rust/src/librustc/hir/mod.rs
Vadim Petrochenkov 02a1eef6e4 Fix rebase
2016-05-16 23:12:18 +03:00

1592 lines
47 KiB
Rust

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// The Rust HIR.
pub use self::BindingMode::*;
pub use self::BinOp_::*;
pub use self::BlockCheckMode::*;
pub use self::CaptureClause::*;
pub use self::Decl_::*;
pub use self::Expr_::*;
pub use self::FunctionRetTy::*;
pub use self::ForeignItem_::*;
pub use self::Item_::*;
pub use self::Mutability::*;
pub use self::PathListItem_::*;
pub use self::PrimTy::*;
pub use self::Stmt_::*;
pub use self::TraitItem_::*;
pub use self::Ty_::*;
pub use self::TyParamBound::*;
pub use self::UnOp::*;
pub use self::UnsafeSource::*;
pub use self::ViewPath_::*;
pub use self::Visibility::{Public, Inherited};
pub use self::PathParameters::*;
use hir::def::Def;
use hir::def_id::DefId;
use util::nodemap::{NodeMap, FnvHashSet};
use syntax::codemap::{self, mk_sp, respan, Span, Spanned, ExpnId};
use syntax::abi::Abi;
use syntax::ast::{Name, NodeId, DUMMY_NODE_ID, TokenTree, AsmDialect};
use syntax::ast::{Attribute, Lit, StrStyle, FloatTy, IntTy, UintTy, MetaItem};
use syntax::attr::{ThinAttributes, ThinAttributesExt};
use syntax::parse::token::{keywords, InternedString};
use syntax::ptr::P;
use std::collections::BTreeMap;
use std::fmt;
/// HIR doesn't commit to a concrete storage type and have its own alias for a vector.
/// It can be `Vec`, `P<[T]>` or potentially `Box<[T]>`, or some other container with similar
/// behavior. Unlike AST, HIR is mostly a static structure, so we can use an owned slice instead
/// of `Vec` to avoid keeping extra capacity.
pub type HirVec<T> = P<[T]>;
macro_rules! hir_vec {
($elem:expr; $n:expr) => (
$crate::hir::HirVec::from(vec![$elem; $n])
);
($($x:expr),*) => (
$crate::hir::HirVec::from(vec![$($x),*])
);
($($x:expr,)*) => (hir_vec![$($x),*])
}
pub mod check_attr;
pub mod def;
pub mod def_id;
pub mod fold;
pub mod intravisit;
pub mod lowering;
pub mod map;
pub mod pat_util;
pub mod print;
pub mod svh;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
pub struct Lifetime {
pub id: NodeId,
pub span: Span,
pub name: Name,
}
impl fmt::Debug for Lifetime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f,
"lifetime({}: {})",
self.id,
print::lifetime_to_string(self))
}
}
/// A lifetime definition, eg `'a: 'b+'c+'d`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct LifetimeDef {
pub lifetime: Lifetime,
pub bounds: HirVec<Lifetime>,
}
/// A "Path" is essentially Rust's notion of a name; for instance:
/// std::cmp::PartialEq . It's represented as a sequence of identifiers,
/// along with a bunch of supporting information.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub struct Path {
pub span: Span,
/// A `::foo` path, is relative to the crate root rather than current
/// module (like paths in an import).
pub global: bool,
/// The segments in the path: the things separated by `::`.
pub segments: HirVec<PathSegment>,
}
impl fmt::Debug for Path {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "path({})", print::path_to_string(self))
}
}
impl fmt::Display for Path {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", print::path_to_string(self))
}
}
impl Path {
/// Convert a span and an identifier to the corresponding
/// 1-segment path.
pub fn from_name(s: Span, name: Name) -> Path {
Path {
span: s,
global: false,
segments: hir_vec![PathSegment {
name: name,
parameters: PathParameters::none()
}],
}
}
}
/// A segment of a path: an identifier, an optional lifetime, and a set of
/// types.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct PathSegment {
/// The identifier portion of this path segment.
pub name: Name,
/// Type/lifetime parameters attached to this path. They come in
/// two flavors: `Path<A,B,C>` and `Path(A,B) -> C`. Note that
/// this is more than just simple syntactic sugar; the use of
/// parens affects the region binding rules, so we preserve the
/// distinction.
pub parameters: PathParameters,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum PathParameters {
/// The `<'a, A,B,C>` in `foo::bar::baz::<'a, A,B,C>`
AngleBracketedParameters(AngleBracketedParameterData),
/// The `(A,B)` and `C` in `Foo(A,B) -> C`
ParenthesizedParameters(ParenthesizedParameterData),
}
impl PathParameters {
pub fn none() -> PathParameters {
AngleBracketedParameters(AngleBracketedParameterData {
lifetimes: HirVec::new(),
types: HirVec::new(),
bindings: HirVec::new(),
})
}
pub fn is_empty(&self) -> bool {
match *self {
AngleBracketedParameters(ref data) => data.is_empty(),
// Even if the user supplied no types, something like
// `X()` is equivalent to `X<(),()>`.
ParenthesizedParameters(..) => false,
}
}
pub fn has_lifetimes(&self) -> bool {
match *self {
AngleBracketedParameters(ref data) => !data.lifetimes.is_empty(),
ParenthesizedParameters(_) => false,
}
}
pub fn has_types(&self) -> bool {
match *self {
AngleBracketedParameters(ref data) => !data.types.is_empty(),
ParenthesizedParameters(..) => true,
}
}
/// Returns the types that the user wrote. Note that these do not necessarily map to the type
/// parameters in the parenthesized case.
pub fn types(&self) -> HirVec<&P<Ty>> {
match *self {
AngleBracketedParameters(ref data) => {
data.types.iter().collect()
}
ParenthesizedParameters(ref data) => {
data.inputs
.iter()
.chain(data.output.iter())
.collect()
}
}
}
pub fn lifetimes(&self) -> HirVec<&Lifetime> {
match *self {
AngleBracketedParameters(ref data) => {
data.lifetimes.iter().collect()
}
ParenthesizedParameters(_) => {
HirVec::new()
}
}
}
pub fn bindings(&self) -> HirVec<&TypeBinding> {
match *self {
AngleBracketedParameters(ref data) => {
data.bindings.iter().collect()
}
ParenthesizedParameters(_) => {
HirVec::new()
}
}
}
}
/// A path like `Foo<'a, T>`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct AngleBracketedParameterData {
/// The lifetime parameters for this path segment.
pub lifetimes: HirVec<Lifetime>,
/// The type parameters for this path segment, if present.
pub types: HirVec<P<Ty>>,
/// Bindings (equality constraints) on associated types, if present.
/// E.g., `Foo<A=Bar>`.
pub bindings: HirVec<TypeBinding>,
}
impl AngleBracketedParameterData {
fn is_empty(&self) -> bool {
self.lifetimes.is_empty() && self.types.is_empty() && self.bindings.is_empty()
}
}
/// A path like `Foo(A,B) -> C`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ParenthesizedParameterData {
/// Overall span
pub span: Span,
/// `(A,B)`
pub inputs: HirVec<P<Ty>>,
/// `C`
pub output: Option<P<Ty>>,
}
/// The AST represents all type param bounds as types.
/// typeck::collect::compute_bounds matches these against
/// the "special" built-in traits (see middle::lang_items) and
/// detects Copy, Send and Sync.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TyParamBound {
TraitTyParamBound(PolyTraitRef, TraitBoundModifier),
RegionTyParamBound(Lifetime),
}
/// A modifier on a bound, currently this is only used for `?Sized`, where the
/// modifier is `Maybe`. Negative bounds should also be handled here.
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TraitBoundModifier {
None,
Maybe,
}
pub type TyParamBounds = HirVec<TyParamBound>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TyParam {
pub name: Name,
pub id: NodeId,
pub bounds: TyParamBounds,
pub default: Option<P<Ty>>,
pub span: Span,
}
/// Represents lifetimes and type parameters attached to a declaration
/// of a function, enum, trait, etc.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Generics {
pub lifetimes: HirVec<LifetimeDef>,
pub ty_params: HirVec<TyParam>,
pub where_clause: WhereClause,
}
impl Generics {
pub fn empty() -> Generics {
Generics {
lifetimes: HirVec::new(),
ty_params: HirVec::new(),
where_clause: WhereClause {
id: DUMMY_NODE_ID,
predicates: HirVec::new(),
},
}
}
pub fn is_lt_parameterized(&self) -> bool {
!self.lifetimes.is_empty()
}
pub fn is_type_parameterized(&self) -> bool {
!self.ty_params.is_empty()
}
pub fn is_parameterized(&self) -> bool {
self.is_lt_parameterized() || self.is_type_parameterized()
}
}
/// A `where` clause in a definition
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereClause {
pub id: NodeId,
pub predicates: HirVec<WherePredicate>,
}
/// A single predicate in a `where` clause
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum WherePredicate {
/// A type binding, eg `for<'c> Foo: Send+Clone+'c`
BoundPredicate(WhereBoundPredicate),
/// A lifetime predicate, e.g. `'a: 'b+'c`
RegionPredicate(WhereRegionPredicate),
/// An equality predicate (unsupported)
EqPredicate(WhereEqPredicate),
}
/// A type bound, eg `for<'c> Foo: Send+Clone+'c`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereBoundPredicate {
pub span: Span,
/// Any lifetimes from a `for` binding
pub bound_lifetimes: HirVec<LifetimeDef>,
/// The type being bounded
pub bounded_ty: P<Ty>,
/// Trait and lifetime bounds (`Clone+Send+'static`)
pub bounds: TyParamBounds,
}
/// A lifetime predicate, e.g. `'a: 'b+'c`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereRegionPredicate {
pub span: Span,
pub lifetime: Lifetime,
pub bounds: HirVec<Lifetime>,
}
/// An equality predicate (unsupported), e.g. `T=int`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereEqPredicate {
pub id: NodeId,
pub span: Span,
pub path: Path,
pub ty: P<Ty>,
}
pub type CrateConfig = HirVec<P<MetaItem>>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Debug)]
pub struct Crate {
pub module: Mod,
pub attrs: HirVec<Attribute>,
pub config: CrateConfig,
pub span: Span,
pub exported_macros: HirVec<MacroDef>,
// NB: We use a BTreeMap here so that `visit_all_items` iterates
// over the ids in increasing order. In principle it should not
// matter what order we visit things in, but in *practice* it
// does, because it can affect the order in which errors are
// detected, which in turn can make compile-fail tests yield
// slightly different results.
pub items: BTreeMap<NodeId, Item>,
}
impl Crate {
pub fn item(&self, id: NodeId) -> &Item {
&self.items[&id]
}
/// Visits all items in the crate in some determinstic (but
/// unspecified) order. If you just need to process every item,
/// but don't care about nesting, this method is the best choice.
///
/// If you do care about nesting -- usually because your algorithm
/// follows lexical scoping rules -- then you want a different
/// approach. You should override `visit_nested_item` in your
/// visitor and then call `intravisit::walk_crate` instead.
pub fn visit_all_items<'hir, V>(&'hir self, visitor: &mut V)
where V: intravisit::Visitor<'hir>
{
for (_, item) in &self.items {
visitor.visit_item(item);
}
}
}
/// A macro definition, in this crate or imported from another.
///
/// Not parsed directly, but created on macro import or `macro_rules!` expansion.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct MacroDef {
pub name: Name,
pub attrs: HirVec<Attribute>,
pub id: NodeId,
pub span: Span,
pub imported_from: Option<Name>,
pub export: bool,
pub use_locally: bool,
pub allow_internal_unstable: bool,
pub body: HirVec<TokenTree>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Block {
/// Statements in a block
pub stmts: HirVec<Stmt>,
/// An expression at the end of the block
/// without a semicolon, if any
pub expr: Option<P<Expr>>,
pub id: NodeId,
/// Distinguishes between `unsafe { ... }` and `{ ... }`
pub rules: BlockCheckMode,
pub span: Span,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub struct Pat {
pub id: NodeId,
pub node: PatKind,
pub span: Span,
}
impl fmt::Debug for Pat {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "pat({}: {})", self.id, print::pat_to_string(self))
}
}
impl Pat {
// FIXME(#19596) this is a workaround, but there should be a better way
fn walk_<G>(&self, it: &mut G) -> bool
where G: FnMut(&Pat) -> bool
{
if !it(self) {
return false;
}
match self.node {
PatKind::Ident(_, _, Some(ref p)) => p.walk_(it),
PatKind::Struct(_, ref fields, _) => {
fields.iter().all(|field| field.node.pat.walk_(it))
}
PatKind::TupleStruct(_, Some(ref s)) | PatKind::Tup(ref s) => {
s.iter().all(|p| p.walk_(it))
}
PatKind::Box(ref s) | PatKind::Ref(ref s, _) => {
s.walk_(it)
}
PatKind::Vec(ref before, ref slice, ref after) => {
before.iter().all(|p| p.walk_(it)) &&
slice.iter().all(|p| p.walk_(it)) &&
after.iter().all(|p| p.walk_(it))
}
PatKind::Wild |
PatKind::Lit(_) |
PatKind::Range(_, _) |
PatKind::Ident(_, _, _) |
PatKind::TupleStruct(..) |
PatKind::Path(..) |
PatKind::QPath(_, _) => {
true
}
}
}
pub fn walk<F>(&self, mut it: F) -> bool
where F: FnMut(&Pat) -> bool
{
self.walk_(&mut it)
}
}
/// A single field in a struct pattern
///
/// Patterns like the fields of Foo `{ x, ref y, ref mut z }`
/// are treated the same as` x: x, y: ref y, z: ref mut z`,
/// except is_shorthand is true
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct FieldPat {
/// The identifier for the field
pub name: Name,
/// The pattern the field is destructured to
pub pat: P<Pat>,
pub is_shorthand: bool,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum BindingMode {
BindByRef(Mutability),
BindByValue(Mutability),
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum PatKind {
/// Represents a wildcard pattern (`_`)
Wild,
/// A `PatKind::Ident` may either be a new bound variable,
/// or a unit struct/variant pattern, or a const pattern (in the last two cases
/// the third field must be `None`).
///
/// In the unit or const pattern case, the parser can't determine
/// which it is. The resolver determines this, and
/// records this pattern's `NodeId` in an auxiliary
/// set (of "PatIdents that refer to unit patterns or constants").
Ident(BindingMode, Spanned<Name>, Option<P<Pat>>),
/// A struct or struct variant pattern, e.g. `Variant {x, y, ..}`.
/// The `bool` is `true` in the presence of a `..`.
Struct(Path, HirVec<Spanned<FieldPat>>, bool),
/// A tuple struct/variant pattern `Variant(x, y, z)`.
/// "None" means a `Variant(..)` pattern where we don't bind the fields to names.
TupleStruct(Path, Option<HirVec<P<Pat>>>),
/// A path pattern.
/// Such pattern can be resolved to a unit struct/variant or a constant.
Path(Path),
/// An associated const named using the qualified path `<T>::CONST` or
/// `<T as Trait>::CONST`. Associated consts from inherent impls can be
/// referred to as simply `T::CONST`, in which case they will end up as
/// PatKind::Path, and the resolver will have to sort that out.
QPath(QSelf, Path),
/// A tuple pattern `(a, b)`
Tup(HirVec<P<Pat>>),
/// A `box` pattern
Box(P<Pat>),
/// A reference pattern, e.g. `&mut (a, b)`
Ref(P<Pat>, Mutability),
/// A literal
Lit(P<Expr>),
/// A range pattern, e.g. `1...2`
Range(P<Expr>, P<Expr>),
/// `[a, b, ..i, y, z]` is represented as:
/// `PatKind::Vec(box [a, b], Some(i), box [y, z])`
Vec(HirVec<P<Pat>>, Option<P<Pat>>, HirVec<P<Pat>>),
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum Mutability {
MutMutable,
MutImmutable,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum BinOp_ {
/// The `+` operator (addition)
BiAdd,
/// The `-` operator (subtraction)
BiSub,
/// The `*` operator (multiplication)
BiMul,
/// The `/` operator (division)
BiDiv,
/// The `%` operator (modulus)
BiRem,
/// The `&&` operator (logical and)
BiAnd,
/// The `||` operator (logical or)
BiOr,
/// The `^` operator (bitwise xor)
BiBitXor,
/// The `&` operator (bitwise and)
BiBitAnd,
/// The `|` operator (bitwise or)
BiBitOr,
/// The `<<` operator (shift left)
BiShl,
/// The `>>` operator (shift right)
BiShr,
/// The `==` operator (equality)
BiEq,
/// The `<` operator (less than)
BiLt,
/// The `<=` operator (less than or equal to)
BiLe,
/// The `!=` operator (not equal to)
BiNe,
/// The `>=` operator (greater than or equal to)
BiGe,
/// The `>` operator (greater than)
BiGt,
}
impl BinOp_ {
pub fn as_str(self) -> &'static str {
match self {
BiAdd => "+",
BiSub => "-",
BiMul => "*",
BiDiv => "/",
BiRem => "%",
BiAnd => "&&",
BiOr => "||",
BiBitXor => "^",
BiBitAnd => "&",
BiBitOr => "|",
BiShl => "<<",
BiShr => ">>",
BiEq => "==",
BiLt => "<",
BiLe => "<=",
BiNe => "!=",
BiGe => ">=",
BiGt => ">",
}
}
pub fn is_lazy(self) -> bool {
match self {
BiAnd | BiOr => true,
_ => false,
}
}
pub fn is_shift(self) -> bool {
match self {
BiShl | BiShr => true,
_ => false,
}
}
pub fn is_comparison(self) -> bool {
match self {
BiEq | BiLt | BiLe | BiNe | BiGt | BiGe => true,
BiAnd |
BiOr |
BiAdd |
BiSub |
BiMul |
BiDiv |
BiRem |
BiBitXor |
BiBitAnd |
BiBitOr |
BiShl |
BiShr => false,
}
}
/// Returns `true` if the binary operator takes its arguments by value
pub fn is_by_value(self) -> bool {
!self.is_comparison()
}
}
pub type BinOp = Spanned<BinOp_>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum UnOp {
/// The `*` operator for dereferencing
UnDeref,
/// The `!` operator for logical inversion
UnNot,
/// The `-` operator for negation
UnNeg,
}
impl UnOp {
pub fn as_str(self) -> &'static str {
match self {
UnDeref => "*",
UnNot => "!",
UnNeg => "-",
}
}
/// Returns `true` if the unary operator takes its argument by value
pub fn is_by_value(self) -> bool {
match self {
UnNeg | UnNot => true,
_ => false,
}
}
}
/// A statement
pub type Stmt = Spanned<Stmt_>;
impl fmt::Debug for Stmt_ {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// Sadness.
let spanned = codemap::dummy_spanned(self.clone());
write!(f,
"stmt({}: {})",
spanned.node.id(),
print::stmt_to_string(&spanned))
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub enum Stmt_ {
/// Could be an item or a local (let) binding:
StmtDecl(P<Decl>, NodeId),
/// Expr without trailing semi-colon (must have unit type):
StmtExpr(P<Expr>, NodeId),
/// Expr with trailing semi-colon (may have any type):
StmtSemi(P<Expr>, NodeId),
}
impl Stmt_ {
pub fn attrs(&self) -> &[Attribute] {
match *self {
StmtDecl(ref d, _) => d.node.attrs(),
StmtExpr(ref e, _) |
StmtSemi(ref e, _) => e.attrs.as_attr_slice(),
}
}
pub fn id(&self) -> NodeId {
match *self {
StmtDecl(_, id) => id,
StmtExpr(_, id) => id,
StmtSemi(_, id) => id,
}
}
}
// FIXME (pending discussion of #1697, #2178...): local should really be
// a refinement on pat.
/// Local represents a `let` statement, e.g., `let <pat>:<ty> = <expr>;`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Local {
pub pat: P<Pat>,
pub ty: Option<P<Ty>>,
/// Initializer expression to set the value, if any
pub init: Option<P<Expr>>,
pub id: NodeId,
pub span: Span,
pub attrs: ThinAttributes,
}
pub type Decl = Spanned<Decl_>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Decl_ {
/// A local (let) binding:
DeclLocal(P<Local>),
/// An item binding:
DeclItem(ItemId),
}
impl Decl_ {
pub fn attrs(&self) -> &[Attribute] {
match *self {
DeclLocal(ref l) => l.attrs.as_attr_slice(),
DeclItem(_) => &[]
}
}
}
/// represents one arm of a 'match'
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Arm {
pub attrs: HirVec<Attribute>,
pub pats: HirVec<P<Pat>>,
pub guard: Option<P<Expr>>,
pub body: P<Expr>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Field {
pub name: Spanned<Name>,
pub expr: P<Expr>,
pub span: Span,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum BlockCheckMode {
DefaultBlock,
UnsafeBlock(UnsafeSource),
PushUnsafeBlock(UnsafeSource),
PopUnsafeBlock(UnsafeSource),
// Within this block (but outside a PopUnstableBlock), we suspend checking of stability.
PushUnstableBlock,
PopUnstableBlock,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum UnsafeSource {
CompilerGenerated,
UserProvided,
}
/// An expression
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub struct Expr {
pub id: NodeId,
pub node: Expr_,
pub span: Span,
pub attrs: ThinAttributes,
}
impl fmt::Debug for Expr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "expr({}: {})", self.id, print::expr_to_string(self))
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Expr_ {
/// A `box x` expression.
ExprBox(P<Expr>),
/// An array (`[a, b, c, d]`)
ExprVec(HirVec<P<Expr>>),
/// A function call
///
/// The first field resolves to the function itself,
/// and the second field is the list of arguments
ExprCall(P<Expr>, HirVec<P<Expr>>),
/// A method call (`x.foo::<Bar, Baz>(a, b, c, d)`)
///
/// The `Spanned<Name>` is the identifier for the method name.
/// The vector of `Ty`s are the ascripted type parameters for the method
/// (within the angle brackets).
///
/// The first element of the vector of `Expr`s is the expression that evaluates
/// to the object on which the method is being called on (the receiver),
/// and the remaining elements are the rest of the arguments.
///
/// Thus, `x.foo::<Bar, Baz>(a, b, c, d)` is represented as
/// `ExprMethodCall(foo, [Bar, Baz], [x, a, b, c, d])`.
ExprMethodCall(Spanned<Name>, HirVec<P<Ty>>, HirVec<P<Expr>>),
/// A tuple (`(a, b, c ,d)`)
ExprTup(HirVec<P<Expr>>),
/// A binary operation (For example: `a + b`, `a * b`)
ExprBinary(BinOp, P<Expr>, P<Expr>),
/// A unary operation (For example: `!x`, `*x`)
ExprUnary(UnOp, P<Expr>),
/// A literal (For example: `1`, `"foo"`)
ExprLit(P<Lit>),
/// A cast (`foo as f64`)
ExprCast(P<Expr>, P<Ty>),
ExprType(P<Expr>, P<Ty>),
/// An `if` block, with an optional else block
///
/// `if expr { block } else { expr }`
ExprIf(P<Expr>, P<Block>, Option<P<Expr>>),
/// A while loop, with an optional label
///
/// `'label: while expr { block }`
ExprWhile(P<Expr>, P<Block>, Option<Name>),
/// Conditionless loop (can be exited with break, continue, or return)
///
/// `'label: loop { block }`
ExprLoop(P<Block>, Option<Name>),
/// A `match` block, with a source that indicates whether or not it is
/// the result of a desugaring, and if so, which kind.
ExprMatch(P<Expr>, HirVec<Arm>, MatchSource),
/// A closure (for example, `move |a, b, c| {a + b + c}`).
///
/// The final span is the span of the argument block `|...|`
ExprClosure(CaptureClause, P<FnDecl>, P<Block>, Span),
/// A block (`{ ... }`)
ExprBlock(P<Block>),
/// An assignment (`a = foo()`)
ExprAssign(P<Expr>, P<Expr>),
/// An assignment with an operator
///
/// For example, `a += 1`.
ExprAssignOp(BinOp, P<Expr>, P<Expr>),
/// Access of a named struct field (`obj.foo`)
ExprField(P<Expr>, Spanned<Name>),
/// Access of an unnamed field of a struct or tuple-struct
///
/// For example, `foo.0`.
ExprTupField(P<Expr>, Spanned<usize>),
/// An indexing operation (`foo[2]`)
ExprIndex(P<Expr>, P<Expr>),
/// Variable reference, possibly containing `::` and/or type
/// parameters, e.g. foo::bar::<baz>.
///
/// Optionally "qualified",
/// e.g. `<HirVec<T> as SomeTrait>::SomeType`.
ExprPath(Option<QSelf>, Path),
/// A referencing operation (`&a` or `&mut a`)
ExprAddrOf(Mutability, P<Expr>),
/// A `break`, with an optional label to break
ExprBreak(Option<Spanned<Name>>),
/// A `continue`, with an optional label
ExprAgain(Option<Spanned<Name>>),
/// A `return`, with an optional value to be returned
ExprRet(Option<P<Expr>>),
/// Inline assembly (from `asm!`), with its outputs and inputs.
ExprInlineAsm(InlineAsm, Vec<P<Expr>>, Vec<P<Expr>>),
/// A struct literal expression.
///
/// For example, `Foo {x: 1, y: 2}`, or
/// `Foo {x: 1, .. base}`, where `base` is the `Option<Expr>`.
ExprStruct(Path, HirVec<Field>, Option<P<Expr>>),
/// A vector literal constructed from one repeated element.
///
/// For example, `[1; 5]`. The first expression is the element
/// to be repeated; the second is the number of times to repeat it.
ExprRepeat(P<Expr>, P<Expr>),
}
/// The explicit Self type in a "qualified path". The actual
/// path, including the trait and the associated item, is stored
/// separately. `position` represents the index of the associated
/// item qualified with this Self type.
///
/// <HirVec<T> as a::b::Trait>::AssociatedItem
/// ^~~~~ ~~~~~~~~~~~~~~^
/// ty position = 3
///
/// <HirVec<T>>::AssociatedItem
/// ^~~~~ ^
/// ty position = 0
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct QSelf {
pub ty: P<Ty>,
pub position: usize,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum MatchSource {
Normal,
IfLetDesugar {
contains_else_clause: bool,
},
WhileLetDesugar,
ForLoopDesugar,
TryDesugar,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum CaptureClause {
CaptureByValue,
CaptureByRef,
}
// NB: If you change this, you'll probably want to change the corresponding
// type structure in middle/ty.rs as well.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct MutTy {
pub ty: P<Ty>,
pub mutbl: Mutability,
}
/// Represents a method's signature in a trait declaration,
/// or in an implementation.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct MethodSig {
pub unsafety: Unsafety,
pub constness: Constness,
pub abi: Abi,
pub decl: P<FnDecl>,
pub generics: Generics,
}
/// Represents an item declaration within a trait declaration,
/// possibly including a default implementation. A trait item is
/// either required (meaning it doesn't have an implementation, just a
/// signature) or provided (meaning it has a default implementation).
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TraitItem {
pub id: NodeId,
pub name: Name,
pub attrs: HirVec<Attribute>,
pub node: TraitItem_,
pub span: Span,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TraitItem_ {
ConstTraitItem(P<Ty>, Option<P<Expr>>),
MethodTraitItem(MethodSig, Option<P<Block>>),
TypeTraitItem(TyParamBounds, Option<P<Ty>>),
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ImplItem {
pub id: NodeId,
pub name: Name,
pub vis: Visibility,
pub defaultness: Defaultness,
pub attrs: HirVec<Attribute>,
pub node: ImplItemKind,
pub span: Span,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum ImplItemKind {
Const(P<Ty>, P<Expr>),
Method(MethodSig, P<Block>),
Type(P<Ty>),
}
// Bind a type to an associated type: `A=Foo`.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TypeBinding {
pub id: NodeId,
pub name: Name,
pub ty: P<Ty>,
pub span: Span,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub struct Ty {
pub id: NodeId,
pub node: Ty_,
pub span: Span,
}
impl fmt::Debug for Ty {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "type({})", print::ty_to_string(self))
}
}
/// Not represented directly in the AST, referred to by name through a ty_path.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum PrimTy {
TyInt(IntTy),
TyUint(UintTy),
TyFloat(FloatTy),
TyStr,
TyBool,
TyChar,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct BareFnTy {
pub unsafety: Unsafety,
pub abi: Abi,
pub lifetimes: HirVec<LifetimeDef>,
pub decl: P<FnDecl>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
/// The different kinds of types recognized by the compiler
pub enum Ty_ {
TyVec(P<Ty>),
/// A fixed length array (`[T; n]`)
TyFixedLengthVec(P<Ty>, P<Expr>),
/// A raw pointer (`*const T` or `*mut T`)
TyPtr(MutTy),
/// A reference (`&'a T` or `&'a mut T`)
TyRptr(Option<Lifetime>, MutTy),
/// A bare function (e.g. `fn(usize) -> bool`)
TyBareFn(P<BareFnTy>),
/// A tuple (`(A, B, C, D,...)`)
TyTup(HirVec<P<Ty>>),
/// A path (`module::module::...::Type`), optionally
/// "qualified", e.g. `<HirVec<T> as SomeTrait>::SomeType`.
///
/// Type parameters are stored in the Path itself
TyPath(Option<QSelf>, Path),
/// Something like `A+B`. Note that `B` must always be a path.
TyObjectSum(P<Ty>, TyParamBounds),
/// A type like `for<'a> Foo<&'a Bar>`
TyPolyTraitRef(TyParamBounds),
/// Unused for now
TyTypeof(P<Expr>),
/// TyInfer means the type should be inferred instead of it having been
/// specified. This can appear anywhere in a type.
TyInfer,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct InlineAsmOutput {
pub constraint: InternedString,
pub is_rw: bool,
pub is_indirect: bool,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct InlineAsm {
pub asm: InternedString,
pub asm_str_style: StrStyle,
pub outputs: HirVec<InlineAsmOutput>,
pub inputs: HirVec<InternedString>,
pub clobbers: HirVec<InternedString>,
pub volatile: bool,
pub alignstack: bool,
pub dialect: AsmDialect,
pub expn_id: ExpnId,
}
/// represents an argument in a function header
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Arg {
pub ty: P<Ty>,
pub pat: P<Pat>,
pub id: NodeId,
}
/// Alternative representation for `Arg`s describing `self` parameter of methods.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum SelfKind {
/// `self`, `mut self`
Value(Mutability),
/// `&'lt self`, `&'lt mut self`
Region(Option<Lifetime>, Mutability),
/// `self: TYPE`, `mut self: TYPE`
Explicit(P<Ty>, Mutability),
}
pub type ExplicitSelf = Spanned<SelfKind>;
impl Arg {
pub fn to_self(&self) -> Option<ExplicitSelf> {
if let PatKind::Ident(BindByValue(mutbl), name, _) = self.pat.node {
if name.node.unhygienize() == keywords::SelfValue.name() {
return match self.ty.node {
TyInfer => Some(respan(self.pat.span, SelfKind::Value(mutbl))),
TyRptr(lt, MutTy{ref ty, mutbl}) if ty.node == TyInfer => {
Some(respan(self.pat.span, SelfKind::Region(lt, mutbl)))
}
_ => Some(respan(mk_sp(self.pat.span.lo, self.ty.span.hi),
SelfKind::Explicit(self.ty.clone(), mutbl)))
}
}
}
None
}
pub fn is_self(&self) -> bool {
if let PatKind::Ident(_, name, _) = self.pat.node {
name.node.unhygienize() == keywords::SelfValue.name()
} else {
false
}
}
}
/// Represents the header (not the body) of a function declaration
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct FnDecl {
pub inputs: HirVec<Arg>,
pub output: FunctionRetTy,
pub variadic: bool,
}
impl FnDecl {
pub fn has_self(&self) -> bool {
self.inputs.get(0).map(Arg::is_self).unwrap_or(false)
}
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Unsafety {
Unsafe,
Normal,
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Constness {
Const,
NotConst,
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Defaultness {
Default,
Final,
}
impl Defaultness {
pub fn is_final(&self) -> bool {
*self == Defaultness::Final
}
pub fn is_default(&self) -> bool {
*self == Defaultness::Default
}
}
impl fmt::Display for Unsafety {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(match *self {
Unsafety::Normal => "normal",
Unsafety::Unsafe => "unsafe",
},
f)
}
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub enum ImplPolarity {
/// `impl Trait for Type`
Positive,
/// `impl !Trait for Type`
Negative,
}
impl fmt::Debug for ImplPolarity {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
ImplPolarity::Positive => "positive".fmt(f),
ImplPolarity::Negative => "negative".fmt(f),
}
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum FunctionRetTy {
/// Functions with return type `!`that always
/// raise an error or exit (i.e. never return to the caller)
NoReturn(Span),
/// Return type is not specified.
///
/// Functions default to `()` and
/// closures default to inference. Span points to where return
/// type would be inserted.
DefaultReturn(Span),
/// Everything else
Return(P<Ty>),
}
impl FunctionRetTy {
pub fn span(&self) -> Span {
match *self {
NoReturn(span) => span,
DefaultReturn(span) => span,
Return(ref ty) => ty.span,
}
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Mod {
/// A span from the first token past `{` to the last token until `}`.
/// For `mod foo;`, the inner span ranges from the first token
/// to the last token in the external file.
pub inner: Span,
pub item_ids: HirVec<ItemId>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ForeignMod {
pub abi: Abi,
pub items: HirVec<ForeignItem>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct EnumDef {
pub variants: HirVec<Variant>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Variant_ {
pub name: Name,
pub attrs: HirVec<Attribute>,
pub data: VariantData,
/// Explicit discriminant, eg `Foo = 1`
pub disr_expr: Option<P<Expr>>,
}
pub type Variant = Spanned<Variant_>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum PathListItem_ {
PathListIdent {
name: Name,
/// renamed in list, eg `use foo::{bar as baz};`
rename: Option<Name>,
id: NodeId,
},
PathListMod {
/// renamed in list, eg `use foo::{self as baz};`
rename: Option<Name>,
id: NodeId,
},
}
impl PathListItem_ {
pub fn id(&self) -> NodeId {
match *self {
PathListIdent { id, .. } | PathListMod { id, .. } => id,
}
}
pub fn name(&self) -> Option<Name> {
match *self {
PathListIdent { name, .. } => Some(name),
PathListMod { .. } => None,
}
}
pub fn rename(&self) -> Option<Name> {
match *self {
PathListIdent { rename, .. } | PathListMod { rename, .. } => rename,
}
}
}
pub type PathListItem = Spanned<PathListItem_>;
pub type ViewPath = Spanned<ViewPath_>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum ViewPath_ {
/// `foo::bar::baz as quux`
///
/// or just
///
/// `foo::bar::baz` (with `as baz` implicitly on the right)
ViewPathSimple(Name, Path),
/// `foo::bar::*`
ViewPathGlob(Path),
/// `foo::bar::{a,b,c}`
ViewPathList(Path, HirVec<PathListItem>),
}
/// TraitRef's appear in impls.
///
/// resolve maps each TraitRef's ref_id to its defining trait; that's all
/// that the ref_id is for. The impl_id maps to the "self type" of this impl.
/// If this impl is an ItemImpl, the impl_id is redundant (it could be the
/// same as the impl's node id).
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TraitRef {
pub path: Path,
pub ref_id: NodeId,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct PolyTraitRef {
/// The `'a` in `<'a> Foo<&'a T>`
pub bound_lifetimes: HirVec<LifetimeDef>,
/// The `Foo<&'a T>` in `<'a> Foo<&'a T>`
pub trait_ref: TraitRef,
pub span: Span,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Visibility {
Public,
Crate,
Restricted { path: P<Path>, id: NodeId },
Inherited,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct StructField {
pub span: Span,
pub name: Name,
pub vis: Visibility,
pub id: NodeId,
pub ty: P<Ty>,
pub attrs: HirVec<Attribute>,
}
impl StructField {
// Still necessary in couple of places
pub fn is_positional(&self) -> bool {
let first = self.name.as_str().as_bytes()[0];
first >= b'0' && first <= b'9'
}
}
/// Fields and Ids of enum variants and structs
///
/// For enum variants: `NodeId` represents both an Id of the variant itself (relevant for all
/// variant kinds) and an Id of the variant's constructor (not relevant for `Struct`-variants).
/// One shared Id can be successfully used for these two purposes.
/// Id of the whole enum lives in `Item`.
///
/// For structs: `NodeId` represents an Id of the structure's constructor, so it is not actually
/// used for `Struct`-structs (but still presents). Structures don't have an analogue of "Id of
/// the variant itself" from enum variants.
/// Id of the whole struct lives in `Item`.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum VariantData {
Struct(HirVec<StructField>, NodeId),
Tuple(HirVec<StructField>, NodeId),
Unit(NodeId),
}
impl VariantData {
pub fn fields(&self) -> &[StructField] {
match *self {
VariantData::Struct(ref fields, _) | VariantData::Tuple(ref fields, _) => fields,
_ => &[],
}
}
pub fn id(&self) -> NodeId {
match *self {
VariantData::Struct(_, id) | VariantData::Tuple(_, id) | VariantData::Unit(id) => id,
}
}
pub fn is_struct(&self) -> bool {
if let VariantData::Struct(..) = *self {
true
} else {
false
}
}
pub fn is_tuple(&self) -> bool {
if let VariantData::Tuple(..) = *self {
true
} else {
false
}
}
pub fn is_unit(&self) -> bool {
if let VariantData::Unit(..) = *self {
true
} else {
false
}
}
}
// The bodies for items are stored "out of line", in a separate
// hashmap in the `Crate`. Here we just record the node-id of the item
// so it can fetched later.
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ItemId {
pub id: NodeId,
}
// FIXME (#3300): Should allow items to be anonymous. Right now
// we just use dummy names for anon items.
/// An item
///
/// The name might be a dummy name in case of anonymous items
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Item {
pub name: Name,
pub attrs: HirVec<Attribute>,
pub id: NodeId,
pub node: Item_,
pub vis: Visibility,
pub span: Span,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Item_ {
/// An`extern crate` item, with optional original crate name,
///
/// e.g. `extern crate foo` or `extern crate foo_bar as foo`
ItemExternCrate(Option<Name>),
/// A `use` or `pub use` item
ItemUse(P<ViewPath>),
/// A `static` item
ItemStatic(P<Ty>, Mutability, P<Expr>),
/// A `const` item
ItemConst(P<Ty>, P<Expr>),
/// A function declaration
ItemFn(P<FnDecl>, Unsafety, Constness, Abi, Generics, P<Block>),
/// A module
ItemMod(Mod),
/// An external module
ItemForeignMod(ForeignMod),
/// A type alias, e.g. `type Foo = Bar<u8>`
ItemTy(P<Ty>, Generics),
/// An enum definition, e.g. `enum Foo<A, B> {C<A>, D<B>}`
ItemEnum(EnumDef, Generics),
/// A struct definition, e.g. `struct Foo<A> {x: A}`
ItemStruct(VariantData, Generics),
/// Represents a Trait Declaration
ItemTrait(Unsafety, Generics, TyParamBounds, HirVec<TraitItem>),
// Default trait implementations
///
/// `impl Trait for .. {}`
ItemDefaultImpl(Unsafety, TraitRef),
/// An implementation, eg `impl<A> Trait for Foo { .. }`
ItemImpl(Unsafety,
ImplPolarity,
Generics,
Option<TraitRef>, // (optional) trait this impl implements
P<Ty>, // self
HirVec<ImplItem>),
}
impl Item_ {
pub fn descriptive_variant(&self) -> &str {
match *self {
ItemExternCrate(..) => "extern crate",
ItemUse(..) => "use",
ItemStatic(..) => "static item",
ItemConst(..) => "constant item",
ItemFn(..) => "function",
ItemMod(..) => "module",
ItemForeignMod(..) => "foreign module",
ItemTy(..) => "type alias",
ItemEnum(..) => "enum",
ItemStruct(..) => "struct",
ItemTrait(..) => "trait",
ItemImpl(..) |
ItemDefaultImpl(..) => "item",
}
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ForeignItem {
pub name: Name,
pub attrs: HirVec<Attribute>,
pub node: ForeignItem_,
pub id: NodeId,
pub span: Span,
pub vis: Visibility,
}
/// An item within an `extern` block
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum ForeignItem_ {
/// A foreign function
ForeignItemFn(P<FnDecl>, Generics),
/// A foreign static item (`static ext: u8`), with optional mutability
/// (the boolean is true when mutable)
ForeignItemStatic(P<Ty>, bool),
}
impl ForeignItem_ {
pub fn descriptive_variant(&self) -> &str {
match *self {
ForeignItemFn(..) => "foreign function",
ForeignItemStatic(..) => "foreign static item",
}
}
}
/// A free variable referred to in a function.
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct Freevar {
/// The variable being accessed free.
pub def: Def,
// First span where it is accessed (there can be multiple).
pub span: Span
}
pub type FreevarMap = NodeMap<Vec<Freevar>>;
pub type CaptureModeMap = NodeMap<CaptureClause>;
#[derive(Clone)]
pub struct TraitCandidate {
pub def_id: DefId,
pub import_id: Option<NodeId>,
}
// Trait method resolution
pub type TraitMap = NodeMap<Vec<TraitCandidate>>;
// Map from the NodeId of a glob import to a list of items which are actually
// imported.
pub type GlobMap = NodeMap<FnvHashSet<Name>>;