694 lines
23 KiB
Rust
694 lines
23 KiB
Rust
//! Generate files suitable for use with [Graphviz](http://www.graphviz.org/)
|
|
//!
|
|
//! The `render` function generates output (e.g., an `output.dot` file) for
|
|
//! use with [Graphviz](http://www.graphviz.org/) by walking a labeled
|
|
//! graph. (Graphviz can then automatically lay out the nodes and edges
|
|
//! of the graph, and also optionally render the graph as an image or
|
|
//! other [output formats](
|
|
//! http://www.graphviz.org/content/output-formats), such as SVG.)
|
|
//!
|
|
//! Rather than impose some particular graph data structure on clients,
|
|
//! this library exposes two traits that clients can implement on their
|
|
//! own structs before handing them over to the rendering function.
|
|
//!
|
|
//! Note: This library does not yet provide access to the full
|
|
//! expressiveness of the [DOT language](
|
|
//! http://www.graphviz.org/doc/info/lang.html). For example, there are
|
|
//! many [attributes](http://www.graphviz.org/content/attrs) related to
|
|
//! providing layout hints (e.g., left-to-right versus top-down, which
|
|
//! algorithm to use, etc). The current intention of this library is to
|
|
//! emit a human-readable .dot file with very regular structure suitable
|
|
//! for easy post-processing.
|
|
//!
|
|
//! # Examples
|
|
//!
|
|
//! The first example uses a very simple graph representation: a list of
|
|
//! pairs of ints, representing the edges (the node set is implicit).
|
|
//! Each node label is derived directly from the int representing the node,
|
|
//! while the edge labels are all empty strings.
|
|
//!
|
|
//! This example also illustrates how to use `Cow<[T]>` to return
|
|
//! an owned vector or a borrowed slice as appropriate: we construct the
|
|
//! node vector from scratch, but borrow the edge list (rather than
|
|
//! constructing a copy of all the edges from scratch).
|
|
//!
|
|
//! The output from this example renders five nodes, with the first four
|
|
//! forming a diamond-shaped acyclic graph and then pointing to the fifth
|
|
//! which is cyclic.
|
|
//!
|
|
//! ```rust
|
|
//! #![feature(rustc_private)]
|
|
//!
|
|
//! use std::io::Write;
|
|
//! use rustc_graphviz as dot;
|
|
//!
|
|
//! type Nd = isize;
|
|
//! type Ed = (isize,isize);
|
|
//! struct Edges(Vec<Ed>);
|
|
//!
|
|
//! pub fn render_to<W: Write>(output: &mut W) {
|
|
//! let edges = Edges(vec![(0,1), (0,2), (1,3), (2,3), (3,4), (4,4)]);
|
|
//! dot::render(&edges, output).unwrap()
|
|
//! }
|
|
//!
|
|
//! impl<'a> dot::Labeller<'a> for Edges {
|
|
//! type Node = Nd;
|
|
//! type Edge = Ed;
|
|
//! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example1").unwrap() }
|
|
//!
|
|
//! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
|
|
//! dot::Id::new(format!("N{}", *n)).unwrap()
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! impl<'a> dot::GraphWalk<'a> for Edges {
|
|
//! type Node = Nd;
|
|
//! type Edge = Ed;
|
|
//! fn nodes(&self) -> dot::Nodes<'a,Nd> {
|
|
//! // (assumes that |N| \approxeq |E|)
|
|
//! let &Edges(ref v) = self;
|
|
//! let mut nodes = Vec::with_capacity(v.len());
|
|
//! for &(s,t) in v {
|
|
//! nodes.push(s); nodes.push(t);
|
|
//! }
|
|
//! nodes.sort();
|
|
//! nodes.dedup();
|
|
//! nodes.into()
|
|
//! }
|
|
//!
|
|
//! fn edges(&'a self) -> dot::Edges<'a,Ed> {
|
|
//! let &Edges(ref edges) = self;
|
|
//! (&edges[..]).into()
|
|
//! }
|
|
//!
|
|
//! fn source(&self, e: &Ed) -> Nd { let &(s,_) = e; s }
|
|
//!
|
|
//! fn target(&self, e: &Ed) -> Nd { let &(_,t) = e; t }
|
|
//! }
|
|
//!
|
|
//! # pub fn main() { render_to(&mut Vec::new()) }
|
|
//! ```
|
|
//!
|
|
//! ```no_run
|
|
//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
|
|
//! pub fn main() {
|
|
//! use std::fs::File;
|
|
//! let mut f = File::create("example1.dot").unwrap();
|
|
//! render_to(&mut f)
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! Output from first example (in `example1.dot`):
|
|
//!
|
|
//! ```dot
|
|
//! digraph example1 {
|
|
//! N0[label="N0"];
|
|
//! N1[label="N1"];
|
|
//! N2[label="N2"];
|
|
//! N3[label="N3"];
|
|
//! N4[label="N4"];
|
|
//! N0 -> N1[label=""];
|
|
//! N0 -> N2[label=""];
|
|
//! N1 -> N3[label=""];
|
|
//! N2 -> N3[label=""];
|
|
//! N3 -> N4[label=""];
|
|
//! N4 -> N4[label=""];
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! The second example illustrates using `node_label` and `edge_label` to
|
|
//! add labels to the nodes and edges in the rendered graph. The graph
|
|
//! here carries both `nodes` (the label text to use for rendering a
|
|
//! particular node), and `edges` (again a list of `(source,target)`
|
|
//! indices).
|
|
//!
|
|
//! This example also illustrates how to use a type (in this case the edge
|
|
//! type) that shares substructure with the graph: the edge type here is a
|
|
//! direct reference to the `(source,target)` pair stored in the graph's
|
|
//! internal vector (rather than passing around a copy of the pair
|
|
//! itself). Note that this implies that `fn edges(&'a self)` must
|
|
//! construct a fresh `Vec<&'a (usize,usize)>` from the `Vec<(usize,usize)>`
|
|
//! edges stored in `self`.
|
|
//!
|
|
//! Since both the set of nodes and the set of edges are always
|
|
//! constructed from scratch via iterators, we use the `collect()` method
|
|
//! from the `Iterator` trait to collect the nodes and edges into freshly
|
|
//! constructed growable `Vec` values (rather than using `Cow` as in the
|
|
//! first example above).
|
|
//!
|
|
//! The output from this example renders four nodes that make up the
|
|
//! Hasse-diagram for the subsets of the set `{x, y}`. Each edge is
|
|
//! labeled with the ⊆ character (specified using the HTML character
|
|
//! entity `&sube`).
|
|
//!
|
|
//! ```rust
|
|
//! #![feature(rustc_private)]
|
|
//!
|
|
//! use std::io::Write;
|
|
//! use rustc_graphviz as dot;
|
|
//!
|
|
//! type Nd = usize;
|
|
//! type Ed<'a> = &'a (usize, usize);
|
|
//! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
|
|
//!
|
|
//! pub fn render_to<W: Write>(output: &mut W) {
|
|
//! let nodes = vec!["{x,y}","{x}","{y}","{}"];
|
|
//! let edges = vec![(0,1), (0,2), (1,3), (2,3)];
|
|
//! let graph = Graph { nodes: nodes, edges: edges };
|
|
//!
|
|
//! dot::render(&graph, output).unwrap()
|
|
//! }
|
|
//!
|
|
//! impl<'a> dot::Labeller<'a> for Graph {
|
|
//! type Node = Nd;
|
|
//! type Edge = Ed<'a>;
|
|
//! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example2").unwrap() }
|
|
//! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
|
|
//! dot::Id::new(format!("N{}", n)).unwrap()
|
|
//! }
|
|
//! fn node_label<'b>(&'b self, n: &Nd) -> dot::LabelText<'b> {
|
|
//! dot::LabelText::LabelStr(self.nodes[*n].into())
|
|
//! }
|
|
//! fn edge_label<'b>(&'b self, _: &Ed) -> dot::LabelText<'b> {
|
|
//! dot::LabelText::LabelStr("⊆".into())
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! impl<'a> dot::GraphWalk<'a> for Graph {
|
|
//! type Node = Nd;
|
|
//! type Edge = Ed<'a>;
|
|
//! fn nodes(&self) -> dot::Nodes<'a,Nd> { (0..self.nodes.len()).collect() }
|
|
//! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> { self.edges.iter().collect() }
|
|
//! fn source(&self, e: &Ed) -> Nd { let & &(s,_) = e; s }
|
|
//! fn target(&self, e: &Ed) -> Nd { let & &(_,t) = e; t }
|
|
//! }
|
|
//!
|
|
//! # pub fn main() { render_to(&mut Vec::new()) }
|
|
//! ```
|
|
//!
|
|
//! ```no_run
|
|
//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
|
|
//! pub fn main() {
|
|
//! use std::fs::File;
|
|
//! let mut f = File::create("example2.dot").unwrap();
|
|
//! render_to(&mut f)
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! The third example is similar to the second, except now each node and
|
|
//! edge now carries a reference to the string label for each node as well
|
|
//! as that node's index. (This is another illustration of how to share
|
|
//! structure with the graph itself, and why one might want to do so.)
|
|
//!
|
|
//! The output from this example is the same as the second example: the
|
|
//! Hasse-diagram for the subsets of the set `{x, y}`.
|
|
//!
|
|
//! ```rust
|
|
//! #![feature(rustc_private)]
|
|
//!
|
|
//! use std::io::Write;
|
|
//! use rustc_graphviz as dot;
|
|
//!
|
|
//! type Nd<'a> = (usize, &'a str);
|
|
//! type Ed<'a> = (Nd<'a>, Nd<'a>);
|
|
//! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
|
|
//!
|
|
//! pub fn render_to<W: Write>(output: &mut W) {
|
|
//! let nodes = vec!["{x,y}","{x}","{y}","{}"];
|
|
//! let edges = vec![(0,1), (0,2), (1,3), (2,3)];
|
|
//! let graph = Graph { nodes: nodes, edges: edges };
|
|
//!
|
|
//! dot::render(&graph, output).unwrap()
|
|
//! }
|
|
//!
|
|
//! impl<'a> dot::Labeller<'a> for Graph {
|
|
//! type Node = Nd<'a>;
|
|
//! type Edge = Ed<'a>;
|
|
//! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example3").unwrap() }
|
|
//! fn node_id(&'a self, n: &Nd<'a>) -> dot::Id<'a> {
|
|
//! dot::Id::new(format!("N{}", n.0)).unwrap()
|
|
//! }
|
|
//! fn node_label<'b>(&'b self, n: &Nd<'b>) -> dot::LabelText<'b> {
|
|
//! let &(i, _) = n;
|
|
//! dot::LabelText::LabelStr(self.nodes[i].into())
|
|
//! }
|
|
//! fn edge_label<'b>(&'b self, _: &Ed<'b>) -> dot::LabelText<'b> {
|
|
//! dot::LabelText::LabelStr("⊆".into())
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! impl<'a> dot::GraphWalk<'a> for Graph {
|
|
//! type Node = Nd<'a>;
|
|
//! type Edge = Ed<'a>;
|
|
//! fn nodes(&'a self) -> dot::Nodes<'a,Nd<'a>> {
|
|
//! self.nodes.iter().map(|s| &s[..]).enumerate().collect()
|
|
//! }
|
|
//! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> {
|
|
//! self.edges.iter()
|
|
//! .map(|&(i,j)|((i, &self.nodes[i][..]),
|
|
//! (j, &self.nodes[j][..])))
|
|
//! .collect()
|
|
//! }
|
|
//! fn source(&self, e: &Ed<'a>) -> Nd<'a> { let &(s,_) = e; s }
|
|
//! fn target(&self, e: &Ed<'a>) -> Nd<'a> { let &(_,t) = e; t }
|
|
//! }
|
|
//!
|
|
//! # pub fn main() { render_to(&mut Vec::new()) }
|
|
//! ```
|
|
//!
|
|
//! ```no_run
|
|
//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
|
|
//! pub fn main() {
|
|
//! use std::fs::File;
|
|
//! let mut f = File::create("example3.dot").unwrap();
|
|
//! render_to(&mut f)
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! # References
|
|
//!
|
|
//! * [Graphviz](http://www.graphviz.org/)
|
|
//!
|
|
//! * [DOT language](http://www.graphviz.org/doc/info/lang.html)
|
|
|
|
#![doc(
|
|
html_root_url = "https://doc.rust-lang.org/nightly/",
|
|
test(attr(allow(unused_variables), deny(warnings)))
|
|
)]
|
|
#![feature(nll)]
|
|
|
|
use LabelText::*;
|
|
|
|
use std::borrow::Cow;
|
|
use std::io;
|
|
use std::io::prelude::*;
|
|
|
|
/// The text for a graphviz label on a node or edge.
|
|
pub enum LabelText<'a> {
|
|
/// This kind of label preserves the text directly as is.
|
|
///
|
|
/// Occurrences of backslashes (`\`) are escaped, and thus appear
|
|
/// as backslashes in the rendered label.
|
|
LabelStr(Cow<'a, str>),
|
|
|
|
/// This kind of label uses the graphviz label escString type:
|
|
/// <http://www.graphviz.org/content/attrs#kescString>
|
|
///
|
|
/// Occurrences of backslashes (`\`) are not escaped; instead they
|
|
/// are interpreted as initiating an escString escape sequence.
|
|
///
|
|
/// Escape sequences of particular interest: in addition to `\n`
|
|
/// to break a line (centering the line preceding the `\n`), there
|
|
/// are also the escape sequences `\l` which left-justifies the
|
|
/// preceding line and `\r` which right-justifies it.
|
|
EscStr(Cow<'a, str>),
|
|
|
|
/// This uses a graphviz [HTML string label][html]. The string is
|
|
/// printed exactly as given, but between `<` and `>`. **No
|
|
/// escaping is performed.**
|
|
///
|
|
/// [html]: http://www.graphviz.org/content/node-shapes#html
|
|
HtmlStr(Cow<'a, str>),
|
|
}
|
|
|
|
/// The style for a node or edge.
|
|
/// See <http://www.graphviz.org/doc/info/attrs.html#k:style> for descriptions.
|
|
/// Note that some of these are not valid for edges.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
|
pub enum Style {
|
|
None,
|
|
Solid,
|
|
Dashed,
|
|
Dotted,
|
|
Bold,
|
|
Rounded,
|
|
Diagonals,
|
|
Filled,
|
|
Striped,
|
|
Wedged,
|
|
}
|
|
|
|
impl Style {
|
|
pub fn as_slice(self) -> &'static str {
|
|
match self {
|
|
Style::None => "",
|
|
Style::Solid => "solid",
|
|
Style::Dashed => "dashed",
|
|
Style::Dotted => "dotted",
|
|
Style::Bold => "bold",
|
|
Style::Rounded => "rounded",
|
|
Style::Diagonals => "diagonals",
|
|
Style::Filled => "filled",
|
|
Style::Striped => "striped",
|
|
Style::Wedged => "wedged",
|
|
}
|
|
}
|
|
}
|
|
|
|
// There is a tension in the design of the labelling API.
|
|
//
|
|
// For example, I considered making a `Labeller<T>` trait that
|
|
// provides labels for `T`, and then making the graph type `G`
|
|
// implement `Labeller<Node>` and `Labeller<Edge>`. However, this is
|
|
// not possible without functional dependencies. (One could work
|
|
// around that, but I did not explore that avenue heavily.)
|
|
//
|
|
// Another approach that I actually used for a while was to make a
|
|
// `Label<Context>` trait that is implemented by the client-specific
|
|
// Node and Edge types (as well as an implementation on Graph itself
|
|
// for the overall name for the graph). The main disadvantage of this
|
|
// second approach (compared to having the `G` type parameter
|
|
// implement a Labelling service) that I have encountered is that it
|
|
// makes it impossible to use types outside of the current crate
|
|
// directly as Nodes/Edges; you need to wrap them in newtype'd
|
|
// structs. See e.g., the `No` and `Ed` structs in the examples. (In
|
|
// practice clients using a graph in some other crate would need to
|
|
// provide some sort of adapter shim over the graph anyway to
|
|
// interface with this library).
|
|
//
|
|
// Another approach would be to make a single `Labeller<N,E>` trait
|
|
// that provides three methods (graph_label, node_label, edge_label),
|
|
// and then make `G` implement `Labeller<N,E>`. At first this did not
|
|
// appeal to me, since I had thought I would need separate methods on
|
|
// each data variant for dot-internal identifiers versus user-visible
|
|
// labels. However, the identifier/label distinction only arises for
|
|
// nodes; graphs themselves only have identifiers, and edges only have
|
|
// labels.
|
|
//
|
|
// So in the end I decided to use the third approach described above.
|
|
|
|
/// `Id` is a Graphviz `ID`.
|
|
pub struct Id<'a> {
|
|
name: Cow<'a, str>,
|
|
}
|
|
|
|
impl<'a> Id<'a> {
|
|
/// Creates an `Id` named `name`.
|
|
///
|
|
/// The caller must ensure that the input conforms to an
|
|
/// identifier format: it must be a non-empty string made up of
|
|
/// alphanumeric or underscore characters, not beginning with a
|
|
/// digit (i.e., the regular expression `[a-zA-Z_][a-zA-Z_0-9]*`).
|
|
///
|
|
/// (Note: this format is a strict subset of the `ID` format
|
|
/// defined by the DOT language. This function may change in the
|
|
/// future to accept a broader subset, or the entirety, of DOT's
|
|
/// `ID` format.)
|
|
///
|
|
/// Passing an invalid string (containing spaces, brackets,
|
|
/// quotes, ...) will return an empty `Err` value.
|
|
pub fn new<Name: Into<Cow<'a, str>>>(name: Name) -> Result<Id<'a>, ()> {
|
|
let name = name.into();
|
|
match name.chars().next() {
|
|
Some(c) if c.is_ascii_alphabetic() || c == '_' => {}
|
|
_ => return Err(()),
|
|
}
|
|
if !name.chars().all(|c| c.is_ascii_alphanumeric() || c == '_') {
|
|
return Err(());
|
|
}
|
|
|
|
Ok(Id { name })
|
|
}
|
|
|
|
pub fn as_slice(&'a self) -> &'a str {
|
|
&*self.name
|
|
}
|
|
|
|
pub fn name(self) -> Cow<'a, str> {
|
|
self.name
|
|
}
|
|
}
|
|
|
|
/// Each instance of a type that implements `Label<C>` maps to a
|
|
/// unique identifier with respect to `C`, which is used to identify
|
|
/// it in the generated .dot file. They can also provide more
|
|
/// elaborate (and non-unique) label text that is used in the graphviz
|
|
/// rendered output.
|
|
|
|
/// The graph instance is responsible for providing the DOT compatible
|
|
/// identifiers for the nodes and (optionally) rendered labels for the nodes and
|
|
/// edges, as well as an identifier for the graph itself.
|
|
pub trait Labeller<'a> {
|
|
type Node;
|
|
type Edge;
|
|
|
|
/// Must return a DOT compatible identifier naming the graph.
|
|
fn graph_id(&'a self) -> Id<'a>;
|
|
|
|
/// Maps `n` to a unique identifier with respect to `self`. The
|
|
/// implementor is responsible for ensuring that the returned name
|
|
/// is a valid DOT identifier.
|
|
fn node_id(&'a self, n: &Self::Node) -> Id<'a>;
|
|
|
|
/// Maps `n` to one of the [graphviz `shape` names][1]. If `None`
|
|
/// is returned, no `shape` attribute is specified.
|
|
///
|
|
/// [1]: http://www.graphviz.org/content/node-shapes
|
|
fn node_shape(&'a self, _node: &Self::Node) -> Option<LabelText<'a>> {
|
|
None
|
|
}
|
|
|
|
/// Maps `n` to a label that will be used in the rendered output.
|
|
/// The label need not be unique, and may be the empty string; the
|
|
/// default is just the output from `node_id`.
|
|
fn node_label(&'a self, n: &Self::Node) -> LabelText<'a> {
|
|
LabelStr(self.node_id(n).name)
|
|
}
|
|
|
|
/// Maps `e` to a label that will be used in the rendered output.
|
|
/// The label need not be unique, and may be the empty string; the
|
|
/// default is in fact the empty string.
|
|
fn edge_label(&'a self, _e: &Self::Edge) -> LabelText<'a> {
|
|
LabelStr("".into())
|
|
}
|
|
|
|
/// Maps `n` to a style that will be used in the rendered output.
|
|
fn node_style(&'a self, _n: &Self::Node) -> Style {
|
|
Style::None
|
|
}
|
|
|
|
/// Maps `e` to a style that will be used in the rendered output.
|
|
fn edge_style(&'a self, _e: &Self::Edge) -> Style {
|
|
Style::None
|
|
}
|
|
}
|
|
|
|
/// Escape tags in such a way that it is suitable for inclusion in a
|
|
/// Graphviz HTML label.
|
|
pub fn escape_html(s: &str) -> String {
|
|
s.replace("&", "&").replace("\"", """).replace("<", "<").replace(">", ">")
|
|
}
|
|
|
|
impl<'a> LabelText<'a> {
|
|
pub fn label<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
|
|
LabelStr(s.into())
|
|
}
|
|
|
|
pub fn escaped<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
|
|
EscStr(s.into())
|
|
}
|
|
|
|
pub fn html<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
|
|
HtmlStr(s.into())
|
|
}
|
|
|
|
fn escape_char<F>(c: char, mut f: F)
|
|
where
|
|
F: FnMut(char),
|
|
{
|
|
match c {
|
|
// not escaping \\, since Graphviz escString needs to
|
|
// interpret backslashes; see EscStr above.
|
|
'\\' => f(c),
|
|
_ => {
|
|
for c in c.escape_default() {
|
|
f(c)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
fn escape_str(s: &str) -> String {
|
|
let mut out = String::with_capacity(s.len());
|
|
for c in s.chars() {
|
|
LabelText::escape_char(c, |c| out.push(c));
|
|
}
|
|
out
|
|
}
|
|
|
|
/// Renders text as string suitable for a label in a .dot file.
|
|
/// This includes quotes or suitable delimiters.
|
|
pub fn to_dot_string(&self) -> String {
|
|
match *self {
|
|
LabelStr(ref s) => format!("\"{}\"", s.escape_default()),
|
|
EscStr(ref s) => format!("\"{}\"", LabelText::escape_str(&s)),
|
|
HtmlStr(ref s) => format!("<{}>", s),
|
|
}
|
|
}
|
|
|
|
/// Decomposes content into string suitable for making EscStr that
|
|
/// yields same content as self. The result obeys the law
|
|
/// render(`lt`) == render(`EscStr(lt.pre_escaped_content())`) for
|
|
/// all `lt: LabelText`.
|
|
fn pre_escaped_content(self) -> Cow<'a, str> {
|
|
match self {
|
|
EscStr(s) => s,
|
|
LabelStr(s) => {
|
|
if s.contains('\\') {
|
|
(&*s).escape_default().to_string().into()
|
|
} else {
|
|
s
|
|
}
|
|
}
|
|
HtmlStr(s) => s,
|
|
}
|
|
}
|
|
|
|
/// Puts `prefix` on a line above this label, with a blank line separator.
|
|
pub fn prefix_line(self, prefix: LabelText<'_>) -> LabelText<'static> {
|
|
prefix.suffix_line(self)
|
|
}
|
|
|
|
/// Puts `suffix` on a line below this label, with a blank line separator.
|
|
pub fn suffix_line(self, suffix: LabelText<'_>) -> LabelText<'static> {
|
|
let mut prefix = self.pre_escaped_content().into_owned();
|
|
let suffix = suffix.pre_escaped_content();
|
|
prefix.push_str(r"\n\n");
|
|
prefix.push_str(&suffix);
|
|
EscStr(prefix.into())
|
|
}
|
|
}
|
|
|
|
pub type Nodes<'a, N> = Cow<'a, [N]>;
|
|
pub type Edges<'a, E> = Cow<'a, [E]>;
|
|
|
|
// (The type parameters in GraphWalk should be associated items,
|
|
// when/if Rust supports such.)
|
|
|
|
/// GraphWalk is an abstraction over a directed graph = (nodes,edges)
|
|
/// made up of node handles `N` and edge handles `E`, where each `E`
|
|
/// can be mapped to its source and target nodes.
|
|
///
|
|
/// The lifetime parameter `'a` is exposed in this trait (rather than
|
|
/// introduced as a generic parameter on each method declaration) so
|
|
/// that a client impl can choose `N` and `E` that have substructure
|
|
/// that is bound by the self lifetime `'a`.
|
|
///
|
|
/// The `nodes` and `edges` method each return instantiations of
|
|
/// `Cow<[T]>` to leave implementors the freedom to create
|
|
/// entirely new vectors or to pass back slices into internally owned
|
|
/// vectors.
|
|
pub trait GraphWalk<'a> {
|
|
type Node: Clone;
|
|
type Edge: Clone;
|
|
|
|
/// Returns all the nodes in this graph.
|
|
fn nodes(&'a self) -> Nodes<'a, Self::Node>;
|
|
/// Returns all of the edges in this graph.
|
|
fn edges(&'a self) -> Edges<'a, Self::Edge>;
|
|
/// The source node for `edge`.
|
|
fn source(&'a self, edge: &Self::Edge) -> Self::Node;
|
|
/// The target node for `edge`.
|
|
fn target(&'a self, edge: &Self::Edge) -> Self::Node;
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
|
pub enum RenderOption {
|
|
NoEdgeLabels,
|
|
NoNodeLabels,
|
|
NoEdgeStyles,
|
|
NoNodeStyles,
|
|
|
|
Monospace,
|
|
}
|
|
|
|
/// Returns vec holding all the default render options.
|
|
pub fn default_options() -> Vec<RenderOption> {
|
|
vec![]
|
|
}
|
|
|
|
/// Renders directed graph `g` into the writer `w` in DOT syntax.
|
|
/// (Simple wrapper around `render_opts` that passes a default set of options.)
|
|
pub fn render<'a, N, E, G, W>(g: &'a G, w: &mut W) -> io::Result<()>
|
|
where
|
|
N: Clone + 'a,
|
|
E: Clone + 'a,
|
|
G: Labeller<'a, Node = N, Edge = E> + GraphWalk<'a, Node = N, Edge = E>,
|
|
W: Write,
|
|
{
|
|
render_opts(g, w, &[])
|
|
}
|
|
|
|
/// Renders directed graph `g` into the writer `w` in DOT syntax.
|
|
/// (Main entry point for the library.)
|
|
pub fn render_opts<'a, N, E, G, W>(g: &'a G, w: &mut W, options: &[RenderOption]) -> io::Result<()>
|
|
where
|
|
N: Clone + 'a,
|
|
E: Clone + 'a,
|
|
G: Labeller<'a, Node = N, Edge = E> + GraphWalk<'a, Node = N, Edge = E>,
|
|
W: Write,
|
|
{
|
|
writeln!(w, "digraph {} {{", g.graph_id().as_slice())?;
|
|
|
|
// Global graph properties
|
|
if options.contains(&RenderOption::Monospace) {
|
|
writeln!(w, r#" graph[fontname="monospace"];"#)?;
|
|
writeln!(w, r#" node[fontname="monospace"];"#)?;
|
|
writeln!(w, r#" edge[fontname="monospace"];"#)?;
|
|
}
|
|
|
|
for n in g.nodes().iter() {
|
|
write!(w, " ")?;
|
|
let id = g.node_id(n);
|
|
|
|
let escaped = &g.node_label(n).to_dot_string();
|
|
|
|
let mut text = Vec::new();
|
|
write!(text, "{}", id.as_slice()).unwrap();
|
|
|
|
if !options.contains(&RenderOption::NoNodeLabels) {
|
|
write!(text, "[label={}]", escaped).unwrap();
|
|
}
|
|
|
|
let style = g.node_style(n);
|
|
if !options.contains(&RenderOption::NoNodeStyles) && style != Style::None {
|
|
write!(text, "[style=\"{}\"]", style.as_slice()).unwrap();
|
|
}
|
|
|
|
if let Some(s) = g.node_shape(n) {
|
|
write!(text, "[shape={}]", &s.to_dot_string()).unwrap();
|
|
}
|
|
|
|
writeln!(text, ";").unwrap();
|
|
w.write_all(&text[..])?;
|
|
}
|
|
|
|
for e in g.edges().iter() {
|
|
let escaped_label = &g.edge_label(e).to_dot_string();
|
|
write!(w, " ")?;
|
|
let source = g.source(e);
|
|
let target = g.target(e);
|
|
let source_id = g.node_id(&source);
|
|
let target_id = g.node_id(&target);
|
|
|
|
let mut text = Vec::new();
|
|
write!(text, "{} -> {}", source_id.as_slice(), target_id.as_slice()).unwrap();
|
|
|
|
if !options.contains(&RenderOption::NoEdgeLabels) {
|
|
write!(text, "[label={}]", escaped_label).unwrap();
|
|
}
|
|
|
|
let style = g.edge_style(e);
|
|
if !options.contains(&RenderOption::NoEdgeStyles) && style != Style::None {
|
|
write!(text, "[style=\"{}\"]", style.as_slice()).unwrap();
|
|
}
|
|
|
|
writeln!(text, ";").unwrap();
|
|
w.write_all(&text[..])?;
|
|
}
|
|
|
|
writeln!(w, "}}")
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests;
|