rust/compiler/rustc_passes/src/stability.rs
Vadim Petrochenkov b25d3ba781 ast/hir: Rename field-related structures
StructField -> FieldDef ("field definition")
Field -> ExprField ("expression field", not "field expression")
FieldPat -> PatField ("pattern field", not "field pattern")

Also rename visiting and other methods working on them.
2021-03-16 11:41:24 +03:00

976 lines
37 KiB
Rust

//! A pass that annotates every item and method with its stability level,
//! propagating default levels lexically from parent to children ast nodes.
use rustc_ast::Attribute;
use rustc_attr::{self as attr, ConstStability, Stability};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::struct_span_err;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
use rustc_hir::{FieldDef, Generics, HirId, Item, TraitRef, Ty, TyKind, Variant};
use rustc_middle::hir::map::Map;
use rustc_middle::middle::privacy::AccessLevels;
use rustc_middle::middle::stability::{DeprecationEntry, Index};
use rustc_middle::ty::{self, query::Providers, TyCtxt};
use rustc_session::lint;
use rustc_session::lint::builtin::{INEFFECTIVE_UNSTABLE_TRAIT_IMPL, USELESS_DEPRECATED};
use rustc_session::parse::feature_err;
use rustc_session::Session;
use rustc_span::symbol::{sym, Symbol};
use rustc_span::{Span, DUMMY_SP};
use std::cmp::Ordering;
use std::mem::replace;
use std::num::NonZeroU32;
#[derive(PartialEq)]
enum AnnotationKind {
// Annotation is required if not inherited from unstable parents
Required,
// Annotation is useless, reject it
Prohibited,
// Deprecation annotation is useless, reject it. (Stability attribute is still required.)
DeprecationProhibited,
// Annotation itself is useless, but it can be propagated to children
Container,
}
/// Whether to inherit deprecation flags for nested items. In most cases, we do want to inherit
/// deprecation, because nested items rarely have individual deprecation attributes, and so
/// should be treated as deprecated if their parent is. However, default generic parameters
/// have separate deprecation attributes from their parents, so we do not wish to inherit
/// deprecation in this case. For example, inheriting deprecation for `T` in `Foo<T>`
/// would cause a duplicate warning arising from both `Foo` and `T` being deprecated.
#[derive(Clone)]
enum InheritDeprecation {
Yes,
No,
}
impl InheritDeprecation {
fn yes(&self) -> bool {
matches!(self, InheritDeprecation::Yes)
}
}
/// Whether to inherit const stability flags for nested items. In most cases, we do not want to
/// inherit const stability: just because an enclosing `fn` is const-stable does not mean
/// all `extern` imports declared in it should be const-stable! However, trait methods
/// inherit const stability attributes from their parent and do not have their own.
enum InheritConstStability {
Yes,
No,
}
impl InheritConstStability {
fn yes(&self) -> bool {
matches!(self, InheritConstStability::Yes)
}
}
enum InheritStability {
Yes,
No,
}
impl InheritStability {
fn yes(&self) -> bool {
matches!(self, InheritStability::Yes)
}
}
// A private tree-walker for producing an Index.
struct Annotator<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
index: &'a mut Index<'tcx>,
parent_stab: Option<&'tcx Stability>,
parent_const_stab: Option<&'tcx ConstStability>,
parent_depr: Option<DeprecationEntry>,
in_trait_impl: bool,
}
impl<'a, 'tcx> Annotator<'a, 'tcx> {
// Determine the stability for a node based on its attributes and inherited
// stability. The stability is recorded in the index and used as the parent.
fn annotate<F>(
&mut self,
hir_id: HirId,
item_sp: Span,
kind: AnnotationKind,
inherit_deprecation: InheritDeprecation,
inherit_const_stability: InheritConstStability,
inherit_from_parent: InheritStability,
visit_children: F,
) where
F: FnOnce(&mut Self),
{
let attrs = self.tcx.hir().attrs(hir_id);
debug!("annotate(id = {:?}, attrs = {:?})", hir_id, attrs);
let mut did_error = false;
if !self.tcx.features().staged_api {
did_error = self.forbid_staged_api_attrs(hir_id, attrs, inherit_deprecation.clone());
}
let depr = if did_error { None } else { attr::find_deprecation(&self.tcx.sess, attrs) };
let mut is_deprecated = false;
if let Some((depr, span)) = &depr {
is_deprecated = true;
if kind == AnnotationKind::Prohibited || kind == AnnotationKind::DeprecationProhibited {
self.tcx.struct_span_lint_hir(USELESS_DEPRECATED, hir_id, *span, |lint| {
lint.build("this `#[deprecated]` annotation has no effect")
.span_suggestion_short(
*span,
"remove the unnecessary deprecation attribute",
String::new(),
rustc_errors::Applicability::MachineApplicable,
)
.emit()
});
}
// `Deprecation` is just two pointers, no need to intern it
let depr_entry = DeprecationEntry::local(depr.clone(), hir_id);
self.index.depr_map.insert(hir_id, depr_entry);
} else if let Some(parent_depr) = self.parent_depr.clone() {
if inherit_deprecation.yes() {
is_deprecated = true;
info!("tagging child {:?} as deprecated from parent", hir_id);
self.index.depr_map.insert(hir_id, parent_depr);
}
}
if self.tcx.features().staged_api {
if let Some(a) = attrs.iter().find(|a| self.tcx.sess.check_name(a, sym::deprecated)) {
self.tcx
.sess
.struct_span_err(a.span, "`#[deprecated]` cannot be used in staged API")
.span_label(a.span, "use `#[rustc_deprecated]` instead")
.span_label(item_sp, "")
.emit();
}
} else {
self.recurse_with_stability_attrs(
depr.map(|(d, _)| DeprecationEntry::local(d, hir_id)),
None,
None,
visit_children,
);
return;
}
let (stab, const_stab) = attr::find_stability(&self.tcx.sess, attrs, item_sp);
let const_stab = const_stab.map(|(const_stab, _)| {
let const_stab = self.tcx.intern_const_stability(const_stab);
self.index.const_stab_map.insert(hir_id, const_stab);
const_stab
});
// `impl const Trait for Type` items forward their const stability to their
// immediate children.
if const_stab.is_none() {
debug!("annotate: const_stab not found, parent = {:?}", self.parent_const_stab);
if let Some(parent) = self.parent_const_stab {
if parent.level.is_unstable() {
self.index.const_stab_map.insert(hir_id, parent);
}
}
}
if let Some((rustc_attr::Deprecation { is_since_rustc_version: true, .. }, span)) = &depr {
if stab.is_none() {
struct_span_err!(
self.tcx.sess,
*span,
E0549,
"rustc_deprecated attribute must be paired with \
either stable or unstable attribute"
)
.emit();
}
}
let stab = stab.map(|(stab, span)| {
// Error if prohibited, or can't inherit anything from a container.
if kind == AnnotationKind::Prohibited
|| (kind == AnnotationKind::Container && stab.level.is_stable() && is_deprecated)
{
self.tcx.sess.struct_span_err(span,"this stability annotation is useless")
.span_label(span, "useless stability annotation")
.span_label(item_sp, "the stability attribute annotates this item")
.emit();
}
debug!("annotate: found {:?}", stab);
let stab = self.tcx.intern_stability(stab);
// Check if deprecated_since < stable_since. If it is,
// this is *almost surely* an accident.
if let (&Some(dep_since), &attr::Stable { since: stab_since }) =
(&depr.as_ref().and_then(|(d, _)| d.since), &stab.level)
{
// Explicit version of iter::order::lt to handle parse errors properly
for (dep_v, stab_v) in
dep_since.as_str().split('.').zip(stab_since.as_str().split('.'))
{
match stab_v.parse::<u64>() {
Err(_) => {
self.tcx.sess.struct_span_err(span, "invalid stability version found")
.span_label(span, "invalid stability version")
.span_label(item_sp, "the stability attribute annotates this item")
.emit();
break;
}
Ok(stab_vp) => match dep_v.parse::<u64>() {
Ok(dep_vp) => match dep_vp.cmp(&stab_vp) {
Ordering::Less => {
self.tcx.sess.struct_span_err(span, "an API can't be stabilized after it is deprecated")
.span_label(span, "invalid version")
.span_label(item_sp, "the stability attribute annotates this item")
.emit();
break;
}
Ordering::Equal => continue,
Ordering::Greater => break,
},
Err(_) => {
if dep_v != "TBD" {
self.tcx.sess.struct_span_err(span, "invalid deprecation version found")
.span_label(span, "invalid deprecation version")
.span_label(item_sp, "the stability attribute annotates this item")
.emit();
}
break;
}
},
}
}
}
self.index.stab_map.insert(hir_id, stab);
stab
});
if stab.is_none() {
debug!("annotate: stab not found, parent = {:?}", self.parent_stab);
if let Some(stab) = self.parent_stab {
if inherit_deprecation.yes() && stab.level.is_unstable()
|| inherit_from_parent.yes()
{
self.index.stab_map.insert(hir_id, stab);
}
}
}
self.recurse_with_stability_attrs(
depr.map(|(d, _)| DeprecationEntry::local(d, hir_id)),
stab,
if inherit_const_stability.yes() { const_stab } else { None },
visit_children,
);
}
fn recurse_with_stability_attrs(
&mut self,
depr: Option<DeprecationEntry>,
stab: Option<&'tcx Stability>,
const_stab: Option<&'tcx ConstStability>,
f: impl FnOnce(&mut Self),
) {
// These will be `Some` if this item changes the corresponding stability attribute.
let mut replaced_parent_depr = None;
let mut replaced_parent_stab = None;
let mut replaced_parent_const_stab = None;
if let Some(depr) = depr {
replaced_parent_depr = Some(replace(&mut self.parent_depr, Some(depr)));
}
if let Some(stab) = stab {
replaced_parent_stab = Some(replace(&mut self.parent_stab, Some(stab)));
}
if let Some(const_stab) = const_stab {
replaced_parent_const_stab =
Some(replace(&mut self.parent_const_stab, Some(const_stab)));
}
f(self);
if let Some(orig_parent_depr) = replaced_parent_depr {
self.parent_depr = orig_parent_depr;
}
if let Some(orig_parent_stab) = replaced_parent_stab {
self.parent_stab = orig_parent_stab;
}
if let Some(orig_parent_const_stab) = replaced_parent_const_stab {
self.parent_const_stab = orig_parent_const_stab;
}
}
// returns true if an error occurred, used to suppress some spurious errors
fn forbid_staged_api_attrs(
&mut self,
hir_id: HirId,
attrs: &[Attribute],
inherit_deprecation: InheritDeprecation,
) -> bool {
// Emit errors for non-staged-api crates.
let unstable_attrs = [
sym::unstable,
sym::stable,
sym::rustc_deprecated,
sym::rustc_const_unstable,
sym::rustc_const_stable,
];
let mut has_error = false;
for attr in attrs {
let name = attr.name_or_empty();
if unstable_attrs.contains(&name) {
self.tcx.sess.mark_attr_used(attr);
struct_span_err!(
self.tcx.sess,
attr.span,
E0734,
"stability attributes may not be used outside of the standard library",
)
.emit();
has_error = true;
}
}
// Propagate unstability. This can happen even for non-staged-api crates in case
// -Zforce-unstable-if-unmarked is set.
if let Some(stab) = self.parent_stab {
if inherit_deprecation.yes() && stab.level.is_unstable() {
self.index.stab_map.insert(hir_id, stab);
}
}
has_error
}
}
impl<'a, 'tcx> Visitor<'tcx> for Annotator<'a, 'tcx> {
/// Because stability levels are scoped lexically, we want to walk
/// nested items in the context of the outer item, so enable
/// deep-walking.
type Map = Map<'tcx>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::All(self.tcx.hir())
}
fn visit_item(&mut self, i: &'tcx Item<'tcx>) {
let orig_in_trait_impl = self.in_trait_impl;
let mut kind = AnnotationKind::Required;
let mut const_stab_inherit = InheritConstStability::No;
match i.kind {
// Inherent impls and foreign modules serve only as containers for other items,
// they don't have their own stability. They still can be annotated as unstable
// and propagate this unstability to children, but this annotation is completely
// optional. They inherit stability from their parents when unannotated.
hir::ItemKind::Impl(hir::Impl { of_trait: None, .. })
| hir::ItemKind::ForeignMod { .. } => {
self.in_trait_impl = false;
kind = AnnotationKind::Container;
}
hir::ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) => {
self.in_trait_impl = true;
kind = AnnotationKind::DeprecationProhibited;
const_stab_inherit = InheritConstStability::Yes;
}
hir::ItemKind::Struct(ref sd, _) => {
if let Some(ctor_hir_id) = sd.ctor_hir_id() {
self.annotate(
ctor_hir_id,
i.span,
AnnotationKind::Required,
InheritDeprecation::Yes,
InheritConstStability::No,
InheritStability::Yes,
|_| {},
)
}
}
_ => {}
}
self.annotate(
i.hir_id(),
i.span,
kind,
InheritDeprecation::Yes,
const_stab_inherit,
InheritStability::No,
|v| intravisit::walk_item(v, i),
);
self.in_trait_impl = orig_in_trait_impl;
}
fn visit_trait_item(&mut self, ti: &'tcx hir::TraitItem<'tcx>) {
self.annotate(
ti.hir_id(),
ti.span,
AnnotationKind::Required,
InheritDeprecation::Yes,
InheritConstStability::No,
InheritStability::No,
|v| {
intravisit::walk_trait_item(v, ti);
},
);
}
fn visit_impl_item(&mut self, ii: &'tcx hir::ImplItem<'tcx>) {
let kind =
if self.in_trait_impl { AnnotationKind::Prohibited } else { AnnotationKind::Required };
self.annotate(
ii.hir_id(),
ii.span,
kind,
InheritDeprecation::Yes,
InheritConstStability::No,
InheritStability::No,
|v| {
intravisit::walk_impl_item(v, ii);
},
);
}
fn visit_variant(&mut self, var: &'tcx Variant<'tcx>, g: &'tcx Generics<'tcx>, item_id: HirId) {
self.annotate(
var.id,
var.span,
AnnotationKind::Required,
InheritDeprecation::Yes,
InheritConstStability::No,
InheritStability::Yes,
|v| {
if let Some(ctor_hir_id) = var.data.ctor_hir_id() {
v.annotate(
ctor_hir_id,
var.span,
AnnotationKind::Required,
InheritDeprecation::Yes,
InheritConstStability::No,
InheritStability::No,
|_| {},
);
}
intravisit::walk_variant(v, var, g, item_id)
},
)
}
fn visit_field_def(&mut self, s: &'tcx FieldDef<'tcx>) {
self.annotate(
s.hir_id,
s.span,
AnnotationKind::Required,
InheritDeprecation::Yes,
InheritConstStability::No,
InheritStability::Yes,
|v| {
intravisit::walk_field_def(v, s);
},
);
}
fn visit_foreign_item(&mut self, i: &'tcx hir::ForeignItem<'tcx>) {
self.annotate(
i.hir_id(),
i.span,
AnnotationKind::Required,
InheritDeprecation::Yes,
InheritConstStability::No,
InheritStability::No,
|v| {
intravisit::walk_foreign_item(v, i);
},
);
}
fn visit_macro_def(&mut self, md: &'tcx hir::MacroDef<'tcx>) {
self.annotate(
md.hir_id(),
md.span,
AnnotationKind::Required,
InheritDeprecation::Yes,
InheritConstStability::No,
InheritStability::No,
|_| {},
);
}
fn visit_generic_param(&mut self, p: &'tcx hir::GenericParam<'tcx>) {
let kind = match &p.kind {
// FIXME(const_generics_defaults)
hir::GenericParamKind::Type { default, .. } if default.is_some() => {
AnnotationKind::Container
}
_ => AnnotationKind::Prohibited,
};
self.annotate(
p.hir_id,
p.span,
kind,
InheritDeprecation::No,
InheritConstStability::No,
InheritStability::No,
|v| {
intravisit::walk_generic_param(v, p);
},
);
}
}
struct MissingStabilityAnnotations<'tcx> {
tcx: TyCtxt<'tcx>,
access_levels: &'tcx AccessLevels,
}
impl<'tcx> MissingStabilityAnnotations<'tcx> {
fn check_missing_stability(&self, hir_id: HirId, span: Span) {
let stab = self.tcx.stability().local_stability(hir_id);
let is_error =
!self.tcx.sess.opts.test && stab.is_none() && self.access_levels.is_reachable(hir_id);
if is_error {
let def_id = self.tcx.hir().local_def_id(hir_id);
let descr = self.tcx.def_kind(def_id).descr(def_id.to_def_id());
self.tcx.sess.span_err(span, &format!("{} has missing stability attribute", descr));
}
}
fn check_missing_const_stability(&self, hir_id: HirId, span: Span) {
let stab_map = self.tcx.stability();
let stab = stab_map.local_stability(hir_id);
if stab.map_or(false, |stab| stab.level.is_stable()) {
let const_stab = stab_map.local_const_stability(hir_id);
if const_stab.is_none() {
self.tcx.sess.span_err(
span,
"`#[stable]` const functions must also be either \
`#[rustc_const_stable]` or `#[rustc_const_unstable]`",
);
}
}
}
}
impl<'tcx> Visitor<'tcx> for MissingStabilityAnnotations<'tcx> {
type Map = Map<'tcx>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::OnlyBodies(self.tcx.hir())
}
fn visit_item(&mut self, i: &'tcx Item<'tcx>) {
// Inherent impls and foreign modules serve only as containers for other items,
// they don't have their own stability. They still can be annotated as unstable
// and propagate this unstability to children, but this annotation is completely
// optional. They inherit stability from their parents when unannotated.
if !matches!(
i.kind,
hir::ItemKind::Impl(hir::Impl { of_trait: None, .. })
| hir::ItemKind::ForeignMod { .. }
) {
self.check_missing_stability(i.hir_id(), i.span);
}
// Ensure `const fn` that are `stable` have one of `rustc_const_unstable` or
// `rustc_const_stable`.
if self.tcx.features().staged_api
&& matches!(&i.kind, hir::ItemKind::Fn(sig, ..) if sig.header.is_const())
{
self.check_missing_const_stability(i.hir_id(), i.span);
}
intravisit::walk_item(self, i)
}
fn visit_trait_item(&mut self, ti: &'tcx hir::TraitItem<'tcx>) {
self.check_missing_stability(ti.hir_id(), ti.span);
intravisit::walk_trait_item(self, ti);
}
fn visit_impl_item(&mut self, ii: &'tcx hir::ImplItem<'tcx>) {
let impl_def_id = self.tcx.hir().local_def_id(self.tcx.hir().get_parent_item(ii.hir_id()));
if self.tcx.impl_trait_ref(impl_def_id).is_none() {
self.check_missing_stability(ii.hir_id(), ii.span);
}
intravisit::walk_impl_item(self, ii);
}
fn visit_variant(&mut self, var: &'tcx Variant<'tcx>, g: &'tcx Generics<'tcx>, item_id: HirId) {
self.check_missing_stability(var.id, var.span);
intravisit::walk_variant(self, var, g, item_id);
}
fn visit_field_def(&mut self, s: &'tcx FieldDef<'tcx>) {
self.check_missing_stability(s.hir_id, s.span);
intravisit::walk_field_def(self, s);
}
fn visit_foreign_item(&mut self, i: &'tcx hir::ForeignItem<'tcx>) {
self.check_missing_stability(i.hir_id(), i.span);
intravisit::walk_foreign_item(self, i);
}
fn visit_macro_def(&mut self, md: &'tcx hir::MacroDef<'tcx>) {
self.check_missing_stability(md.hir_id(), md.span);
}
// Note that we don't need to `check_missing_stability` for default generic parameters,
// as we assume that any default generic parameters without attributes are automatically
// stable (assuming they have not inherited instability from their parent).
}
fn new_index(tcx: TyCtxt<'tcx>) -> Index<'tcx> {
let is_staged_api =
tcx.sess.opts.debugging_opts.force_unstable_if_unmarked || tcx.features().staged_api;
let mut staged_api = FxHashMap::default();
staged_api.insert(LOCAL_CRATE, is_staged_api);
let mut index = Index {
staged_api,
stab_map: Default::default(),
const_stab_map: Default::default(),
depr_map: Default::default(),
active_features: Default::default(),
};
let active_lib_features = &tcx.features().declared_lib_features;
let active_lang_features = &tcx.features().declared_lang_features;
// Put the active features into a map for quick lookup.
index.active_features = active_lib_features
.iter()
.map(|&(s, ..)| s)
.chain(active_lang_features.iter().map(|&(s, ..)| s))
.collect();
{
let krate = tcx.hir().krate();
let mut annotator = Annotator {
tcx,
index: &mut index,
parent_stab: None,
parent_const_stab: None,
parent_depr: None,
in_trait_impl: false,
};
// If the `-Z force-unstable-if-unmarked` flag is passed then we provide
// a parent stability annotation which indicates that this is private
// with the `rustc_private` feature. This is intended for use when
// compiling `librustc_*` crates themselves so we can leverage crates.io
// while maintaining the invariant that all sysroot crates are unstable
// by default and are unable to be used.
if tcx.sess.opts.debugging_opts.force_unstable_if_unmarked {
let reason = "this crate is being loaded from the sysroot, an \
unstable location; did you mean to load this crate \
from crates.io via `Cargo.toml` instead?";
let stability = tcx.intern_stability(Stability {
level: attr::StabilityLevel::Unstable {
reason: Some(Symbol::intern(reason)),
issue: NonZeroU32::new(27812),
is_soft: false,
},
feature: sym::rustc_private,
});
annotator.parent_stab = Some(stability);
}
annotator.annotate(
hir::CRATE_HIR_ID,
krate.item.span,
AnnotationKind::Required,
InheritDeprecation::Yes,
InheritConstStability::No,
InheritStability::No,
|v| intravisit::walk_crate(v, krate),
);
}
index
}
/// Cross-references the feature names of unstable APIs with enabled
/// features and possibly prints errors.
fn check_mod_unstable_api_usage(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
tcx.hir().visit_item_likes_in_module(module_def_id, &mut Checker { tcx }.as_deep_visitor());
}
pub(crate) fn provide(providers: &mut Providers) {
*providers = Providers { check_mod_unstable_api_usage, ..*providers };
providers.stability_index = |tcx, cnum| {
assert_eq!(cnum, LOCAL_CRATE);
new_index(tcx)
};
}
struct Checker<'tcx> {
tcx: TyCtxt<'tcx>,
}
impl Visitor<'tcx> for Checker<'tcx> {
type Map = Map<'tcx>;
/// Because stability levels are scoped lexically, we want to walk
/// nested items in the context of the outer item, so enable
/// deep-walking.
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::OnlyBodies(self.tcx.hir())
}
fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
match item.kind {
hir::ItemKind::ExternCrate(_) => {
// compiler-generated `extern crate` items have a dummy span.
// `std` is still checked for the `restricted-std` feature.
if item.span.is_dummy() && item.ident.as_str() != "std" {
return;
}
let cnum = match self.tcx.extern_mod_stmt_cnum(item.def_id) {
Some(cnum) => cnum,
None => return,
};
let def_id = DefId { krate: cnum, index: CRATE_DEF_INDEX };
self.tcx.check_stability(def_id, Some(item.hir_id()), item.span);
}
// For implementations of traits, check the stability of each item
// individually as it's possible to have a stable trait with unstable
// items.
hir::ItemKind::Impl(hir::Impl { of_trait: Some(ref t), self_ty, items, .. }) => {
if self.tcx.features().staged_api {
// If this impl block has an #[unstable] attribute, give an
// error if all involved types and traits are stable, because
// it will have no effect.
// See: https://github.com/rust-lang/rust/issues/55436
let attrs = self.tcx.hir().attrs(item.hir_id());
if let (Some((Stability { level: attr::Unstable { .. }, .. }, span)), _) =
attr::find_stability(&self.tcx.sess, attrs, item.span)
{
let mut c = CheckTraitImplStable { tcx: self.tcx, fully_stable: true };
c.visit_ty(self_ty);
c.visit_trait_ref(t);
if c.fully_stable {
self.tcx.struct_span_lint_hir(
INEFFECTIVE_UNSTABLE_TRAIT_IMPL,
item.hir_id(),
span,
|lint| lint
.build("an `#[unstable]` annotation here has no effect")
.note("see issue #55436 <https://github.com/rust-lang/rust/issues/55436> for more information")
.emit()
);
}
}
}
if let Res::Def(DefKind::Trait, trait_did) = t.path.res {
for impl_item_ref in items {
let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
let trait_item_def_id = self
.tcx
.associated_items(trait_did)
.filter_by_name_unhygienic(impl_item.ident.name)
.next()
.map(|item| item.def_id);
if let Some(def_id) = trait_item_def_id {
// Pass `None` to skip deprecation warnings.
self.tcx.check_stability(def_id, None, impl_item.span);
}
}
}
}
// There's no good place to insert stability check for non-Copy unions,
// so semi-randomly perform it here in stability.rs
hir::ItemKind::Union(..) if !self.tcx.features().untagged_unions => {
let ty = self.tcx.type_of(item.def_id);
let (adt_def, substs) = match ty.kind() {
ty::Adt(adt_def, substs) => (adt_def, substs),
_ => bug!(),
};
// Non-`Copy` fields are unstable, except for `ManuallyDrop`.
let param_env = self.tcx.param_env(item.def_id);
for field in &adt_def.non_enum_variant().fields {
let field_ty = field.ty(self.tcx, substs);
if !field_ty.ty_adt_def().map_or(false, |adt_def| adt_def.is_manually_drop())
&& !field_ty.is_copy_modulo_regions(self.tcx.at(DUMMY_SP), param_env)
{
if field_ty.needs_drop(self.tcx, param_env) {
// Avoid duplicate error: This will error later anyway because fields
// that need drop are not allowed.
self.tcx.sess.delay_span_bug(
item.span,
"union should have been rejected due to potentially dropping field",
);
} else {
feature_err(
&self.tcx.sess.parse_sess,
sym::untagged_unions,
self.tcx.def_span(field.did),
"unions with non-`Copy` fields other than `ManuallyDrop<T>` are unstable",
)
.emit();
}
}
}
}
_ => (/* pass */),
}
intravisit::walk_item(self, item);
}
fn visit_path(&mut self, path: &'tcx hir::Path<'tcx>, id: hir::HirId) {
if let Some(def_id) = path.res.opt_def_id() {
self.tcx.check_stability(def_id, Some(id), path.span)
}
intravisit::walk_path(self, path)
}
}
struct CheckTraitImplStable<'tcx> {
tcx: TyCtxt<'tcx>,
fully_stable: bool,
}
impl Visitor<'tcx> for CheckTraitImplStable<'tcx> {
type Map = Map<'tcx>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
fn visit_path(&mut self, path: &'tcx hir::Path<'tcx>, _id: hir::HirId) {
if let Some(def_id) = path.res.opt_def_id() {
if let Some(stab) = self.tcx.lookup_stability(def_id) {
self.fully_stable &= stab.level.is_stable();
}
}
intravisit::walk_path(self, path)
}
fn visit_trait_ref(&mut self, t: &'tcx TraitRef<'tcx>) {
if let Res::Def(DefKind::Trait, trait_did) = t.path.res {
if let Some(stab) = self.tcx.lookup_stability(trait_did) {
self.fully_stable &= stab.level.is_stable();
}
}
intravisit::walk_trait_ref(self, t)
}
fn visit_ty(&mut self, t: &'tcx Ty<'tcx>) {
if let TyKind::Never = t.kind {
self.fully_stable = false;
}
intravisit::walk_ty(self, t)
}
}
/// Given the list of enabled features that were not language features (i.e., that
/// were expected to be library features), and the list of features used from
/// libraries, identify activated features that don't exist and error about them.
pub fn check_unused_or_stable_features(tcx: TyCtxt<'_>) {
let access_levels = &tcx.privacy_access_levels(LOCAL_CRATE);
if tcx.stability().staged_api[&LOCAL_CRATE] {
let krate = tcx.hir().krate();
let mut missing = MissingStabilityAnnotations { tcx, access_levels };
missing.check_missing_stability(hir::CRATE_HIR_ID, krate.item.span);
intravisit::walk_crate(&mut missing, krate);
krate.visit_all_item_likes(&mut missing.as_deep_visitor());
}
let declared_lang_features = &tcx.features().declared_lang_features;
let mut lang_features = FxHashSet::default();
for &(feature, span, since) in declared_lang_features {
if let Some(since) = since {
// Warn if the user has enabled an already-stable lang feature.
unnecessary_stable_feature_lint(tcx, span, feature, since);
}
if !lang_features.insert(feature) {
// Warn if the user enables a lang feature multiple times.
duplicate_feature_err(tcx.sess, span, feature);
}
}
let declared_lib_features = &tcx.features().declared_lib_features;
let mut remaining_lib_features = FxHashMap::default();
for (feature, span) in declared_lib_features {
if remaining_lib_features.contains_key(&feature) {
// Warn if the user enables a lib feature multiple times.
duplicate_feature_err(tcx.sess, *span, *feature);
}
remaining_lib_features.insert(feature, *span);
}
// `stdbuild` has special handling for `libc`, so we need to
// recognise the feature when building std.
// Likewise, libtest is handled specially, so `test` isn't
// available as we'd like it to be.
// FIXME: only remove `libc` when `stdbuild` is active.
// FIXME: remove special casing for `test`.
remaining_lib_features.remove(&sym::libc);
remaining_lib_features.remove(&sym::test);
let check_features = |remaining_lib_features: &mut FxHashMap<_, _>, defined_features: &[_]| {
for &(feature, since) in defined_features {
if let Some(since) = since {
if let Some(span) = remaining_lib_features.get(&feature) {
// Warn if the user has enabled an already-stable lib feature.
unnecessary_stable_feature_lint(tcx, *span, feature, since);
}
}
remaining_lib_features.remove(&feature);
if remaining_lib_features.is_empty() {
break;
}
}
};
// We always collect the lib features declared in the current crate, even if there are
// no unknown features, because the collection also does feature attribute validation.
let local_defined_features = tcx.lib_features().to_vec();
if !remaining_lib_features.is_empty() {
check_features(&mut remaining_lib_features, &local_defined_features);
for &cnum in &*tcx.crates() {
if remaining_lib_features.is_empty() {
break;
}
check_features(&mut remaining_lib_features, tcx.defined_lib_features(cnum));
}
}
for (feature, span) in remaining_lib_features {
struct_span_err!(tcx.sess, span, E0635, "unknown feature `{}`", feature).emit();
}
// FIXME(#44232): the `used_features` table no longer exists, so we
// don't lint about unused features. We should re-enable this one day!
}
fn unnecessary_stable_feature_lint(tcx: TyCtxt<'_>, span: Span, feature: Symbol, since: Symbol) {
tcx.struct_span_lint_hir(lint::builtin::STABLE_FEATURES, hir::CRATE_HIR_ID, span, |lint| {
lint.build(&format!(
"the feature `{}` has been stable since {} and no longer requires \
an attribute to enable",
feature, since
))
.emit();
});
}
fn duplicate_feature_err(sess: &Session, span: Span, feature: Symbol) {
struct_span_err!(sess, span, E0636, "the feature `{}` has already been declared", feature)
.emit();
}