rust/compiler/rustc_span/src/source_map.rs

1056 lines
40 KiB
Rust

//! Types for tracking pieces of source code within a crate.
//!
//! The [`SourceMap`] tracks all the source code used within a single crate, mapping
//! from integer byte positions to the original source code location. Each bit
//! of source parsed during crate parsing (typically files, in-memory strings,
//! or various bits of macro expansion) cover a continuous range of bytes in the
//! `SourceMap` and are represented by [`SourceFile`]s. Byte positions are stored in
//! [`Span`] and used pervasively in the compiler. They are absolute positions
//! within the `SourceMap`, which upon request can be converted to line and column
//! information, source code snippets, etc.
pub use crate::hygiene::{ExpnData, ExpnKind};
pub use crate::*;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::stable_hasher::StableHasher;
use rustc_data_structures::sync::{AtomicU32, Lrc, MappedReadGuard, ReadGuard, RwLock};
use std::hash::Hash;
use std::path::{Path, PathBuf};
use std::sync::atomic::Ordering;
use std::{clone::Clone, cmp};
use std::{convert::TryFrom, unreachable};
use std::fs;
use std::io;
use tracing::debug;
#[cfg(test)]
mod tests;
/// Returns the span itself if it doesn't come from a macro expansion,
/// otherwise return the call site span up to the `enclosing_sp` by
/// following the `expn_data` chain.
pub fn original_sp(sp: Span, enclosing_sp: Span) -> Span {
let expn_data1 = sp.ctxt().outer_expn_data();
let expn_data2 = enclosing_sp.ctxt().outer_expn_data();
if expn_data1.is_root() || !expn_data2.is_root() && expn_data1.call_site == expn_data2.call_site
{
sp
} else {
original_sp(expn_data1.call_site, enclosing_sp)
}
}
pub mod monotonic {
use std::ops::{Deref, DerefMut};
/// A `MonotonicVec` is a `Vec` which can only be grown.
/// Once inserted, an element can never be removed or swapped,
/// guaranteeing that any indices into a `MonotonicVec` are stable
// This is declared in its own module to ensure that the private
// field is inaccessible
pub struct MonotonicVec<T>(Vec<T>);
impl<T> MonotonicVec<T> {
pub fn new(val: Vec<T>) -> MonotonicVec<T> {
MonotonicVec(val)
}
pub fn push(&mut self, val: T) {
self.0.push(val);
}
}
impl<T> Default for MonotonicVec<T> {
fn default() -> Self {
MonotonicVec::new(vec![])
}
}
impl<T> Deref for MonotonicVec<T> {
type Target = Vec<T>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<T> !DerefMut for MonotonicVec<T> {}
}
#[derive(Clone, Encodable, Decodable, Debug, Copy, HashStable_Generic)]
pub struct Spanned<T> {
pub node: T,
pub span: Span,
}
pub fn respan<T>(sp: Span, t: T) -> Spanned<T> {
Spanned { node: t, span: sp }
}
pub fn dummy_spanned<T>(t: T) -> Spanned<T> {
respan(DUMMY_SP, t)
}
// _____________________________________________________________________________
// SourceFile, MultiByteChar, FileName, FileLines
//
/// An abstraction over the fs operations used by the Parser.
pub trait FileLoader {
/// Query the existence of a file.
fn file_exists(&self, path: &Path) -> bool;
/// Read the contents of a UTF-8 file into memory.
fn read_file(&self, path: &Path) -> io::Result<String>;
}
/// A FileLoader that uses std::fs to load real files.
pub struct RealFileLoader;
impl FileLoader for RealFileLoader {
fn file_exists(&self, path: &Path) -> bool {
path.exists()
}
fn read_file(&self, path: &Path) -> io::Result<String> {
fs::read_to_string(path)
}
}
/// This is a [SourceFile] identifier that is used to correlate source files between
/// subsequent compilation sessions (which is something we need to do during
/// incremental compilation).
///
/// The [StableSourceFileId] also contains the CrateNum of the crate the source
/// file was originally parsed for. This way we get two separate entries in
/// the [SourceMap] if the same file is part of both the local and an upstream
/// crate. Trying to only have one entry for both cases is problematic because
/// at the point where we discover that there's a local use of the file in
/// addition to the upstream one, we might already have made decisions based on
/// the assumption that it's an upstream file. Treating the two files as
/// different has no real downsides.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Encodable, Decodable, Debug)]
pub struct StableSourceFileId {
// A hash of the source file's FileName. This is hash so that it's size
// is more predictable than if we included the actual FileName value.
pub file_name_hash: u64,
// The CrateNum of the crate this source file was originally parsed for.
// We cannot include this information in the hash because at the time
// of hashing we don't have the context to map from the CrateNum's numeric
// value to a StableCrateId.
pub cnum: CrateNum,
}
// FIXME: we need a more globally consistent approach to the problem solved by
// StableSourceFileId, perhaps built atop source_file.name_hash.
impl StableSourceFileId {
pub fn new(source_file: &SourceFile) -> StableSourceFileId {
StableSourceFileId::new_from_name(&source_file.name, source_file.cnum)
}
fn new_from_name(name: &FileName, cnum: CrateNum) -> StableSourceFileId {
let mut hasher = StableHasher::new();
name.hash(&mut hasher);
StableSourceFileId { file_name_hash: hasher.finish(), cnum }
}
}
// _____________________________________________________________________________
// SourceMap
//
#[derive(Default)]
pub(super) struct SourceMapFiles {
source_files: monotonic::MonotonicVec<Lrc<SourceFile>>,
stable_id_to_source_file: FxHashMap<StableSourceFileId, Lrc<SourceFile>>,
}
pub struct SourceMap {
/// The address space below this value is currently used by the files in the source map.
used_address_space: AtomicU32,
files: RwLock<SourceMapFiles>,
file_loader: Box<dyn FileLoader + Sync + Send>,
// This is used to apply the file path remapping as specified via
// `--remap-path-prefix` to all `SourceFile`s allocated within this `SourceMap`.
path_mapping: FilePathMapping,
/// The algorithm used for hashing the contents of each source file.
hash_kind: SourceFileHashAlgorithm,
}
impl SourceMap {
pub fn new(path_mapping: FilePathMapping) -> SourceMap {
Self::with_file_loader_and_hash_kind(
Box::new(RealFileLoader),
path_mapping,
SourceFileHashAlgorithm::Md5,
)
}
pub fn with_file_loader_and_hash_kind(
file_loader: Box<dyn FileLoader + Sync + Send>,
path_mapping: FilePathMapping,
hash_kind: SourceFileHashAlgorithm,
) -> SourceMap {
SourceMap {
used_address_space: AtomicU32::new(0),
files: Default::default(),
file_loader,
path_mapping,
hash_kind,
}
}
pub fn path_mapping(&self) -> &FilePathMapping {
&self.path_mapping
}
pub fn file_exists(&self, path: &Path) -> bool {
self.file_loader.file_exists(path)
}
pub fn load_file(&self, path: &Path) -> io::Result<Lrc<SourceFile>> {
let src = self.file_loader.read_file(path)?;
let filename = path.to_owned().into();
Ok(self.new_source_file(filename, src))
}
/// Loads source file as a binary blob.
///
/// Unlike `load_file`, guarantees that no normalization like BOM-removal
/// takes place.
pub fn load_binary_file(&self, path: &Path) -> io::Result<Vec<u8>> {
// Ideally, this should use `self.file_loader`, but it can't
// deal with binary files yet.
let bytes = fs::read(path)?;
// We need to add file to the `SourceMap`, so that it is present
// in dep-info. There's also an edge case that file might be both
// loaded as a binary via `include_bytes!` and as proper `SourceFile`
// via `mod`, so we try to use real file contents and not just an
// empty string.
let text = std::str::from_utf8(&bytes).unwrap_or("").to_string();
self.new_source_file(path.to_owned().into(), text);
Ok(bytes)
}
// By returning a `MonotonicVec`, we ensure that consumers cannot invalidate
// any existing indices pointing into `files`.
pub fn files(&self) -> MappedReadGuard<'_, monotonic::MonotonicVec<Lrc<SourceFile>>> {
ReadGuard::map(self.files.borrow(), |files| &files.source_files)
}
pub fn source_file_by_stable_id(
&self,
stable_id: StableSourceFileId,
) -> Option<Lrc<SourceFile>> {
self.files.borrow().stable_id_to_source_file.get(&stable_id).cloned()
}
fn allocate_address_space(&self, size: usize) -> Result<usize, OffsetOverflowError> {
let size = u32::try_from(size).map_err(|_| OffsetOverflowError)?;
loop {
let current = self.used_address_space.load(Ordering::Relaxed);
let next = current
.checked_add(size)
// Add one so there is some space between files. This lets us distinguish
// positions in the `SourceMap`, even in the presence of zero-length files.
.and_then(|next| next.checked_add(1))
.ok_or(OffsetOverflowError)?;
if self
.used_address_space
.compare_exchange(current, next, Ordering::Relaxed, Ordering::Relaxed)
.is_ok()
{
return Ok(usize::try_from(current).unwrap());
}
}
}
/// Creates a new `SourceFile`.
/// If a file already exists in the `SourceMap` with the same ID, that file is returned
/// unmodified.
pub fn new_source_file(&self, filename: FileName, src: String) -> Lrc<SourceFile> {
self.try_new_source_file(filename, src).unwrap_or_else(|OffsetOverflowError| {
eprintln!("fatal error: rustc does not support files larger than 4GB");
crate::fatal_error::FatalError.raise()
})
}
fn try_new_source_file(
&self,
filename: FileName,
src: String,
) -> Result<Lrc<SourceFile>, OffsetOverflowError> {
// Note that filename may not be a valid path, eg it may be `<anon>` etc,
// but this is okay because the directory determined by `path.pop()` will
// be empty, so the working directory will be used.
let (filename, _) = self.path_mapping.map_filename_prefix(&filename);
let file_id = StableSourceFileId::new_from_name(&filename, LOCAL_CRATE);
let lrc_sf = match self.source_file_by_stable_id(file_id) {
Some(lrc_sf) => lrc_sf,
None => {
let start_pos = self.allocate_address_space(src.len())?;
let source_file = Lrc::new(SourceFile::new(
filename,
src,
Pos::from_usize(start_pos),
self.hash_kind,
));
// Let's make sure the file_id we generated above actually matches
// the ID we generate for the SourceFile we just created.
debug_assert_eq!(StableSourceFileId::new(&source_file), file_id);
let mut files = self.files.borrow_mut();
files.source_files.push(source_file.clone());
files.stable_id_to_source_file.insert(file_id, source_file.clone());
source_file
}
};
Ok(lrc_sf)
}
/// Allocates a new `SourceFile` representing a source file from an external
/// crate. The source code of such an "imported `SourceFile`" is not available,
/// but we still know enough to generate accurate debuginfo location
/// information for things inlined from other crates.
pub fn new_imported_source_file(
&self,
filename: FileName,
src_hash: SourceFileHash,
name_hash: u128,
source_len: usize,
cnum: CrateNum,
mut file_local_lines: Vec<BytePos>,
mut file_local_multibyte_chars: Vec<MultiByteChar>,
mut file_local_non_narrow_chars: Vec<NonNarrowChar>,
mut file_local_normalized_pos: Vec<NormalizedPos>,
original_start_pos: BytePos,
original_end_pos: BytePos,
) -> Lrc<SourceFile> {
let start_pos = self
.allocate_address_space(source_len)
.expect("not enough address space for imported source file");
let end_pos = Pos::from_usize(start_pos + source_len);
let start_pos = Pos::from_usize(start_pos);
for pos in &mut file_local_lines {
*pos = *pos + start_pos;
}
for mbc in &mut file_local_multibyte_chars {
mbc.pos = mbc.pos + start_pos;
}
for swc in &mut file_local_non_narrow_chars {
*swc = *swc + start_pos;
}
for nc in &mut file_local_normalized_pos {
nc.pos = nc.pos + start_pos;
}
let source_file = Lrc::new(SourceFile {
name: filename,
src: None,
src_hash,
external_src: Lock::new(ExternalSource::Foreign {
kind: ExternalSourceKind::AbsentOk,
original_start_pos,
original_end_pos,
}),
start_pos,
end_pos,
lines: file_local_lines,
multibyte_chars: file_local_multibyte_chars,
non_narrow_chars: file_local_non_narrow_chars,
normalized_pos: file_local_normalized_pos,
name_hash,
cnum,
});
let mut files = self.files.borrow_mut();
files.source_files.push(source_file.clone());
files
.stable_id_to_source_file
.insert(StableSourceFileId::new(&source_file), source_file.clone());
source_file
}
// If there is a doctest offset, applies it to the line.
pub fn doctest_offset_line(&self, file: &FileName, orig: usize) -> usize {
match file {
FileName::DocTest(_, offset) => {
if *offset < 0 {
orig - (-(*offset)) as usize
} else {
orig + *offset as usize
}
}
_ => orig,
}
}
/// Return the SourceFile that contains the given `BytePos`
pub fn lookup_source_file(&self, pos: BytePos) -> Lrc<SourceFile> {
let idx = self.lookup_source_file_idx(pos);
(*self.files.borrow().source_files)[idx].clone()
}
/// Looks up source information about a `BytePos`.
pub fn lookup_char_pos(&self, pos: BytePos) -> Loc {
let sf = self.lookup_source_file(pos);
let (line, col, col_display) = sf.lookup_file_pos_with_col_display(pos);
Loc { file: sf, line, col, col_display }
}
// If the corresponding `SourceFile` is empty, does not return a line number.
pub fn lookup_line(&self, pos: BytePos) -> Result<SourceFileAndLine, Lrc<SourceFile>> {
let f = self.lookup_source_file(pos);
match f.lookup_line(pos) {
Some(line) => Ok(SourceFileAndLine { sf: f, line }),
None => Err(f),
}
}
fn span_to_string(&self, sp: Span, prefer_local: bool) -> String {
if self.files.borrow().source_files.is_empty() || sp.is_dummy() {
return "no-location".to_string();
}
let lo = self.lookup_char_pos(sp.lo());
let hi = self.lookup_char_pos(sp.hi());
format!(
"{}:{}:{}: {}:{}",
if prefer_local { lo.file.name.prefer_local() } else { lo.file.name.prefer_remapped() },
lo.line,
lo.col.to_usize() + 1,
hi.line,
hi.col.to_usize() + 1,
)
}
/// Format the span location suitable for embedding in build artifacts
pub fn span_to_embeddable_string(&self, sp: Span) -> String {
self.span_to_string(sp, false)
}
/// Format the span location to be printed in diagnostics. Must not be emitted
/// to build artifacts as this may leak local file paths. Use span_to_embeddable_string
/// for string suitable for embedding.
pub fn span_to_diagnostic_string(&self, sp: Span) -> String {
self.span_to_string(sp, true)
}
pub fn span_to_filename(&self, sp: Span) -> FileName {
self.lookup_char_pos(sp.lo()).file.name.clone()
}
pub fn is_multiline(&self, sp: Span) -> bool {
let lo = self.lookup_source_file_idx(sp.lo());
let hi = self.lookup_source_file_idx(sp.hi());
if lo != hi {
return true;
}
let f = (*self.files.borrow().source_files)[lo].clone();
f.lookup_line(sp.lo()) != f.lookup_line(sp.hi())
}
pub fn is_valid_span(&self, sp: Span) -> Result<(Loc, Loc), SpanLinesError> {
let lo = self.lookup_char_pos(sp.lo());
debug!("span_to_lines: lo={:?}", lo);
let hi = self.lookup_char_pos(sp.hi());
debug!("span_to_lines: hi={:?}", hi);
if lo.file.start_pos != hi.file.start_pos {
return Err(SpanLinesError::DistinctSources(DistinctSources {
begin: (lo.file.name.clone(), lo.file.start_pos),
end: (hi.file.name.clone(), hi.file.start_pos),
}));
}
Ok((lo, hi))
}
pub fn is_line_before_span_empty(&self, sp: Span) -> bool {
match self.span_to_prev_source(sp) {
Ok(s) => s.rsplit_once('\n').unwrap_or(("", &s)).1.trim_start().is_empty(),
Err(_) => false,
}
}
pub fn span_to_lines(&self, sp: Span) -> FileLinesResult {
debug!("span_to_lines(sp={:?})", sp);
let (lo, hi) = self.is_valid_span(sp)?;
assert!(hi.line >= lo.line);
if sp.is_dummy() {
return Ok(FileLines { file: lo.file, lines: Vec::new() });
}
let mut lines = Vec::with_capacity(hi.line - lo.line + 1);
// The span starts partway through the first line,
// but after that it starts from offset 0.
let mut start_col = lo.col;
// For every line but the last, it extends from `start_col`
// and to the end of the line. Be careful because the line
// numbers in Loc are 1-based, so we subtract 1 to get 0-based
// lines.
//
// FIXME: now that we handle DUMMY_SP up above, we should consider
// asserting that the line numbers here are all indeed 1-based.
let hi_line = hi.line.saturating_sub(1);
for line_index in lo.line.saturating_sub(1)..hi_line {
let line_len = lo.file.get_line(line_index).map_or(0, |s| s.chars().count());
lines.push(LineInfo { line_index, start_col, end_col: CharPos::from_usize(line_len) });
start_col = CharPos::from_usize(0);
}
// For the last line, it extends from `start_col` to `hi.col`:
lines.push(LineInfo { line_index: hi_line, start_col, end_col: hi.col });
Ok(FileLines { file: lo.file, lines })
}
/// Extracts the source surrounding the given `Span` using the `extract_source` function. The
/// extract function takes three arguments: a string slice containing the source, an index in
/// the slice for the beginning of the span and an index in the slice for the end of the span.
fn span_to_source<F, T>(&self, sp: Span, extract_source: F) -> Result<T, SpanSnippetError>
where
F: Fn(&str, usize, usize) -> Result<T, SpanSnippetError>,
{
let local_begin = self.lookup_byte_offset(sp.lo());
let local_end = self.lookup_byte_offset(sp.hi());
if local_begin.sf.start_pos != local_end.sf.start_pos {
Err(SpanSnippetError::DistinctSources(DistinctSources {
begin: (local_begin.sf.name.clone(), local_begin.sf.start_pos),
end: (local_end.sf.name.clone(), local_end.sf.start_pos),
}))
} else {
self.ensure_source_file_source_present(local_begin.sf.clone());
let start_index = local_begin.pos.to_usize();
let end_index = local_end.pos.to_usize();
let source_len = (local_begin.sf.end_pos - local_begin.sf.start_pos).to_usize();
if start_index > end_index || end_index > source_len {
return Err(SpanSnippetError::MalformedForSourcemap(MalformedSourceMapPositions {
name: local_begin.sf.name.clone(),
source_len,
begin_pos: local_begin.pos,
end_pos: local_end.pos,
}));
}
if let Some(ref src) = local_begin.sf.src {
extract_source(src, start_index, end_index)
} else if let Some(src) = local_begin.sf.external_src.borrow().get_source() {
extract_source(src, start_index, end_index)
} else {
Err(SpanSnippetError::SourceNotAvailable { filename: local_begin.sf.name.clone() })
}
}
}
/// Returns the source snippet as `String` corresponding to the given `Span`.
pub fn span_to_snippet(&self, sp: Span) -> Result<String, SpanSnippetError> {
self.span_to_source(sp, |src, start_index, end_index| {
src.get(start_index..end_index)
.map(|s| s.to_string())
.ok_or(SpanSnippetError::IllFormedSpan(sp))
})
}
pub fn span_to_margin(&self, sp: Span) -> Option<usize> {
match self.span_to_prev_source(sp) {
Err(_) => None,
Ok(source) => {
let last_line = source.rsplit_once('\n').unwrap_or(("", &source)).1;
Some(last_line.len() - last_line.trim_start().len())
}
}
}
/// Returns the source snippet as `String` before the given `Span`.
pub fn span_to_prev_source(&self, sp: Span) -> Result<String, SpanSnippetError> {
self.span_to_source(sp, |src, start_index, _| {
src.get(..start_index).map(|s| s.to_string()).ok_or(SpanSnippetError::IllFormedSpan(sp))
})
}
/// Extends the given `Span` to just after the previous occurrence of `c`. Return the same span
/// if no character could be found or if an error occurred while retrieving the code snippet.
pub fn span_extend_to_prev_char(&self, sp: Span, c: char, accept_newlines: bool) -> Span {
if let Ok(prev_source) = self.span_to_prev_source(sp) {
let prev_source = prev_source.rsplit(c).next().unwrap_or("");
if !prev_source.is_empty() && (accept_newlines || !prev_source.contains('\n')) {
return sp.with_lo(BytePos(sp.lo().0 - prev_source.len() as u32));
}
}
sp
}
/// Extends the given `Span` to just after the previous occurrence of `pat` when surrounded by
/// whitespace. Returns the same span if no character could be found or if an error occurred
/// while retrieving the code snippet.
pub fn span_extend_to_prev_str(&self, sp: Span, pat: &str, accept_newlines: bool) -> Span {
// assure that the pattern is delimited, to avoid the following
// fn my_fn()
// ^^^^ returned span without the check
// ---------- correct span
for ws in &[" ", "\t", "\n"] {
let pat = pat.to_owned() + ws;
if let Ok(prev_source) = self.span_to_prev_source(sp) {
let prev_source = prev_source.rsplit(&pat).next().unwrap_or("").trim_start();
if prev_source.is_empty() && sp.lo().0 != 0 {
return sp.with_lo(BytePos(sp.lo().0 - 1));
} else if accept_newlines || !prev_source.contains('\n') {
return sp.with_lo(BytePos(sp.lo().0 - prev_source.len() as u32));
}
}
}
sp
}
/// Returns the source snippet as `String` after the given `Span`.
pub fn span_to_next_source(&self, sp: Span) -> Result<String, SpanSnippetError> {
self.span_to_source(sp, |src, _, end_index| {
src.get(end_index..).map(|s| s.to_string()).ok_or(SpanSnippetError::IllFormedSpan(sp))
})
}
/// Extends the given `Span` to just after the next occurrence of `c`.
pub fn span_extend_to_next_char(&self, sp: Span, c: char, accept_newlines: bool) -> Span {
if let Ok(next_source) = self.span_to_next_source(sp) {
let next_source = next_source.split(c).next().unwrap_or("");
if !next_source.is_empty() && (accept_newlines || !next_source.contains('\n')) {
return sp.with_hi(BytePos(sp.hi().0 + next_source.len() as u32));
}
}
sp
}
/// Given a `Span`, tries to get a shorter span ending before the first occurrence of `char`
/// `c`.
pub fn span_until_char(&self, sp: Span, c: char) -> Span {
match self.span_to_snippet(sp) {
Ok(snippet) => {
let snippet = snippet.split(c).next().unwrap_or("").trim_end();
if !snippet.is_empty() && !snippet.contains('\n') {
sp.with_hi(BytePos(sp.lo().0 + snippet.len() as u32))
} else {
sp
}
}
_ => sp,
}
}
/// Given a `Span`, tries to get a shorter span ending just after the first occurrence of `char`
/// `c`.
pub fn span_through_char(&self, sp: Span, c: char) -> Span {
if let Ok(snippet) = self.span_to_snippet(sp) {
if let Some(offset) = snippet.find(c) {
return sp.with_hi(BytePos(sp.lo().0 + (offset + c.len_utf8()) as u32));
}
}
sp
}
/// Given a `Span`, gets a new `Span` covering the first token and all its trailing whitespace
/// or the original `Span`.
///
/// If `sp` points to `"let mut x"`, then a span pointing at `"let "` will be returned.
pub fn span_until_non_whitespace(&self, sp: Span) -> Span {
let mut whitespace_found = false;
self.span_take_while(sp, |c| {
if !whitespace_found && c.is_whitespace() {
whitespace_found = true;
}
!whitespace_found || c.is_whitespace()
})
}
/// Given a `Span`, gets a new `Span` covering the first token without its trailing whitespace
/// or the original `Span` in case of error.
///
/// If `sp` points to `"let mut x"`, then a span pointing at `"let"` will be returned.
pub fn span_until_whitespace(&self, sp: Span) -> Span {
self.span_take_while(sp, |c| !c.is_whitespace())
}
/// Given a `Span`, gets a shorter one until `predicate` yields `false`.
pub fn span_take_while<P>(&self, sp: Span, predicate: P) -> Span
where
P: for<'r> FnMut(&'r char) -> bool,
{
if let Ok(snippet) = self.span_to_snippet(sp) {
let offset = snippet.chars().take_while(predicate).map(|c| c.len_utf8()).sum::<usize>();
sp.with_hi(BytePos(sp.lo().0 + (offset as u32)))
} else {
sp
}
}
/// Given a `Span`, return a span ending in the closest `{`. This is useful when you have a
/// `Span` enclosing a whole item but we need to point at only the head (usually the first
/// line) of that item.
///
/// *Only suitable for diagnostics.*
pub fn guess_head_span(&self, sp: Span) -> Span {
// FIXME: extend the AST items to have a head span, or replace callers with pointing at
// the item's ident when appropriate.
self.span_until_char(sp, '{')
}
/// Returns a new span representing just the first character of the given span.
pub fn start_point(&self, sp: Span) -> Span {
let width = {
let sp = sp.data();
let local_begin = self.lookup_byte_offset(sp.lo);
let start_index = local_begin.pos.to_usize();
let src = local_begin.sf.external_src.borrow();
let snippet = if let Some(ref src) = local_begin.sf.src {
Some(&src[start_index..])
} else if let Some(src) = src.get_source() {
Some(&src[start_index..])
} else {
None
};
match snippet {
None => 1,
Some(snippet) => match snippet.chars().next() {
None => 1,
Some(c) => c.len_utf8(),
},
}
};
sp.with_hi(BytePos(sp.lo().0 + width as u32))
}
/// Returns a new span representing just the last character of this span.
pub fn end_point(&self, sp: Span) -> Span {
let pos = sp.hi().0;
let width = self.find_width_of_character_at_span(sp, false);
let corrected_end_position = pos.checked_sub(width).unwrap_or(pos);
let end_point = BytePos(cmp::max(corrected_end_position, sp.lo().0));
sp.with_lo(end_point)
}
/// Returns a new span representing the next character after the end-point of this span.
pub fn next_point(&self, sp: Span) -> Span {
if sp.is_dummy() {
return sp;
}
let start_of_next_point = sp.hi().0;
let width = self.find_width_of_character_at_span(sp.shrink_to_hi(), true);
// If the width is 1, then the next span should point to the same `lo` and `hi`. However,
// in the case of a multibyte character, where the width != 1, the next span should
// span multiple bytes to include the whole character.
let end_of_next_point =
start_of_next_point.checked_add(width - 1).unwrap_or(start_of_next_point);
let end_of_next_point = BytePos(cmp::max(sp.lo().0 + 1, end_of_next_point));
Span::new(BytePos(start_of_next_point), end_of_next_point, sp.ctxt())
}
/// Finds the width of the character, either before or after the end of provided span,
/// depending on the `forwards` parameter.
fn find_width_of_character_at_span(&self, sp: Span, forwards: bool) -> u32 {
let sp = sp.data();
if sp.lo == sp.hi {
debug!("find_width_of_character_at_span: early return empty span");
return 1;
}
let local_begin = self.lookup_byte_offset(sp.lo);
let local_end = self.lookup_byte_offset(sp.hi);
debug!(
"find_width_of_character_at_span: local_begin=`{:?}`, local_end=`{:?}`",
local_begin, local_end
);
if local_begin.sf.start_pos != local_end.sf.start_pos {
debug!("find_width_of_character_at_span: begin and end are in different files");
return 1;
}
let start_index = local_begin.pos.to_usize();
let end_index = local_end.pos.to_usize();
debug!(
"find_width_of_character_at_span: start_index=`{:?}`, end_index=`{:?}`",
start_index, end_index
);
// Disregard indexes that are at the start or end of their spans, they can't fit bigger
// characters.
if (!forwards && end_index == usize::MIN) || (forwards && start_index == usize::MAX) {
debug!("find_width_of_character_at_span: start or end of span, cannot be multibyte");
return 1;
}
let source_len = (local_begin.sf.end_pos - local_begin.sf.start_pos).to_usize();
debug!("find_width_of_character_at_span: source_len=`{:?}`", source_len);
// Ensure indexes are also not malformed.
if start_index > end_index || end_index > source_len {
debug!("find_width_of_character_at_span: source indexes are malformed");
return 1;
}
let src = local_begin.sf.external_src.borrow();
// We need to extend the snippet to the end of the src rather than to end_index so when
// searching forwards for boundaries we've got somewhere to search.
let snippet = if let Some(ref src) = local_begin.sf.src {
&src[start_index..]
} else if let Some(src) = src.get_source() {
&src[start_index..]
} else {
return 1;
};
debug!("find_width_of_character_at_span: snippet=`{:?}`", snippet);
let mut target = if forwards { end_index + 1 } else { end_index - 1 };
debug!("find_width_of_character_at_span: initial target=`{:?}`", target);
while !snippet.is_char_boundary(target - start_index) && target < source_len {
target = if forwards {
target + 1
} else {
match target.checked_sub(1) {
Some(target) => target,
None => {
break;
}
}
};
debug!("find_width_of_character_at_span: target=`{:?}`", target);
}
debug!("find_width_of_character_at_span: final target=`{:?}`", target);
if forwards { (target - end_index) as u32 } else { (end_index - target) as u32 }
}
pub fn get_source_file(&self, filename: &FileName) -> Option<Lrc<SourceFile>> {
// Remap filename before lookup
let filename = self.path_mapping().map_filename_prefix(filename).0;
for sf in self.files.borrow().source_files.iter() {
if filename == sf.name {
return Some(sf.clone());
}
}
None
}
/// For a global `BytePos`, computes the local offset within the containing `SourceFile`.
pub fn lookup_byte_offset(&self, bpos: BytePos) -> SourceFileAndBytePos {
let idx = self.lookup_source_file_idx(bpos);
let sf = (*self.files.borrow().source_files)[idx].clone();
let offset = bpos - sf.start_pos;
SourceFileAndBytePos { sf, pos: offset }
}
// Returns the index of the `SourceFile` (in `self.files`) that contains `pos`.
// This index is guaranteed to be valid for the lifetime of this `SourceMap`,
// since `source_files` is a `MonotonicVec`
pub fn lookup_source_file_idx(&self, pos: BytePos) -> usize {
self.files
.borrow()
.source_files
.binary_search_by_key(&pos, |key| key.start_pos)
.unwrap_or_else(|p| p - 1)
}
pub fn count_lines(&self) -> usize {
self.files().iter().fold(0, |a, f| a + f.count_lines())
}
pub fn generate_fn_name_span(&self, span: Span) -> Option<Span> {
let prev_span = self.span_extend_to_prev_str(span, "fn", true);
if let Ok(snippet) = self.span_to_snippet(prev_span) {
debug!(
"generate_fn_name_span: span={:?}, prev_span={:?}, snippet={:?}",
span, prev_span, snippet
);
if snippet.is_empty() {
return None;
};
let len = snippet
.find(|c: char| !c.is_alphanumeric() && c != '_')
.expect("no label after fn");
Some(prev_span.with_hi(BytePos(prev_span.lo().0 + len as u32)))
} else {
None
}
}
/// Takes the span of a type parameter in a function signature and try to generate a span for
/// the function name (with generics) and a new snippet for this span with the pointed type
/// parameter as a new local type parameter.
///
/// For instance:
/// ```rust,ignore (pseudo-Rust)
/// // Given span
/// fn my_function(param: T)
/// // ^ Original span
///
/// // Result
/// fn my_function(param: T)
/// // ^^^^^^^^^^^ Generated span with snippet `my_function<T>`
/// ```
///
/// Attention: The method used is very fragile since it essentially duplicates the work of the
/// parser. If you need to use this function or something similar, please consider updating the
/// `SourceMap` functions and this function to something more robust.
pub fn generate_local_type_param_snippet(&self, span: Span) -> Option<(Span, String)> {
// Try to extend the span to the previous "fn" keyword to retrieve the function
// signature.
let sugg_span = self.span_extend_to_prev_str(span, "fn", false);
if sugg_span != span {
if let Ok(snippet) = self.span_to_snippet(sugg_span) {
// Consume the function name.
let mut offset = snippet
.find(|c: char| !c.is_alphanumeric() && c != '_')
.expect("no label after fn");
// Consume the generics part of the function signature.
let mut bracket_counter = 0;
let mut last_char = None;
for c in snippet[offset..].chars() {
match c {
'<' => bracket_counter += 1,
'>' => bracket_counter -= 1,
'(' => {
if bracket_counter == 0 {
break;
}
}
_ => {}
}
offset += c.len_utf8();
last_char = Some(c);
}
// Adjust the suggestion span to encompass the function name with its generics.
let sugg_span = sugg_span.with_hi(BytePos(sugg_span.lo().0 + offset as u32));
// Prepare the new suggested snippet to append the type parameter that triggered
// the error in the generics of the function signature.
let mut new_snippet = if last_char == Some('>') {
format!("{}, ", &snippet[..(offset - '>'.len_utf8())])
} else {
format!("{}<", &snippet[..offset])
};
new_snippet
.push_str(&self.span_to_snippet(span).unwrap_or_else(|_| "T".to_string()));
new_snippet.push('>');
return Some((sugg_span, new_snippet));
}
}
None
}
pub fn ensure_source_file_source_present(&self, source_file: Lrc<SourceFile>) -> bool {
source_file.add_external_src(|| match source_file.name {
FileName::Real(ref name) => {
if let Some(local_path) = name.local_path() {
self.file_loader.read_file(local_path).ok()
} else {
None
}
}
_ => None,
})
}
pub fn is_imported(&self, sp: Span) -> bool {
let source_file_index = self.lookup_source_file_idx(sp.lo());
let source_file = &self.files()[source_file_index];
source_file.is_imported()
}
}
#[derive(Clone)]
pub struct FilePathMapping {
mapping: Vec<(PathBuf, PathBuf)>,
}
impl FilePathMapping {
pub fn empty() -> FilePathMapping {
FilePathMapping { mapping: vec![] }
}
pub fn new(mapping: Vec<(PathBuf, PathBuf)>) -> FilePathMapping {
FilePathMapping { mapping }
}
/// Applies any path prefix substitution as defined by the mapping.
/// The return value is the remapped path and a boolean indicating whether
/// the path was affected by the mapping.
pub fn map_prefix(&self, path: PathBuf) -> (PathBuf, bool) {
// NOTE: We are iterating over the mapping entries from last to first
// because entries specified later on the command line should
// take precedence.
for &(ref from, ref to) in self.mapping.iter().rev() {
if let Ok(rest) = path.strip_prefix(from) {
return (to.join(rest), true);
}
}
(path, false)
}
fn map_filename_prefix(&self, file: &FileName) -> (FileName, bool) {
match file {
FileName::Real(realfile) => {
if let RealFileName::LocalPath(local_path) = realfile {
let (mapped_path, mapped) = self.map_prefix(local_path.to_path_buf());
let realfile = if mapped {
RealFileName::Remapped {
local_path: Some(local_path.clone()),
virtual_name: mapped_path,
}
} else {
realfile.clone()
};
(FileName::Real(realfile), mapped)
} else {
unreachable!("attempted to remap an already remapped filename");
}
}
other => (other.clone(), false),
}
}
}