rust/clippy_utils/src/lib.rs
Vadim Petrochenkov 075a28996c rustc_span: Revert addition of proc_macro field to ExpnKind::Macro
The flag has a vague meaning and is used for a single diagnostic change that is low benefit and appears only under `-Z macro_backtrace`.
2021-07-10 23:03:35 +03:00

1732 lines
57 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#![feature(box_patterns)]
#![feature(in_band_lifetimes)]
#![feature(iter_zip)]
#![feature(rustc_private)]
#![recursion_limit = "512"]
#![cfg_attr(feature = "deny-warnings", deny(warnings))]
#![allow(clippy::missing_errors_doc, clippy::missing_panics_doc, clippy::must_use_candidate)]
// warn on the same lints as `clippy_lints`
#![warn(trivial_casts, trivial_numeric_casts)]
// warn on lints, that are included in `rust-lang/rust`s bootstrap
#![warn(rust_2018_idioms, unused_lifetimes)]
// warn on rustc internal lints
#![warn(rustc::internal)]
// FIXME: switch to something more ergonomic here, once available.
// (Currently there is no way to opt into sysroot crates without `extern crate`.)
extern crate rustc_ast;
extern crate rustc_ast_pretty;
extern crate rustc_attr;
extern crate rustc_data_structures;
extern crate rustc_errors;
extern crate rustc_hir;
extern crate rustc_infer;
extern crate rustc_lexer;
extern crate rustc_lint;
extern crate rustc_middle;
extern crate rustc_mir;
extern crate rustc_session;
extern crate rustc_span;
extern crate rustc_target;
extern crate rustc_trait_selection;
extern crate rustc_typeck;
#[macro_use]
pub mod sym_helper;
#[allow(clippy::module_name_repetitions)]
pub mod ast_utils;
pub mod attrs;
pub mod camel_case;
pub mod comparisons;
pub mod consts;
pub mod diagnostics;
pub mod eager_or_lazy;
pub mod higher;
mod hir_utils;
pub mod msrvs;
pub mod numeric_literal;
pub mod paths;
pub mod ptr;
pub mod qualify_min_const_fn;
pub mod source;
pub mod sugg;
pub mod ty;
pub mod usage;
pub mod visitors;
pub use self::attrs::*;
pub use self::hir_utils::{both, count_eq, eq_expr_value, over, SpanlessEq, SpanlessHash};
use std::collections::hash_map::Entry;
use std::hash::BuildHasherDefault;
use if_chain::if_chain;
use rustc_ast::ast::{self, Attribute, BorrowKind, LitKind};
use rustc_data_structures::unhash::UnhashMap;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit::{self, walk_expr, ErasedMap, FnKind, NestedVisitorMap, Visitor};
use rustc_hir::LangItem::{ResultErr, ResultOk};
use rustc_hir::{
def, Arm, BindingAnnotation, Block, Body, Constness, Destination, Expr, ExprKind, FnDecl, GenericArgs, HirId, Impl,
ImplItem, ImplItemKind, IsAsync, Item, ItemKind, LangItem, Local, MatchSource, Node, Param, Pat, PatKind, Path,
PathSegment, QPath, Stmt, StmtKind, TraitItem, TraitItemKind, TraitRef, TyKind, UnOp,
};
use rustc_lint::{LateContext, Level, Lint, LintContext};
use rustc_middle::hir::exports::Export;
use rustc_middle::hir::map::Map;
use rustc_middle::ty as rustc_ty;
use rustc_middle::ty::{layout::IntegerExt, DefIdTree, Ty, TyCtxt, TypeFoldable};
use rustc_semver::RustcVersion;
use rustc_session::Session;
use rustc_span::hygiene::{ExpnKind, MacroKind};
use rustc_span::source_map::original_sp;
use rustc_span::sym;
use rustc_span::symbol::{kw, Symbol};
use rustc_span::{Span, DUMMY_SP};
use rustc_target::abi::Integer;
use crate::consts::{constant, Constant};
use crate::ty::{can_partially_move_ty, is_recursively_primitive_type};
pub fn parse_msrv(msrv: &str, sess: Option<&Session>, span: Option<Span>) -> Option<RustcVersion> {
if let Ok(version) = RustcVersion::parse(msrv) {
return Some(version);
} else if let Some(sess) = sess {
if let Some(span) = span {
sess.span_err(span, &format!("`{}` is not a valid Rust version", msrv));
}
}
None
}
pub fn meets_msrv(msrv: Option<&RustcVersion>, lint_msrv: &RustcVersion) -> bool {
msrv.map_or(true, |msrv| msrv.meets(*lint_msrv))
}
#[macro_export]
macro_rules! extract_msrv_attr {
(LateContext) => {
extract_msrv_attr!(@LateContext, ());
};
(EarlyContext) => {
extract_msrv_attr!(@EarlyContext);
};
(@$context:ident$(, $call:tt)?) => {
fn enter_lint_attrs(&mut self, cx: &rustc_lint::$context<'tcx>, attrs: &'tcx [rustc_ast::ast::Attribute]) {
use $crate::get_unique_inner_attr;
match get_unique_inner_attr(cx.sess$($call)?, attrs, "msrv") {
Some(msrv_attr) => {
if let Some(msrv) = msrv_attr.value_str() {
self.msrv = $crate::parse_msrv(
&msrv.to_string(),
Some(cx.sess$($call)?),
Some(msrv_attr.span),
);
} else {
cx.sess$($call)?.span_err(msrv_attr.span, "bad clippy attribute");
}
},
_ => (),
}
}
};
}
/// Returns `true` if the two spans come from differing expansions (i.e., one is
/// from a macro and one isn't).
#[must_use]
pub fn differing_macro_contexts(lhs: Span, rhs: Span) -> bool {
rhs.ctxt() != lhs.ctxt()
}
/// If the given expression is a local binding, find the initializer expression.
/// If that initializer expression is another local binding, find its initializer again.
/// This process repeats as long as possible (but usually no more than once). Initializer
/// expressions with adjustments are ignored. If this is not desired, use [`find_binding_init`]
/// instead.
///
/// Examples:
/// ```ignore
/// let abc = 1;
/// // ^ output
/// let def = abc;
/// dbg!(def)
/// // ^^^ input
///
/// // or...
/// let abc = 1;
/// let def = abc + 2;
/// // ^^^^^^^ output
/// dbg!(def)
/// // ^^^ input
/// ```
pub fn expr_or_init<'a, 'b, 'tcx: 'b>(cx: &LateContext<'tcx>, mut expr: &'a Expr<'b>) -> &'a Expr<'b> {
while let Some(init) = path_to_local(expr)
.and_then(|id| find_binding_init(cx, id))
.filter(|init| cx.typeck_results().expr_adjustments(init).is_empty())
{
expr = init;
}
expr
}
/// Finds the initializer expression for a local binding. Returns `None` if the binding is mutable.
/// By only considering immutable bindings, we guarantee that the returned expression represents the
/// value of the binding wherever it is referenced.
///
/// Example: For `let x = 1`, if the `HirId` of `x` is provided, the `Expr` `1` is returned.
/// Note: If you have an expression that references a binding `x`, use `path_to_local` to get the
/// canonical binding `HirId`.
pub fn find_binding_init<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId) -> Option<&'tcx Expr<'tcx>> {
let hir = cx.tcx.hir();
if_chain! {
if let Some(Node::Binding(pat)) = hir.find(hir_id);
if matches!(pat.kind, PatKind::Binding(BindingAnnotation::Unannotated, ..));
let parent = hir.get_parent_node(hir_id);
if let Some(Node::Local(local)) = hir.find(parent);
then {
return local.init;
}
}
None
}
/// Returns `true` if the given `NodeId` is inside a constant context
///
/// # Example
///
/// ```rust,ignore
/// if in_constant(cx, expr.hir_id) {
/// // Do something
/// }
/// ```
pub fn in_constant(cx: &LateContext<'_>, id: HirId) -> bool {
let parent_id = cx.tcx.hir().get_parent_item(id);
match cx.tcx.hir().get(parent_id) {
Node::Item(&Item {
kind: ItemKind::Const(..) | ItemKind::Static(..),
..
})
| Node::TraitItem(&TraitItem {
kind: TraitItemKind::Const(..),
..
})
| Node::ImplItem(&ImplItem {
kind: ImplItemKind::Const(..),
..
})
| Node::AnonConst(_) => true,
Node::Item(&Item {
kind: ItemKind::Fn(ref sig, ..),
..
})
| Node::ImplItem(&ImplItem {
kind: ImplItemKind::Fn(ref sig, _),
..
}) => sig.header.constness == Constness::Const,
_ => false,
}
}
/// Checks if a `QPath` resolves to a constructor of a `LangItem`.
/// For example, use this to check whether a function call or a pattern is `Some(..)`.
pub fn is_lang_ctor(cx: &LateContext<'_>, qpath: &QPath<'_>, lang_item: LangItem) -> bool {
if let QPath::Resolved(_, path) = qpath {
if let Res::Def(DefKind::Ctor(..), ctor_id) = path.res {
if let Ok(item_id) = cx.tcx.lang_items().require(lang_item) {
return cx.tcx.parent(ctor_id) == Some(item_id);
}
}
}
false
}
/// Returns `true` if this `span` was expanded by any macro.
#[must_use]
pub fn in_macro(span: Span) -> bool {
if span.from_expansion() {
!matches!(span.ctxt().outer_expn_data().kind, ExpnKind::Desugaring(..))
} else {
false
}
}
/// Checks if given pattern is a wildcard (`_`)
pub fn is_wild<'tcx>(pat: &impl std::ops::Deref<Target = Pat<'tcx>>) -> bool {
matches!(pat.kind, PatKind::Wild)
}
/// Checks if the first type parameter is a lang item.
pub fn is_ty_param_lang_item(cx: &LateContext<'_>, qpath: &QPath<'tcx>, item: LangItem) -> Option<&'tcx hir::Ty<'tcx>> {
let ty = get_qpath_generic_tys(qpath).next()?;
if let TyKind::Path(qpath) = &ty.kind {
cx.qpath_res(qpath, ty.hir_id)
.opt_def_id()
.map_or(false, |id| {
cx.tcx.lang_items().require(item).map_or(false, |lang_id| id == lang_id)
})
.then(|| ty)
} else {
None
}
}
/// Checks if the first type parameter is a diagnostic item.
pub fn is_ty_param_diagnostic_item(
cx: &LateContext<'_>,
qpath: &QPath<'tcx>,
item: Symbol,
) -> Option<&'tcx hir::Ty<'tcx>> {
let ty = get_qpath_generic_tys(qpath).next()?;
if let TyKind::Path(qpath) = &ty.kind {
cx.qpath_res(qpath, ty.hir_id)
.opt_def_id()
.map_or(false, |id| cx.tcx.is_diagnostic_item(item, id))
.then(|| ty)
} else {
None
}
}
/// Checks if the method call given in `expr` belongs to the given trait.
/// This is a deprecated function, consider using [`is_trait_method`].
pub fn match_trait_method(cx: &LateContext<'_>, expr: &Expr<'_>, path: &[&str]) -> bool {
let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id).unwrap();
let trt_id = cx.tcx.trait_of_item(def_id);
trt_id.map_or(false, |trt_id| match_def_path(cx, trt_id, path))
}
/// Checks if a method is defined in an impl of a diagnostic item
pub fn is_diag_item_method(cx: &LateContext<'_>, def_id: DefId, diag_item: Symbol) -> bool {
if let Some(impl_did) = cx.tcx.impl_of_method(def_id) {
if let Some(adt) = cx.tcx.type_of(impl_did).ty_adt_def() {
return cx.tcx.is_diagnostic_item(diag_item, adt.did);
}
}
false
}
/// Checks if a method is in a diagnostic item trait
pub fn is_diag_trait_item(cx: &LateContext<'_>, def_id: DefId, diag_item: Symbol) -> bool {
if let Some(trait_did) = cx.tcx.trait_of_item(def_id) {
return cx.tcx.is_diagnostic_item(diag_item, trait_did);
}
false
}
/// Checks if the method call given in `expr` belongs to the given trait.
pub fn is_trait_method(cx: &LateContext<'_>, expr: &Expr<'_>, diag_item: Symbol) -> bool {
cx.typeck_results()
.type_dependent_def_id(expr.hir_id)
.map_or(false, |did| is_diag_trait_item(cx, did, diag_item))
}
pub fn last_path_segment<'tcx>(path: &QPath<'tcx>) -> &'tcx PathSegment<'tcx> {
match *path {
QPath::Resolved(_, path) => path.segments.last().expect("A path must have at least one segment"),
QPath::TypeRelative(_, seg) => seg,
QPath::LangItem(..) => panic!("last_path_segment: lang item has no path segments"),
}
}
pub fn get_qpath_generics(path: &QPath<'tcx>) -> Option<&'tcx GenericArgs<'tcx>> {
match path {
QPath::Resolved(_, p) => p.segments.last().and_then(|s| s.args),
QPath::TypeRelative(_, s) => s.args,
QPath::LangItem(..) => None,
}
}
pub fn get_qpath_generic_tys(path: &QPath<'tcx>) -> impl Iterator<Item = &'tcx hir::Ty<'tcx>> {
get_qpath_generics(path)
.map_or([].as_ref(), |a| a.args)
.iter()
.filter_map(|a| {
if let hir::GenericArg::Type(ty) = a {
Some(ty)
} else {
None
}
})
}
pub fn single_segment_path<'tcx>(path: &QPath<'tcx>) -> Option<&'tcx PathSegment<'tcx>> {
match *path {
QPath::Resolved(_, path) => path.segments.get(0),
QPath::TypeRelative(_, seg) => Some(seg),
QPath::LangItem(..) => None,
}
}
/// THIS METHOD IS DEPRECATED and will eventually be removed since it does not match against the
/// entire path or resolved `DefId`. Prefer using `match_def_path`. Consider getting a `DefId` from
/// `QPath::Resolved.1.res.opt_def_id()`.
///
/// Matches a `QPath` against a slice of segment string literals.
///
/// There is also `match_path` if you are dealing with a `rustc_hir::Path` instead of a
/// `rustc_hir::QPath`.
///
/// # Examples
/// ```rust,ignore
/// match_qpath(path, &["std", "rt", "begin_unwind"])
/// ```
pub fn match_qpath(path: &QPath<'_>, segments: &[&str]) -> bool {
match *path {
QPath::Resolved(_, path) => match_path(path, segments),
QPath::TypeRelative(ty, segment) => match ty.kind {
TyKind::Path(ref inner_path) => {
if let [prefix @ .., end] = segments {
if match_qpath(inner_path, prefix) {
return segment.ident.name.as_str() == *end;
}
}
false
},
_ => false,
},
QPath::LangItem(..) => false,
}
}
/// If the expression is a path, resolve it. Otherwise, return `Res::Err`.
pub fn expr_path_res(cx: &LateContext<'_>, expr: &Expr<'_>) -> Res {
if let ExprKind::Path(p) = &expr.kind {
cx.qpath_res(p, expr.hir_id)
} else {
Res::Err
}
}
/// Resolves the path to a `DefId` and checks if it matches the given path.
pub fn is_qpath_def_path(cx: &LateContext<'_>, path: &QPath<'_>, hir_id: HirId, segments: &[&str]) -> bool {
cx.qpath_res(path, hir_id)
.opt_def_id()
.map_or(false, |id| match_def_path(cx, id, segments))
}
/// If the expression is a path, resolves it to a `DefId` and checks if it matches the given path.
pub fn is_expr_path_def_path(cx: &LateContext<'_>, expr: &Expr<'_>, segments: &[&str]) -> bool {
expr_path_res(cx, expr)
.opt_def_id()
.map_or(false, |id| match_def_path(cx, id, segments))
}
/// THIS METHOD IS DEPRECATED and will eventually be removed since it does not match against the
/// entire path or resolved `DefId`. Prefer using `match_def_path`. Consider getting a `DefId` from
/// `QPath::Resolved.1.res.opt_def_id()`.
///
/// Matches a `Path` against a slice of segment string literals.
///
/// There is also `match_qpath` if you are dealing with a `rustc_hir::QPath` instead of a
/// `rustc_hir::Path`.
///
/// # Examples
///
/// ```rust,ignore
/// if match_path(&trait_ref.path, &paths::HASH) {
/// // This is the `std::hash::Hash` trait.
/// }
///
/// if match_path(ty_path, &["rustc", "lint", "Lint"]) {
/// // This is a `rustc_middle::lint::Lint`.
/// }
/// ```
pub fn match_path(path: &Path<'_>, segments: &[&str]) -> bool {
path.segments
.iter()
.rev()
.zip(segments.iter().rev())
.all(|(a, b)| a.ident.name.as_str() == *b)
}
/// If the expression is a path to a local, returns the canonical `HirId` of the local.
pub fn path_to_local(expr: &Expr<'_>) -> Option<HirId> {
if let ExprKind::Path(QPath::Resolved(None, path)) = expr.kind {
if let Res::Local(id) = path.res {
return Some(id);
}
}
None
}
/// Returns true if the expression is a path to a local with the specified `HirId`.
/// Use this function to see if an expression matches a function argument or a match binding.
pub fn path_to_local_id(expr: &Expr<'_>, id: HirId) -> bool {
path_to_local(expr) == Some(id)
}
/// Gets the definition associated to a path.
#[allow(clippy::shadow_unrelated)] // false positive #6563
pub fn path_to_res(cx: &LateContext<'_>, path: &[&str]) -> Res {
macro_rules! try_res {
($e:expr) => {
match $e {
Some(e) => e,
None => return Res::Err,
}
};
}
fn item_child_by_name<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, name: &str) -> Option<&'tcx Export<HirId>> {
tcx.item_children(def_id)
.iter()
.find(|item| item.ident.name.as_str() == name)
}
let (krate, first, path) = match *path {
[krate, first, ref path @ ..] => (krate, first, path),
_ => return Res::Err,
};
let tcx = cx.tcx;
let crates = tcx.crates(());
let krate = try_res!(crates.iter().find(|&&num| tcx.crate_name(num).as_str() == krate));
let first = try_res!(item_child_by_name(tcx, krate.as_def_id(), first));
let last = path
.iter()
.copied()
// `get_def_path` seems to generate these empty segments for extern blocks.
// We can just ignore them.
.filter(|segment| !segment.is_empty())
// for each segment, find the child item
.try_fold(first, |item, segment| {
let def_id = item.res.def_id();
if let Some(item) = item_child_by_name(tcx, def_id, segment) {
Some(item)
} else if matches!(item.res, Res::Def(DefKind::Enum | DefKind::Struct, _)) {
// it is not a child item so check inherent impl items
tcx.inherent_impls(def_id)
.iter()
.find_map(|&impl_def_id| item_child_by_name(tcx, impl_def_id, segment))
} else {
None
}
});
try_res!(last).res
}
/// Convenience function to get the `DefId` of a trait by path.
/// It could be a trait or trait alias.
pub fn get_trait_def_id(cx: &LateContext<'_>, path: &[&str]) -> Option<DefId> {
match path_to_res(cx, path) {
Res::Def(DefKind::Trait | DefKind::TraitAlias, trait_id) => Some(trait_id),
_ => None,
}
}
/// Gets the `hir::TraitRef` of the trait the given method is implemented for.
///
/// Use this if you want to find the `TraitRef` of the `Add` trait in this example:
///
/// ```rust
/// struct Point(isize, isize);
///
/// impl std::ops::Add for Point {
/// type Output = Self;
///
/// fn add(self, other: Self) -> Self {
/// Point(0, 0)
/// }
/// }
/// ```
pub fn trait_ref_of_method<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId) -> Option<&'tcx TraitRef<'tcx>> {
// Get the implemented trait for the current function
let parent_impl = cx.tcx.hir().get_parent_item(hir_id);
if_chain! {
if parent_impl != hir::CRATE_HIR_ID;
if let hir::Node::Item(item) = cx.tcx.hir().get(parent_impl);
if let hir::ItemKind::Impl(impl_) = &item.kind;
then { return impl_.of_trait.as_ref(); }
}
None
}
/// Checks if the top level expression can be moved into a closure as is.
pub fn can_move_expr_to_closure_no_visit(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>, jump_targets: &[HirId]) -> bool {
match expr.kind {
ExprKind::Break(Destination { target_id: Ok(id), .. }, _)
| ExprKind::Continue(Destination { target_id: Ok(id), .. })
if jump_targets.contains(&id) =>
{
true
},
ExprKind::Break(..)
| ExprKind::Continue(_)
| ExprKind::Ret(_)
| ExprKind::Yield(..)
| ExprKind::InlineAsm(_)
| ExprKind::LlvmInlineAsm(_) => false,
// Accessing a field of a local value can only be done if the type isn't
// partially moved.
ExprKind::Field(base_expr, _)
if matches!(
base_expr.kind,
ExprKind::Path(QPath::Resolved(_, Path { res: Res::Local(_), .. }))
) && can_partially_move_ty(cx, cx.typeck_results().expr_ty(base_expr)) =>
{
// TODO: check if the local has been partially moved. Assume it has for now.
false
}
_ => true,
}
}
/// Checks if the expression can be moved into a closure as is.
pub fn can_move_expr_to_closure(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) -> bool {
struct V<'cx, 'tcx> {
cx: &'cx LateContext<'tcx>,
loops: Vec<HirId>,
allow_closure: bool,
}
impl Visitor<'tcx> for V<'_, 'tcx> {
type Map = ErasedMap<'tcx>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
fn visit_expr(&mut self, e: &'tcx Expr<'_>) {
if !self.allow_closure {
return;
}
if let ExprKind::Loop(b, ..) = e.kind {
self.loops.push(e.hir_id);
self.visit_block(b);
self.loops.pop();
} else {
self.allow_closure &= can_move_expr_to_closure_no_visit(self.cx, e, &self.loops);
walk_expr(self, e);
}
}
}
let mut v = V {
cx,
allow_closure: true,
loops: Vec::new(),
};
v.visit_expr(expr);
v.allow_closure
}
/// Returns the method names and argument list of nested method call expressions that make up
/// `expr`. method/span lists are sorted with the most recent call first.
pub fn method_calls<'tcx>(
expr: &'tcx Expr<'tcx>,
max_depth: usize,
) -> (Vec<Symbol>, Vec<&'tcx [Expr<'tcx>]>, Vec<Span>) {
let mut method_names = Vec::with_capacity(max_depth);
let mut arg_lists = Vec::with_capacity(max_depth);
let mut spans = Vec::with_capacity(max_depth);
let mut current = expr;
for _ in 0..max_depth {
if let ExprKind::MethodCall(path, span, args, _) = &current.kind {
if args.iter().any(|e| e.span.from_expansion()) {
break;
}
method_names.push(path.ident.name);
arg_lists.push(&**args);
spans.push(*span);
current = &args[0];
} else {
break;
}
}
(method_names, arg_lists, spans)
}
/// Matches an `Expr` against a chain of methods, and return the matched `Expr`s.
///
/// For example, if `expr` represents the `.baz()` in `foo.bar().baz()`,
/// `method_chain_args(expr, &["bar", "baz"])` will return a `Vec`
/// containing the `Expr`s for
/// `.bar()` and `.baz()`
pub fn method_chain_args<'a>(expr: &'a Expr<'_>, methods: &[&str]) -> Option<Vec<&'a [Expr<'a>]>> {
let mut current = expr;
let mut matched = Vec::with_capacity(methods.len());
for method_name in methods.iter().rev() {
// method chains are stored last -> first
if let ExprKind::MethodCall(path, _, args, _) = current.kind {
if path.ident.name.as_str() == *method_name {
if args.iter().any(|e| e.span.from_expansion()) {
return None;
}
matched.push(args); // build up `matched` backwards
current = &args[0]; // go to parent expression
} else {
return None;
}
} else {
return None;
}
}
// Reverse `matched` so that it is in the same order as `methods`.
matched.reverse();
Some(matched)
}
/// Returns `true` if the provided `def_id` is an entrypoint to a program.
pub fn is_entrypoint_fn(cx: &LateContext<'_>, def_id: DefId) -> bool {
cx.tcx
.entry_fn(())
.map_or(false, |(entry_fn_def_id, _)| def_id == entry_fn_def_id)
}
/// Returns `true` if the expression is in the program's `#[panic_handler]`.
pub fn is_in_panic_handler(cx: &LateContext<'_>, e: &Expr<'_>) -> bool {
let parent = cx.tcx.hir().get_parent_item(e.hir_id);
let def_id = cx.tcx.hir().local_def_id(parent).to_def_id();
Some(def_id) == cx.tcx.lang_items().panic_impl()
}
/// Gets the name of the item the expression is in, if available.
pub fn get_item_name(cx: &LateContext<'_>, expr: &Expr<'_>) -> Option<Symbol> {
let parent_id = cx.tcx.hir().get_parent_item(expr.hir_id);
match cx.tcx.hir().find(parent_id) {
Some(
Node::Item(Item { ident, .. })
| Node::TraitItem(TraitItem { ident, .. })
| Node::ImplItem(ImplItem { ident, .. }),
) => Some(ident.name),
_ => None,
}
}
pub struct ContainsName {
pub name: Symbol,
pub result: bool,
}
impl<'tcx> Visitor<'tcx> for ContainsName {
type Map = Map<'tcx>;
fn visit_name(&mut self, _: Span, name: Symbol) {
if self.name == name {
self.result = true;
}
}
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
}
/// Checks if an `Expr` contains a certain name.
pub fn contains_name(name: Symbol, expr: &Expr<'_>) -> bool {
let mut cn = ContainsName { name, result: false };
cn.visit_expr(expr);
cn.result
}
/// Returns `true` if `expr` contains a return expression
pub fn contains_return(expr: &hir::Expr<'_>) -> bool {
struct RetCallFinder {
found: bool,
}
impl<'tcx> hir::intravisit::Visitor<'tcx> for RetCallFinder {
type Map = Map<'tcx>;
fn visit_expr(&mut self, expr: &'tcx hir::Expr<'_>) {
if self.found {
return;
}
if let hir::ExprKind::Ret(..) = &expr.kind {
self.found = true;
} else {
hir::intravisit::walk_expr(self, expr);
}
}
fn nested_visit_map(&mut self) -> hir::intravisit::NestedVisitorMap<Self::Map> {
hir::intravisit::NestedVisitorMap::None
}
}
let mut visitor = RetCallFinder { found: false };
visitor.visit_expr(expr);
visitor.found
}
struct FindMacroCalls<'a, 'b> {
names: &'a [&'b str],
result: Vec<Span>,
}
impl<'a, 'b, 'tcx> Visitor<'tcx> for FindMacroCalls<'a, 'b> {
type Map = Map<'tcx>;
fn visit_expr(&mut self, expr: &'tcx Expr<'_>) {
if self.names.iter().any(|fun| is_expn_of(expr.span, fun).is_some()) {
self.result.push(expr.span);
}
// and check sub-expressions
intravisit::walk_expr(self, expr);
}
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
}
/// Finds calls of the specified macros in a function body.
pub fn find_macro_calls(names: &[&str], body: &Body<'_>) -> Vec<Span> {
let mut fmc = FindMacroCalls {
names,
result: Vec::new(),
};
fmc.visit_expr(&body.value);
fmc.result
}
/// Extends the span to the beginning of the spans line, incl. whitespaces.
///
/// ```rust,ignore
/// let x = ();
/// // ^^
/// // will be converted to
/// let x = ();
/// // ^^^^^^^^^^^^^^
/// ```
fn line_span<T: LintContext>(cx: &T, span: Span) -> Span {
let span = original_sp(span, DUMMY_SP);
let source_map_and_line = cx.sess().source_map().lookup_line(span.lo()).unwrap();
let line_no = source_map_and_line.line;
let line_start = source_map_and_line.sf.lines[line_no];
Span::new(line_start, span.hi(), span.ctxt())
}
/// Gets the parent node, if any.
pub fn get_parent_node(tcx: TyCtxt<'_>, id: HirId) -> Option<Node<'_>> {
tcx.hir().parent_iter(id).next().map(|(_, node)| node)
}
/// Gets the parent expression, if any - this is useful to constrain a lint.
pub fn get_parent_expr<'tcx>(cx: &LateContext<'tcx>, e: &Expr<'_>) -> Option<&'tcx Expr<'tcx>> {
get_parent_expr_for_hir(cx, e.hir_id)
}
/// This retrieves the parent for the given `HirId` if it's an expression. This is useful for
/// constraint lints
pub fn get_parent_expr_for_hir<'tcx>(cx: &LateContext<'tcx>, hir_id: hir::HirId) -> Option<&'tcx Expr<'tcx>> {
match get_parent_node(cx.tcx, hir_id) {
Some(Node::Expr(parent)) => Some(parent),
_ => None,
}
}
pub fn get_enclosing_block<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId) -> Option<&'tcx Block<'tcx>> {
let map = &cx.tcx.hir();
let enclosing_node = map
.get_enclosing_scope(hir_id)
.and_then(|enclosing_id| map.find(enclosing_id));
enclosing_node.and_then(|node| match node {
Node::Block(block) => Some(block),
Node::Item(&Item {
kind: ItemKind::Fn(_, _, eid),
..
})
| Node::ImplItem(&ImplItem {
kind: ImplItemKind::Fn(_, eid),
..
}) => match cx.tcx.hir().body(eid).value.kind {
ExprKind::Block(block, _) => Some(block),
_ => None,
},
_ => None,
})
}
/// Gets the loop or closure enclosing the given expression, if any.
pub fn get_enclosing_loop_or_closure(tcx: TyCtxt<'tcx>, expr: &Expr<'_>) -> Option<&'tcx Expr<'tcx>> {
let map = tcx.hir();
for (_, node) in map.parent_iter(expr.hir_id) {
match node {
Node::Expr(
e
@
Expr {
kind: ExprKind::Loop(..) | ExprKind::Closure(..),
..
},
) => return Some(e),
Node::Expr(_) | Node::Stmt(_) | Node::Block(_) | Node::Local(_) | Node::Arm(_) => (),
_ => break,
}
}
None
}
/// Gets the parent node if it's an impl block.
pub fn get_parent_as_impl(tcx: TyCtxt<'_>, id: HirId) -> Option<&Impl<'_>> {
let map = tcx.hir();
match map.parent_iter(id).next() {
Some((
_,
Node::Item(Item {
kind: ItemKind::Impl(imp),
..
}),
)) => Some(imp),
_ => None,
}
}
/// Checks if the given expression is the else clause of either an `if` or `if let` expression.
pub fn is_else_clause(tcx: TyCtxt<'_>, expr: &Expr<'_>) -> bool {
let map = tcx.hir();
let mut iter = map.parent_iter(expr.hir_id);
match iter.next() {
Some((arm_id, Node::Arm(..))) => matches!(
iter.next(),
Some((
_,
Node::Expr(Expr {
kind: ExprKind::Match(_, [_, else_arm], MatchSource::IfLetDesugar { .. }),
..
})
))
if else_arm.hir_id == arm_id
),
Some((
_,
Node::Expr(Expr {
kind: ExprKind::If(_, _, Some(else_expr)),
..
}),
)) => else_expr.hir_id == expr.hir_id,
_ => false,
}
}
/// Checks whether the given expression is a constant integer of the given value.
/// unlike `is_integer_literal`, this version does const folding
pub fn is_integer_const(cx: &LateContext<'_>, e: &Expr<'_>, value: u128) -> bool {
if is_integer_literal(e, value) {
return true;
}
let map = cx.tcx.hir();
let parent_item = map.get_parent_item(e.hir_id);
if let Some((Constant::Int(v), _)) = map
.maybe_body_owned_by(parent_item)
.and_then(|body_id| constant(cx, cx.tcx.typeck_body(body_id), e))
{
value == v
} else {
false
}
}
/// Checks whether the given expression is a constant literal of the given value.
pub fn is_integer_literal(expr: &Expr<'_>, value: u128) -> bool {
// FIXME: use constant folding
if let ExprKind::Lit(ref spanned) = expr.kind {
if let LitKind::Int(v, _) = spanned.node {
return v == value;
}
}
false
}
/// Returns `true` if the given `Expr` has been coerced before.
///
/// Examples of coercions can be found in the Nomicon at
/// <https://doc.rust-lang.org/nomicon/coercions.html>.
///
/// See `rustc_middle::ty::adjustment::Adjustment` and `rustc_typeck::check::coercion` for more
/// information on adjustments and coercions.
pub fn is_adjusted(cx: &LateContext<'_>, e: &Expr<'_>) -> bool {
cx.typeck_results().adjustments().get(e.hir_id).is_some()
}
/// Returns the pre-expansion span if is this comes from an expansion of the
/// macro `name`.
/// See also `is_direct_expn_of`.
#[must_use]
pub fn is_expn_of(mut span: Span, name: &str) -> Option<Span> {
loop {
if span.from_expansion() {
let data = span.ctxt().outer_expn_data();
let new_span = data.call_site;
if let ExpnKind::Macro(MacroKind::Bang, mac_name) = data.kind {
if mac_name.as_str() == name {
return Some(new_span);
}
}
span = new_span;
} else {
return None;
}
}
}
/// Returns the pre-expansion span if the span directly comes from an expansion
/// of the macro `name`.
/// The difference with `is_expn_of` is that in
/// ```rust,ignore
/// foo!(bar!(42));
/// ```
/// `42` is considered expanded from `foo!` and `bar!` by `is_expn_of` but only
/// `bar!` by
/// `is_direct_expn_of`.
#[must_use]
pub fn is_direct_expn_of(span: Span, name: &str) -> Option<Span> {
if span.from_expansion() {
let data = span.ctxt().outer_expn_data();
let new_span = data.call_site;
if let ExpnKind::Macro(MacroKind::Bang, mac_name) = data.kind {
if mac_name.as_str() == name {
return Some(new_span);
}
}
}
None
}
/// Convenience function to get the return type of a function.
pub fn return_ty<'tcx>(cx: &LateContext<'tcx>, fn_item: hir::HirId) -> Ty<'tcx> {
let fn_def_id = cx.tcx.hir().local_def_id(fn_item);
let ret_ty = cx.tcx.fn_sig(fn_def_id).output();
cx.tcx.erase_late_bound_regions(ret_ty)
}
/// Checks if an expression is constructing a tuple-like enum variant or struct
pub fn is_ctor_or_promotable_const_function(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
if let ExprKind::Call(fun, _) = expr.kind {
if let ExprKind::Path(ref qp) = fun.kind {
let res = cx.qpath_res(qp, fun.hir_id);
return match res {
def::Res::Def(DefKind::Variant | DefKind::Ctor(..), ..) => true,
def::Res::Def(_, def_id) => cx.tcx.is_promotable_const_fn(def_id),
_ => false,
};
}
}
false
}
/// Returns `true` if a pattern is refutable.
// TODO: should be implemented using rustc/mir_build/thir machinery
pub fn is_refutable(cx: &LateContext<'_>, pat: &Pat<'_>) -> bool {
fn is_enum_variant(cx: &LateContext<'_>, qpath: &QPath<'_>, id: HirId) -> bool {
matches!(
cx.qpath_res(qpath, id),
def::Res::Def(DefKind::Variant, ..) | Res::Def(DefKind::Ctor(def::CtorOf::Variant, _), _)
)
}
fn are_refutable<'a, I: Iterator<Item = &'a Pat<'a>>>(cx: &LateContext<'_>, mut i: I) -> bool {
i.any(|pat| is_refutable(cx, pat))
}
match pat.kind {
PatKind::Wild => false,
PatKind::Binding(_, _, _, pat) => pat.map_or(false, |pat| is_refutable(cx, pat)),
PatKind::Box(pat) | PatKind::Ref(pat, _) => is_refutable(cx, pat),
PatKind::Lit(..) | PatKind::Range(..) => true,
PatKind::Path(ref qpath) => is_enum_variant(cx, qpath, pat.hir_id),
PatKind::Or(pats) => {
// TODO: should be the honest check, that pats is exhaustive set
are_refutable(cx, pats.iter().map(|pat| &**pat))
},
PatKind::Tuple(pats, _) => are_refutable(cx, pats.iter().map(|pat| &**pat)),
PatKind::Struct(ref qpath, fields, _) => {
is_enum_variant(cx, qpath, pat.hir_id) || are_refutable(cx, fields.iter().map(|field| &*field.pat))
},
PatKind::TupleStruct(ref qpath, pats, _) => {
is_enum_variant(cx, qpath, pat.hir_id) || are_refutable(cx, pats.iter().map(|pat| &**pat))
},
PatKind::Slice(head, ref middle, tail) => {
match &cx.typeck_results().node_type(pat.hir_id).kind() {
rustc_ty::Slice(..) => {
// [..] is the only irrefutable slice pattern.
!head.is_empty() || middle.is_none() || !tail.is_empty()
},
rustc_ty::Array(..) => {
are_refutable(cx, head.iter().chain(middle).chain(tail.iter()).map(|pat| &**pat))
},
_ => {
// unreachable!()
true
},
}
},
}
}
/// If the pattern is an `or` pattern, call the function once for each sub pattern. Otherwise, call
/// the function once on the given pattern.
pub fn recurse_or_patterns<'tcx, F: FnMut(&'tcx Pat<'tcx>)>(pat: &'tcx Pat<'tcx>, mut f: F) {
if let PatKind::Or(pats) = pat.kind {
pats.iter().copied().for_each(f);
} else {
f(pat);
}
}
/// Checks for the `#[automatically_derived]` attribute all `#[derive]`d
/// implementations have.
pub fn is_automatically_derived(attrs: &[ast::Attribute]) -> bool {
attrs.iter().any(|attr| attr.has_name(sym::automatically_derived))
}
/// Remove blocks around an expression.
///
/// Ie. `x`, `{ x }` and `{{{{ x }}}}` all give `x`. `{ x; y }` and `{}` return
/// themselves.
pub fn remove_blocks<'tcx>(mut expr: &'tcx Expr<'tcx>) -> &'tcx Expr<'tcx> {
while let ExprKind::Block(block, ..) = expr.kind {
match (block.stmts.is_empty(), block.expr.as_ref()) {
(true, Some(e)) => expr = e,
_ => break,
}
}
expr
}
pub fn is_self(slf: &Param<'_>) -> bool {
if let PatKind::Binding(.., name, _) = slf.pat.kind {
name.name == kw::SelfLower
} else {
false
}
}
pub fn is_self_ty(slf: &hir::Ty<'_>) -> bool {
if_chain! {
if let TyKind::Path(QPath::Resolved(None, path)) = slf.kind;
if let Res::SelfTy(..) = path.res;
then {
return true
}
}
false
}
pub fn iter_input_pats<'tcx>(decl: &FnDecl<'_>, body: &'tcx Body<'_>) -> impl Iterator<Item = &'tcx Param<'tcx>> {
(0..decl.inputs.len()).map(move |i| &body.params[i])
}
/// Checks if a given expression is a match expression expanded from the `?`
/// operator or the `try` macro.
pub fn is_try<'tcx>(cx: &LateContext<'_>, expr: &'tcx Expr<'tcx>) -> Option<&'tcx Expr<'tcx>> {
fn is_ok(cx: &LateContext<'_>, arm: &Arm<'_>) -> bool {
if_chain! {
if let PatKind::TupleStruct(ref path, pat, None) = arm.pat.kind;
if is_lang_ctor(cx, path, ResultOk);
if let PatKind::Binding(_, hir_id, _, None) = pat[0].kind;
if path_to_local_id(arm.body, hir_id);
then {
return true;
}
}
false
}
fn is_err(cx: &LateContext<'_>, arm: &Arm<'_>) -> bool {
if let PatKind::TupleStruct(ref path, _, _) = arm.pat.kind {
is_lang_ctor(cx, path, ResultErr)
} else {
false
}
}
if let ExprKind::Match(_, arms, ref source) = expr.kind {
// desugared from a `?` operator
if let MatchSource::TryDesugar = *source {
return Some(expr);
}
if_chain! {
if arms.len() == 2;
if arms[0].guard.is_none();
if arms[1].guard.is_none();
if (is_ok(cx, &arms[0]) && is_err(cx, &arms[1])) ||
(is_ok(cx, &arms[1]) && is_err(cx, &arms[0]));
then {
return Some(expr);
}
}
}
None
}
/// Returns `true` if the lint is allowed in the current context
///
/// Useful for skipping long running code when it's unnecessary
pub fn is_allowed(cx: &LateContext<'_>, lint: &'static Lint, id: HirId) -> bool {
cx.tcx.lint_level_at_node(lint, id).0 == Level::Allow
}
pub fn strip_pat_refs<'hir>(mut pat: &'hir Pat<'hir>) -> &'hir Pat<'hir> {
while let PatKind::Ref(subpat, _) = pat.kind {
pat = subpat;
}
pat
}
pub fn int_bits(tcx: TyCtxt<'_>, ity: rustc_ty::IntTy) -> u64 {
Integer::from_int_ty(&tcx, ity).size().bits()
}
#[allow(clippy::cast_possible_wrap)]
/// Turn a constant int byte representation into an i128
pub fn sext(tcx: TyCtxt<'_>, u: u128, ity: rustc_ty::IntTy) -> i128 {
let amt = 128 - int_bits(tcx, ity);
((u as i128) << amt) >> amt
}
#[allow(clippy::cast_sign_loss)]
/// clip unused bytes
pub fn unsext(tcx: TyCtxt<'_>, u: i128, ity: rustc_ty::IntTy) -> u128 {
let amt = 128 - int_bits(tcx, ity);
((u as u128) << amt) >> amt
}
/// clip unused bytes
pub fn clip(tcx: TyCtxt<'_>, u: u128, ity: rustc_ty::UintTy) -> u128 {
let bits = Integer::from_uint_ty(&tcx, ity).size().bits();
let amt = 128 - bits;
(u << amt) >> amt
}
pub fn any_parent_is_automatically_derived(tcx: TyCtxt<'_>, node: HirId) -> bool {
let map = &tcx.hir();
let mut prev_enclosing_node = None;
let mut enclosing_node = node;
while Some(enclosing_node) != prev_enclosing_node {
if is_automatically_derived(map.attrs(enclosing_node)) {
return true;
}
prev_enclosing_node = Some(enclosing_node);
enclosing_node = map.get_parent_item(enclosing_node);
}
false
}
/// Matches a function call with the given path and returns the arguments.
///
/// Usage:
///
/// ```rust,ignore
/// if let Some(args) = match_function_call(cx, cmp_max_call, &paths::CMP_MAX);
/// ```
pub fn match_function_call<'tcx>(
cx: &LateContext<'tcx>,
expr: &'tcx Expr<'_>,
path: &[&str],
) -> Option<&'tcx [Expr<'tcx>]> {
if_chain! {
if let ExprKind::Call(fun, args) = expr.kind;
if let ExprKind::Path(ref qpath) = fun.kind;
if let Some(fun_def_id) = cx.qpath_res(qpath, fun.hir_id).opt_def_id();
if match_def_path(cx, fun_def_id, path);
then {
return Some(args)
}
};
None
}
/// Checks if the given `DefId` matches any of the paths. Returns the index of matching path, if
/// any.
pub fn match_any_def_paths(cx: &LateContext<'_>, did: DefId, paths: &[&[&str]]) -> Option<usize> {
let search_path = cx.get_def_path(did);
paths
.iter()
.position(|p| p.iter().map(|x| Symbol::intern(x)).eq(search_path.iter().copied()))
}
/// Checks if the given `DefId` matches the path.
pub fn match_def_path<'tcx>(cx: &LateContext<'tcx>, did: DefId, syms: &[&str]) -> bool {
// We should probably move to Symbols in Clippy as well rather than interning every time.
let path = cx.get_def_path(did);
syms.iter().map(|x| Symbol::intern(x)).eq(path.iter().copied())
}
pub fn match_panic_call(cx: &LateContext<'_>, expr: &'tcx Expr<'_>) -> Option<&'tcx Expr<'tcx>> {
if let ExprKind::Call(func, [arg]) = expr.kind {
expr_path_res(cx, func)
.opt_def_id()
.map_or(false, |id| match_panic_def_id(cx, id))
.then(|| arg)
} else {
None
}
}
pub fn match_panic_def_id(cx: &LateContext<'_>, did: DefId) -> bool {
match_any_def_paths(
cx,
did,
&[
&paths::BEGIN_PANIC,
&paths::BEGIN_PANIC_FMT,
&paths::PANIC_ANY,
&paths::PANICKING_PANIC,
&paths::PANICKING_PANIC_FMT,
&paths::PANICKING_PANIC_STR,
],
)
.is_some()
}
/// Returns the list of condition expressions and the list of blocks in a
/// sequence of `if/else`.
/// E.g., this returns `([a, b], [c, d, e])` for the expression
/// `if a { c } else if b { d } else { e }`.
pub fn if_sequence<'tcx>(mut expr: &'tcx Expr<'tcx>) -> (Vec<&'tcx Expr<'tcx>>, Vec<&'tcx Block<'tcx>>) {
let mut conds = Vec::new();
let mut blocks: Vec<&Block<'_>> = Vec::new();
while let ExprKind::If(cond, then_expr, ref else_expr) = expr.kind {
conds.push(cond);
if let ExprKind::Block(block, _) = then_expr.kind {
blocks.push(block);
} else {
panic!("ExprKind::If node is not an ExprKind::Block");
}
if let Some(else_expr) = *else_expr {
expr = else_expr;
} else {
break;
}
}
// final `else {..}`
if !blocks.is_empty() {
if let ExprKind::Block(block, _) = expr.kind {
blocks.push(block);
}
}
(conds, blocks)
}
/// Checks if the given function kind is an async function.
pub fn is_async_fn(kind: FnKind<'_>) -> bool {
matches!(kind, FnKind::ItemFn(_, _, header, _) if header.asyncness == IsAsync::Async)
}
/// Peels away all the compiler generated code surrounding the body of an async function,
pub fn get_async_fn_body(tcx: TyCtxt<'tcx>, body: &Body<'_>) -> Option<&'tcx Expr<'tcx>> {
if let ExprKind::Call(
_,
&[Expr {
kind: ExprKind::Closure(_, _, body, _, _),
..
}],
) = body.value.kind
{
if let ExprKind::Block(
Block {
stmts: [],
expr:
Some(Expr {
kind: ExprKind::DropTemps(expr),
..
}),
..
},
_,
) = tcx.hir().body(body).value.kind
{
return Some(expr);
}
};
None
}
// Finds the `#[must_use]` attribute, if any
pub fn must_use_attr(attrs: &[Attribute]) -> Option<&Attribute> {
attrs.iter().find(|a| a.has_name(sym::must_use))
}
// check if expr is calling method or function with #[must_use] attribute
pub fn is_must_use_func_call(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
let did = match expr.kind {
ExprKind::Call(path, _) => if_chain! {
if let ExprKind::Path(ref qpath) = path.kind;
if let def::Res::Def(_, did) = cx.qpath_res(qpath, path.hir_id);
then {
Some(did)
} else {
None
}
},
ExprKind::MethodCall(_, _, _, _) => cx.typeck_results().type_dependent_def_id(expr.hir_id),
_ => None,
};
did.map_or(false, |did| must_use_attr(cx.tcx.get_attrs(did)).is_some())
}
/// Checks if an expression represents the identity function
/// Only examines closures and `std::convert::identity`
pub fn is_expr_identity_function(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
/// Checks if a function's body represents the identity function. Looks for bodies of the form:
/// * `|x| x`
/// * `|x| return x`
/// * `|x| { return x }`
/// * `|x| { return x; }`
fn is_body_identity_function(cx: &LateContext<'_>, func: &Body<'_>) -> bool {
let id = if_chain! {
if let [param] = func.params;
if let PatKind::Binding(_, id, _, _) = param.pat.kind;
then {
id
} else {
return false;
}
};
let mut expr = &func.value;
loop {
match expr.kind {
#[rustfmt::skip]
ExprKind::Block(&Block { stmts: [], expr: Some(e), .. }, _, )
| ExprKind::Ret(Some(e)) => expr = e,
#[rustfmt::skip]
ExprKind::Block(&Block { stmts: [stmt], expr: None, .. }, _) => {
if_chain! {
if let StmtKind::Semi(e) | StmtKind::Expr(e) = stmt.kind;
if let ExprKind::Ret(Some(ret_val)) = e.kind;
then {
expr = ret_val;
} else {
return false;
}
}
},
_ => return path_to_local_id(expr, id) && cx.typeck_results().expr_adjustments(expr).is_empty(),
}
}
}
match expr.kind {
ExprKind::Closure(_, _, body_id, _, _) => is_body_identity_function(cx, cx.tcx.hir().body(body_id)),
ExprKind::Path(ref path) => is_qpath_def_path(cx, path, expr.hir_id, &paths::CONVERT_IDENTITY),
_ => false,
}
}
/// Gets the node where an expression is either used, or it's type is unified with another branch.
pub fn get_expr_use_or_unification_node(tcx: TyCtxt<'tcx>, expr: &Expr<'_>) -> Option<Node<'tcx>> {
let map = tcx.hir();
let mut child_id = expr.hir_id;
let mut iter = map.parent_iter(child_id);
loop {
match iter.next() {
None => break None,
Some((id, Node::Block(_))) => child_id = id,
Some((id, Node::Arm(arm))) if arm.body.hir_id == child_id => child_id = id,
Some((_, Node::Expr(expr))) => match expr.kind {
ExprKind::Match(_, [arm], _) if arm.hir_id == child_id => child_id = expr.hir_id,
ExprKind::Block(..) | ExprKind::DropTemps(_) => child_id = expr.hir_id,
ExprKind::If(_, then_expr, None) if then_expr.hir_id == child_id => break None,
_ => break Some(Node::Expr(expr)),
},
Some((_, node)) => break Some(node),
}
}
}
/// Checks if the result of an expression is used, or it's type is unified with another branch.
pub fn is_expr_used_or_unified(tcx: TyCtxt<'_>, expr: &Expr<'_>) -> bool {
!matches!(
get_expr_use_or_unification_node(tcx, expr),
None | Some(Node::Stmt(Stmt {
kind: StmtKind::Expr(_)
| StmtKind::Semi(_)
| StmtKind::Local(Local {
pat: Pat {
kind: PatKind::Wild,
..
},
..
}),
..
}))
)
}
/// Checks if the expression is the final expression returned from a block.
pub fn is_expr_final_block_expr(tcx: TyCtxt<'_>, expr: &Expr<'_>) -> bool {
matches!(get_parent_node(tcx, expr.hir_id), Some(Node::Block(..)))
}
pub fn is_no_std_crate(cx: &LateContext<'_>) -> bool {
cx.tcx.hir().attrs(hir::CRATE_HIR_ID).iter().any(|attr| {
if let ast::AttrKind::Normal(ref attr, _) = attr.kind {
attr.path == sym::no_std
} else {
false
}
})
}
/// Check if parent of a hir node is a trait implementation block.
/// For example, `f` in
/// ```rust,ignore
/// impl Trait for S {
/// fn f() {}
/// }
/// ```
pub fn is_trait_impl_item(cx: &LateContext<'_>, hir_id: HirId) -> bool {
if let Some(Node::Item(item)) = cx.tcx.hir().find(cx.tcx.hir().get_parent_node(hir_id)) {
matches!(item.kind, ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }))
} else {
false
}
}
/// Check if it's even possible to satisfy the `where` clause for the item.
///
/// `trivial_bounds` feature allows functions with unsatisfiable bounds, for example:
///
/// ```ignore
/// fn foo() where i32: Iterator {
/// for _ in 2i32 {}
/// }
/// ```
pub fn fn_has_unsatisfiable_preds(cx: &LateContext<'_>, did: DefId) -> bool {
use rustc_trait_selection::traits;
let predicates = cx
.tcx
.predicates_of(did)
.predicates
.iter()
.filter_map(|(p, _)| if p.is_global() { Some(*p) } else { None });
traits::impossible_predicates(
cx.tcx,
traits::elaborate_predicates(cx.tcx, predicates)
.map(|o| o.predicate)
.collect::<Vec<_>>(),
)
}
/// Returns the `DefId` of the callee if the given expression is a function or method call.
pub fn fn_def_id(cx: &LateContext<'_>, expr: &Expr<'_>) -> Option<DefId> {
match &expr.kind {
ExprKind::MethodCall(..) => cx.typeck_results().type_dependent_def_id(expr.hir_id),
ExprKind::Call(
Expr {
kind: ExprKind::Path(qpath),
hir_id: path_hir_id,
..
},
..,
) => cx.typeck_results().qpath_res(qpath, *path_hir_id).opt_def_id(),
_ => None,
}
}
/// This function checks if any of the lints in the slice is enabled for the provided `HirId`.
/// A lint counts as enabled with any of the levels: `Level::Forbid` | `Level::Deny` | `Level::Warn`
///
/// ```ignore
/// #[deny(clippy::YOUR_AWESOME_LINT)]
/// println!("Hello, World!"); // <- Clippy code: run_lints(cx, &[YOUR_AWESOME_LINT], id) == true
///
/// #[allow(clippy::YOUR_AWESOME_LINT)]
/// println!("See you soon!"); // <- Clippy code: run_lints(cx, &[YOUR_AWESOME_LINT], id) == false
/// ```
pub fn run_lints(cx: &LateContext<'_>, lints: &[&'static Lint], id: HirId) -> bool {
lints.iter().any(|lint| {
matches!(
cx.tcx.lint_level_at_node(lint, id),
(Level::Forbid | Level::Deny | Level::Warn, _)
)
})
}
/// Returns Option<String> where String is a textual representation of the type encapsulated in the
/// slice iff the given expression is a slice of primitives (as defined in the
/// `is_recursively_primitive_type` function) and None otherwise.
pub fn is_slice_of_primitives(cx: &LateContext<'_>, expr: &Expr<'_>) -> Option<String> {
let expr_type = cx.typeck_results().expr_ty_adjusted(expr);
let expr_kind = expr_type.kind();
let is_primitive = match expr_kind {
rustc_ty::Slice(element_type) => is_recursively_primitive_type(element_type),
rustc_ty::Ref(_, inner_ty, _) if matches!(inner_ty.kind(), &rustc_ty::Slice(_)) => {
if let rustc_ty::Slice(element_type) = inner_ty.kind() {
is_recursively_primitive_type(element_type)
} else {
unreachable!()
}
},
_ => false,
};
if is_primitive {
// if we have wrappers like Array, Slice or Tuple, print these
// and get the type enclosed in the slice ref
match expr_type.peel_refs().walk().nth(1).unwrap().expect_ty().kind() {
rustc_ty::Slice(..) => return Some("slice".into()),
rustc_ty::Array(..) => return Some("array".into()),
rustc_ty::Tuple(..) => return Some("tuple".into()),
_ => {
// is_recursively_primitive_type() should have taken care
// of the rest and we can rely on the type that is found
let refs_peeled = expr_type.peel_refs();
return Some(refs_peeled.walk().last().unwrap().to_string());
},
}
}
None
}
/// returns list of all pairs (a, b) from `exprs` such that `eq(a, b)`
/// `hash` must be comformed with `eq`
pub fn search_same<T, Hash, Eq>(exprs: &[T], hash: Hash, eq: Eq) -> Vec<(&T, &T)>
where
Hash: Fn(&T) -> u64,
Eq: Fn(&T, &T) -> bool,
{
match exprs {
[a, b] if eq(a, b) => return vec![(a, b)],
_ if exprs.len() <= 2 => return vec![],
_ => {},
}
let mut match_expr_list: Vec<(&T, &T)> = Vec::new();
let mut map: UnhashMap<u64, Vec<&_>> =
UnhashMap::with_capacity_and_hasher(exprs.len(), BuildHasherDefault::default());
for expr in exprs {
match map.entry(hash(expr)) {
Entry::Occupied(mut o) => {
for o in o.get() {
if eq(o, expr) {
match_expr_list.push((o, expr));
}
}
o.get_mut().push(expr);
},
Entry::Vacant(v) => {
v.insert(vec![expr]);
},
}
}
match_expr_list
}
/// Peels off all references on the pattern. Returns the underlying pattern and the number of
/// references removed.
pub fn peel_hir_pat_refs(pat: &'a Pat<'a>) -> (&'a Pat<'a>, usize) {
fn peel(pat: &'a Pat<'a>, count: usize) -> (&'a Pat<'a>, usize) {
if let PatKind::Ref(pat, _) = pat.kind {
peel(pat, count + 1)
} else {
(pat, count)
}
}
peel(pat, 0)
}
/// Peels of expressions while the given closure returns `Some`.
pub fn peel_hir_expr_while<'tcx>(
mut expr: &'tcx Expr<'tcx>,
mut f: impl FnMut(&'tcx Expr<'tcx>) -> Option<&'tcx Expr<'tcx>>,
) -> &'tcx Expr<'tcx> {
while let Some(e) = f(expr) {
expr = e;
}
expr
}
/// Peels off up to the given number of references on the expression. Returns the underlying
/// expression and the number of references removed.
pub fn peel_n_hir_expr_refs(expr: &'a Expr<'a>, count: usize) -> (&'a Expr<'a>, usize) {
let mut remaining = count;
let e = peel_hir_expr_while(expr, |e| match e.kind {
ExprKind::AddrOf(BorrowKind::Ref, _, e) if remaining != 0 => {
remaining -= 1;
Some(e)
},
_ => None,
});
(e, count - remaining)
}
/// Peels off all references on the expression. Returns the underlying expression and the number of
/// references removed.
pub fn peel_hir_expr_refs(expr: &'a Expr<'a>) -> (&'a Expr<'a>, usize) {
let mut count = 0;
let e = peel_hir_expr_while(expr, |e| match e.kind {
ExprKind::AddrOf(BorrowKind::Ref, _, e) => {
count += 1;
Some(e)
},
_ => None,
});
(e, count)
}
/// Removes `AddrOf` operators (`&`) or deref operators (`*`), but only if a reference type is
/// dereferenced. An overloaded deref such as `Vec` to slice would not be removed.
pub fn peel_ref_operators<'hir>(cx: &LateContext<'_>, mut expr: &'hir Expr<'hir>) -> &'hir Expr<'hir> {
loop {
match expr.kind {
ExprKind::AddrOf(_, _, e) => expr = e,
ExprKind::Unary(UnOp::Deref, e) if cx.typeck_results().expr_ty(e).is_ref() => expr = e,
_ => break,
}
}
expr
}
#[macro_export]
macro_rules! unwrap_cargo_metadata {
($cx: ident, $lint: ident, $deps: expr) => {{
let mut command = cargo_metadata::MetadataCommand::new();
if !$deps {
command.no_deps();
}
match command.exec() {
Ok(metadata) => metadata,
Err(err) => {
span_lint($cx, $lint, DUMMY_SP, &format!("could not read cargo metadata: {}", err));
return;
},
}
}};
}
pub fn is_hir_ty_cfg_dependant(cx: &LateContext<'_>, ty: &hir::Ty<'_>) -> bool {
if_chain! {
if let TyKind::Path(QPath::Resolved(_, path)) = ty.kind;
if let Res::Def(_, def_id) = path.res;
then {
cx.tcx.has_attr(def_id, sym::cfg) || cx.tcx.has_attr(def_id, sym::cfg_attr)
} else {
false
}
}
}
/// Checks whether item either has `test` attribute applied, or
/// is a module with `test` in its name.
pub fn is_test_module_or_function(tcx: TyCtxt<'_>, item: &Item<'_>) -> bool {
if let Some(def_id) = tcx.hir().opt_local_def_id(item.hir_id()) {
if tcx.has_attr(def_id.to_def_id(), sym::test) {
return true;
}
}
matches!(item.kind, ItemKind::Mod(..)) && item.ident.name.as_str().contains("test")
}