &rhs {
|
|
self.borrow_expr(arg, r, bk, OverloadedOperator);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
fn arm_move_mode(&mut self, discr_cmt: mc::cmt<'tcx>, arm: &hir::Arm) -> TrackMatchMode {
|
|
let mut mode = Unknown;
|
|
for pat in &arm.pats {
|
|
self.determine_pat_move_mode(discr_cmt.clone(), &**pat, &mut mode);
|
|
}
|
|
mode
|
|
}
|
|
|
|
fn walk_arm(&mut self, discr_cmt: mc::cmt<'tcx>, arm: &hir::Arm, mode: MatchMode) {
|
|
for pat in &arm.pats {
|
|
self.walk_pat(discr_cmt.clone(), &**pat, mode);
|
|
}
|
|
|
|
if let Some(ref guard) = arm.guard {
|
|
self.consume_expr(&**guard);
|
|
}
|
|
|
|
self.consume_expr(&*arm.body);
|
|
}
|
|
|
|
/// Walks an pat that occurs in isolation (i.e. top-level of fn
|
|
/// arg or let binding. *Not* a match arm or nested pat.)
|
|
fn walk_irrefutable_pat(&mut self, cmt_discr: mc::cmt<'tcx>, pat: &hir::Pat) {
|
|
let mut mode = Unknown;
|
|
self.determine_pat_move_mode(cmt_discr.clone(), pat, &mut mode);
|
|
let mode = mode.match_mode();
|
|
self.walk_pat(cmt_discr, pat, mode);
|
|
}
|
|
|
|
/// Identifies any bindings within `pat` and accumulates within
|
|
/// `mode` whether the overall pattern/match structure is a move,
|
|
/// copy, or borrow.
|
|
fn determine_pat_move_mode(&mut self,
|
|
cmt_discr: mc::cmt<'tcx>,
|
|
pat: &hir::Pat,
|
|
mode: &mut TrackMatchMode) {
|
|
debug!("determine_pat_move_mode cmt_discr={:?} pat={:?}", cmt_discr,
|
|
pat);
|
|
return_if_err!(self.mc.cat_pattern(cmt_discr, pat, |_mc, cmt_pat, pat| {
|
|
let tcx = self.tcx();
|
|
let def_map = &self.tcx().def_map;
|
|
if pat_util::pat_is_binding(def_map, pat) {
|
|
match pat.node {
|
|
hir::PatIdent(hir::BindByRef(_), _, _) =>
|
|
mode.lub(BorrowingMatch),
|
|
hir::PatIdent(hir::BindByValue(_), _, _) => {
|
|
match copy_or_move(self.typer, &cmt_pat, PatBindingMove) {
|
|
Copy => mode.lub(CopyingMatch),
|
|
Move(_) => mode.lub(MovingMatch),
|
|
}
|
|
}
|
|
_ => {
|
|
tcx.sess.span_bug(
|
|
pat.span,
|
|
"binding pattern not an identifier");
|
|
}
|
|
}
|
|
}
|
|
}));
|
|
}
|
|
|
|
/// The core driver for walking a pattern; `match_mode` must be
|
|
/// established up front, e.g. via `determine_pat_move_mode` (see
|
|
/// also `walk_irrefutable_pat` for patterns that stand alone).
|
|
fn walk_pat(&mut self,
|
|
cmt_discr: mc::cmt<'tcx>,
|
|
pat: &hir::Pat,
|
|
match_mode: MatchMode) {
|
|
debug!("walk_pat cmt_discr={:?} pat={:?}", cmt_discr,
|
|
pat);
|
|
|
|
let mc = &self.mc;
|
|
let typer = self.typer;
|
|
let def_map = &self.tcx().def_map;
|
|
let delegate = &mut self.delegate;
|
|
return_if_err!(mc.cat_pattern(cmt_discr.clone(), pat, |mc, cmt_pat, pat| {
|
|
if pat_util::pat_is_binding(def_map, pat) {
|
|
let tcx = typer.tcx;
|
|
|
|
debug!("binding cmt_pat={:?} pat={:?} match_mode={:?}",
|
|
cmt_pat,
|
|
pat,
|
|
match_mode);
|
|
|
|
// pat_ty: the type of the binding being produced.
|
|
let pat_ty = return_if_err!(typer.node_ty(pat.id));
|
|
|
|
// Each match binding is effectively an assignment to the
|
|
// binding being produced.
|
|
let def = def_map.borrow().get(&pat.id).unwrap().full_def();
|
|
match mc.cat_def(pat.id, pat.span, pat_ty, def) {
|
|
Ok(binding_cmt) => {
|
|
delegate.mutate(pat.id, pat.span, binding_cmt, Init);
|
|
}
|
|
Err(_) => { }
|
|
}
|
|
|
|
// It is also a borrow or copy/move of the value being matched.
|
|
match pat.node {
|
|
hir::PatIdent(hir::BindByRef(m), _, _) => {
|
|
if let ty::TyRef(&r, _) = pat_ty.sty {
|
|
let bk = ty::BorrowKind::from_mutbl(m);
|
|
delegate.borrow(pat.id, pat.span, cmt_pat,
|
|
r, bk, RefBinding);
|
|
}
|
|
}
|
|
hir::PatIdent(hir::BindByValue(_), _, _) => {
|
|
let mode = copy_or_move(typer, &cmt_pat, PatBindingMove);
|
|
debug!("walk_pat binding consuming pat");
|
|
delegate.consume_pat(pat, cmt_pat, mode);
|
|
}
|
|
_ => {
|
|
tcx.sess.span_bug(
|
|
pat.span,
|
|
"binding pattern not an identifier");
|
|
}
|
|
}
|
|
} else {
|
|
match pat.node {
|
|
hir::PatVec(_, Some(ref slice_pat), _) => {
|
|
// The `slice_pat` here creates a slice into
|
|
// the original vector. This is effectively a
|
|
// borrow of the elements of the vector being
|
|
// matched.
|
|
|
|
let (slice_cmt, slice_mutbl, slice_r) =
|
|
return_if_err!(mc.cat_slice_pattern(cmt_pat, &**slice_pat));
|
|
|
|
// Note: We declare here that the borrow
|
|
// occurs upon entering the `[...]`
|
|
// pattern. This implies that something like
|
|
// `[a; b]` where `a` is a move is illegal,
|
|
// because the borrow is already in effect.
|
|
// In fact such a move would be safe-ish, but
|
|
// it effectively *requires* that we use the
|
|
// nulling out semantics to indicate when a
|
|
// value has been moved, which we are trying
|
|
// to move away from. Otherwise, how can we
|
|
// indicate that the first element in the
|
|
// vector has been moved? Eventually, we
|
|
// could perhaps modify this rule to permit
|
|
// `[..a, b]` where `b` is a move, because in
|
|
// that case we can adjust the length of the
|
|
// original vec accordingly, but we'd have to
|
|
// make trans do the right thing, and it would
|
|
// only work for `Box<[T]>`s. It seems simpler
|
|
// to just require that people call
|
|
// `vec.pop()` or `vec.unshift()`.
|
|
let slice_bk = ty::BorrowKind::from_mutbl(slice_mutbl);
|
|
delegate.borrow(pat.id, pat.span,
|
|
slice_cmt, slice_r,
|
|
slice_bk, RefBinding);
|
|
}
|
|
_ => { }
|
|
}
|
|
}
|
|
}));
|
|
|
|
// Do a second pass over the pattern, calling `matched_pat` on
|
|
// the interior nodes (enum variants and structs), as opposed
|
|
// to the above loop's visit of than the bindings that form
|
|
// the leaves of the pattern tree structure.
|
|
return_if_err!(mc.cat_pattern(cmt_discr, pat, |mc, cmt_pat, pat| {
|
|
let def_map = def_map.borrow();
|
|
let tcx = typer.tcx;
|
|
|
|
match pat.node {
|
|
hir::PatEnum(_, _) | hir::PatQPath(..) |
|
|
hir::PatIdent(_, _, None) | hir::PatStruct(..) => {
|
|
match def_map.get(&pat.id).map(|d| d.full_def()) {
|
|
None => {
|
|
// no definition found: pat is not a
|
|
// struct or enum pattern.
|
|
}
|
|
|
|
Some(def::DefVariant(enum_did, variant_did, _is_struct)) => {
|
|
let downcast_cmt =
|
|
if tcx.lookup_adt_def(enum_did).is_univariant() {
|
|
cmt_pat
|
|
} else {
|
|
let cmt_pat_ty = cmt_pat.ty;
|
|
mc.cat_downcast(pat, cmt_pat, cmt_pat_ty, variant_did)
|
|
};
|
|
|
|
debug!("variant downcast_cmt={:?} pat={:?}",
|
|
downcast_cmt,
|
|
pat);
|
|
|
|
delegate.matched_pat(pat, downcast_cmt, match_mode);
|
|
}
|
|
|
|
Some(def::DefStruct(..)) | Some(def::DefTy(_, false)) => {
|
|
// A struct (in either the value or type
|
|
// namespace; we encounter the former on
|
|
// e.g. patterns for unit structs).
|
|
|
|
debug!("struct cmt_pat={:?} pat={:?}",
|
|
cmt_pat,
|
|
pat);
|
|
|
|
delegate.matched_pat(pat, cmt_pat, match_mode);
|
|
}
|
|
|
|
Some(def::DefConst(..)) |
|
|
Some(def::DefAssociatedConst(..)) |
|
|
Some(def::DefLocal(..)) => {
|
|
// This is a leaf (i.e. identifier binding
|
|
// or constant value to match); thus no
|
|
// `matched_pat` call.
|
|
}
|
|
|
|
Some(def @ def::DefTy(_, true)) => {
|
|
// An enum's type -- should never be in a
|
|
// pattern.
|
|
|
|
if !tcx.sess.has_errors() {
|
|
let msg = format!("Pattern has unexpected type: {:?} and type {:?}",
|
|
def,
|
|
cmt_pat.ty);
|
|
tcx.sess.span_bug(pat.span, &msg)
|
|
}
|
|
}
|
|
|
|
Some(def) => {
|
|
// Remaining cases are e.g. DefFn, to
|
|
// which identifiers within patterns
|
|
// should not resolve. However, we do
|
|
// encouter this when using the
|
|
// expr-use-visitor during typeck. So just
|
|
// ignore it, an error should have been
|
|
// reported.
|
|
|
|
if !tcx.sess.has_errors() {
|
|
let msg = format!("Pattern has unexpected def: {:?} and type {:?}",
|
|
def,
|
|
cmt_pat.ty);
|
|
tcx.sess.span_bug(pat.span, &msg[..])
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
hir::PatIdent(_, _, Some(_)) => {
|
|
// Do nothing; this is a binding (not a enum
|
|
// variant or struct), and the cat_pattern call
|
|
// will visit the substructure recursively.
|
|
}
|
|
|
|
hir::PatWild(_) | hir::PatTup(..) | hir::PatBox(..) |
|
|
hir::PatRegion(..) | hir::PatLit(..) | hir::PatRange(..) |
|
|
hir::PatVec(..) => {
|
|
// Similarly, each of these cases does not
|
|
// correspond to a enum variant or struct, so we
|
|
// do not do any `matched_pat` calls for these
|
|
// cases either.
|
|
}
|
|
}
|
|
}));
|
|
}
|
|
|
|
fn walk_captures(&mut self, closure_expr: &hir::Expr) {
|
|
debug!("walk_captures({:?})", closure_expr);
|
|
|
|
self.tcx().with_freevars(closure_expr.id, |freevars| {
|
|
for freevar in freevars {
|
|
let id_var = freevar.def.def_id().node;
|
|
let upvar_id = ty::UpvarId { var_id: id_var,
|
|
closure_expr_id: closure_expr.id };
|
|
let upvar_capture = self.typer.upvar_capture(upvar_id).unwrap();
|
|
let cmt_var = return_if_err!(self.cat_captured_var(closure_expr.id,
|
|
closure_expr.span,
|
|
freevar.def));
|
|
match upvar_capture {
|
|
ty::UpvarCapture::ByValue => {
|
|
let mode = copy_or_move(self.typer, &cmt_var, CaptureMove);
|
|
self.delegate.consume(closure_expr.id, freevar.span, cmt_var, mode);
|
|
}
|
|
ty::UpvarCapture::ByRef(upvar_borrow) => {
|
|
self.delegate.borrow(closure_expr.id,
|
|
closure_expr.span,
|
|
cmt_var,
|
|
upvar_borrow.region,
|
|
upvar_borrow.kind,
|
|
ClosureCapture(freevar.span));
|
|
}
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
fn cat_captured_var(&mut self,
|
|
closure_id: ast::NodeId,
|
|
closure_span: Span,
|
|
upvar_def: def::Def)
|
|
-> mc::McResult<mc::cmt<'tcx>> {
|
|
// Create the cmt for the variable being borrowed, from the
|
|
// caller's perspective
|
|
let var_id = upvar_def.def_id().node;
|
|
let var_ty = try!(self.typer.node_ty(var_id));
|
|
self.mc.cat_def(closure_id, closure_span, var_ty, upvar_def)
|
|
}
|
|
}
|
|
|
|
fn copy_or_move<'a, 'tcx>(typer: &infer::InferCtxt<'a, 'tcx>,
|
|
cmt: &mc::cmt<'tcx>,
|
|
move_reason: MoveReason)
|
|
-> ConsumeMode
|
|
{
|
|
if typer.type_moves_by_default(cmt.ty, cmt.span) {
|
|
Move(move_reason)
|
|
} else {
|
|
Copy
|
|
}
|
|
}
|