rust/src/librustc_trans/trans/attributes.rs
Alex Crichton 7a3fdfbf67 Remove morestack support
This commit removes all morestack support from the compiler which entails:

* Segmented stacks are no longer emitted in codegen.
* We no longer build or distribute libmorestack.a
* The `stack_exhausted` lang item is no longer required

The only current use of the segmented stack support in LLVM is to detect stack
overflow. This is no longer really required, however, because we already have
guard pages for all threads and registered signal handlers watching for a
segfault on those pages (to print out a stack overflow message). Additionally,
major platforms (aka Windows) already don't use morestack.

This means that Rust is by default less likely to catch stack overflows because
if a function takes up more than one page of stack space it won't hit the guard
page. This is what the purpose of morestack was (to catch this case), but it's
better served with stack probes which have more cross platform support and no
runtime support necessary. Until LLVM supports this for all platform it looks
like morestack isn't really buying us much.

cc #16012 (still need stack probes)
Closes #26458 (a drive-by fix to help diagnostics on stack overflow)
2015-08-10 16:35:44 -07:00

305 lines
12 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Set and unset common attributes on LLVM values.
use libc::{c_uint, c_ulonglong};
use llvm::{self, ValueRef, AttrHelper};
use middle::ty;
use middle::infer;
use session::config::NoDebugInfo;
use syntax::abi;
use syntax::ast;
pub use syntax::attr::InlineAttr;
use trans::base;
use trans::common;
use trans::context::CrateContext;
use trans::machine;
use trans::type_of;
/// Mark LLVM function to use provided inline heuristic.
#[inline]
pub fn inline(val: ValueRef, inline: InlineAttr) {
use self::InlineAttr::*;
match inline {
Hint => llvm::SetFunctionAttribute(val, llvm::Attribute::InlineHint),
Always => llvm::SetFunctionAttribute(val, llvm::Attribute::AlwaysInline),
Never => llvm::SetFunctionAttribute(val, llvm::Attribute::NoInline),
None => {
let attr = llvm::Attribute::InlineHint |
llvm::Attribute::AlwaysInline |
llvm::Attribute::NoInline;
unsafe {
llvm::LLVMRemoveFunctionAttr(val, attr.bits() as c_ulonglong)
}
},
};
}
/// Tell LLVM to emit or not emit the information necessary to unwind the stack for the function.
#[inline]
pub fn emit_uwtable(val: ValueRef, emit: bool) {
if emit {
llvm::SetFunctionAttribute(val, llvm::Attribute::UWTable);
} else {
unsafe {
llvm::LLVMRemoveFunctionAttr(
val,
llvm::Attribute::UWTable.bits() as c_ulonglong,
);
}
}
}
/// Tell LLVM whether the function can or cannot unwind.
#[inline]
#[allow(dead_code)] // possibly useful function
pub fn unwind(val: ValueRef, can_unwind: bool) {
if can_unwind {
unsafe {
llvm::LLVMRemoveFunctionAttr(
val,
llvm::Attribute::NoUnwind.bits() as c_ulonglong,
);
}
} else {
llvm::SetFunctionAttribute(val, llvm::Attribute::NoUnwind);
}
}
/// Tell LLVM whether it should optimise function for size.
#[inline]
#[allow(dead_code)] // possibly useful function
pub fn set_optimize_for_size(val: ValueRef, optimize: bool) {
if optimize {
llvm::SetFunctionAttribute(val, llvm::Attribute::OptimizeForSize);
} else {
unsafe {
llvm::LLVMRemoveFunctionAttr(
val,
llvm::Attribute::OptimizeForSize.bits() as c_ulonglong,
);
}
}
}
/// Composite function which sets LLVM attributes for function depending on its AST (#[attribute])
/// attributes.
pub fn from_fn_attrs(ccx: &CrateContext, attrs: &[ast::Attribute], llfn: ValueRef) {
use syntax::attr::*;
inline(llfn, find_inline_attr(Some(ccx.sess().diagnostic()), attrs));
// FIXME: #11906: Omitting frame pointers breaks retrieving the value of a
// parameter.
let no_fp_elim = (ccx.sess().opts.debuginfo != NoDebugInfo) ||
!ccx.sess().target.target.options.eliminate_frame_pointer;
if no_fp_elim {
unsafe {
let attr = "no-frame-pointer-elim\0".as_ptr() as *const _;
let val = "true\0".as_ptr() as *const _;
llvm::LLVMAddFunctionAttrStringValue(llfn,
llvm::FunctionIndex as c_uint,
attr, val);
}
}
for attr in attrs {
if attr.check_name("cold") {
unsafe {
llvm::LLVMAddFunctionAttribute(llfn,
llvm::FunctionIndex as c_uint,
llvm::ColdAttribute as u64)
}
} else if attr.check_name("allocator") {
llvm::Attribute::NoAlias.apply_llfn(llvm::ReturnIndex as c_uint, llfn);
}
}
}
/// Composite function which converts function type into LLVM attributes for the function.
pub fn from_fn_type<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fn_type: ty::Ty<'tcx>)
-> llvm::AttrBuilder {
use middle::ty::{BrAnon, ReLateBound};
let function_type;
let (fn_sig, abi, env_ty) = match fn_type.sty {
ty::TyBareFn(_, ref f) => (&f.sig, f.abi, None),
ty::TyClosure(closure_did, ref substs) => {
let infcx = infer::normalizing_infer_ctxt(ccx.tcx(), &ccx.tcx().tables);
function_type = infcx.closure_type(closure_did, substs);
let self_type = base::self_type_for_closure(ccx, closure_did, fn_type);
(&function_type.sig, abi::RustCall, Some(self_type))
}
_ => ccx.sess().bug("expected closure or function.")
};
let fn_sig = ccx.tcx().erase_late_bound_regions(fn_sig);
let mut attrs = llvm::AttrBuilder::new();
let ret_ty = fn_sig.output;
// These have an odd calling convention, so we need to manually
// unpack the input ty's
let input_tys = match fn_type.sty {
ty::TyClosure(..) => {
assert!(abi == abi::RustCall);
match fn_sig.inputs[0].sty {
ty::TyTuple(ref inputs) => {
let mut full_inputs = vec![env_ty.expect("Missing closure environment")];
full_inputs.push_all(inputs);
full_inputs
}
_ => ccx.sess().bug("expected tuple'd inputs")
}
},
ty::TyBareFn(..) if abi == abi::RustCall => {
let mut inputs = vec![fn_sig.inputs[0]];
match fn_sig.inputs[1].sty {
ty::TyTuple(ref t_in) => {
inputs.push_all(&t_in[..]);
inputs
}
_ => ccx.sess().bug("expected tuple'd inputs")
}
}
_ => fn_sig.inputs.clone()
};
// Index 0 is the return value of the llvm func, so we start at 1
let mut idx = 1;
if let ty::FnConverging(ret_ty) = ret_ty {
// A function pointer is called without the declaration
// available, so we have to apply any attributes with ABI
// implications directly to the call instruction. Right now,
// the only attribute we need to worry about is `sret`.
if type_of::return_uses_outptr(ccx, ret_ty) {
let llret_sz = machine::llsize_of_real(ccx, type_of::type_of(ccx, ret_ty));
// The outptr can be noalias and nocapture because it's entirely
// invisible to the program. We also know it's nonnull as well
// as how many bytes we can dereference
attrs.arg(1, llvm::Attribute::StructRet)
.arg(1, llvm::Attribute::NoAlias)
.arg(1, llvm::Attribute::NoCapture)
.arg(1, llvm::DereferenceableAttribute(llret_sz));
// Add one more since there's an outptr
idx += 1;
} else {
// The `noalias` attribute on the return value is useful to a
// function ptr caller.
match ret_ty.sty {
// `Box` pointer return values never alias because ownership
// is transferred
ty::TyBox(it) if common::type_is_sized(ccx.tcx(), it) => {
attrs.ret(llvm::Attribute::NoAlias);
}
_ => {}
}
// We can also mark the return value as `dereferenceable` in certain cases
match ret_ty.sty {
// These are not really pointers but pairs, (pointer, len)
ty::TyRef(_, ty::TypeAndMut { ty: inner, .. })
| ty::TyBox(inner) if common::type_is_sized(ccx.tcx(), inner) => {
let llret_sz = machine::llsize_of_real(ccx, type_of::type_of(ccx, inner));
attrs.ret(llvm::DereferenceableAttribute(llret_sz));
}
_ => {}
}
if let ty::TyBool = ret_ty.sty {
attrs.ret(llvm::Attribute::ZExt);
}
}
}
for &t in input_tys.iter() {
match t.sty {
_ if type_of::arg_is_indirect(ccx, t) => {
let llarg_sz = machine::llsize_of_real(ccx, type_of::type_of(ccx, t));
// For non-immediate arguments the callee gets its own copy of
// the value on the stack, so there are no aliases. It's also
// program-invisible so can't possibly capture
attrs.arg(idx, llvm::Attribute::NoAlias)
.arg(idx, llvm::Attribute::NoCapture)
.arg(idx, llvm::DereferenceableAttribute(llarg_sz));
}
ty::TyBool => {
attrs.arg(idx, llvm::Attribute::ZExt);
}
// `Box` pointer parameters never alias because ownership is transferred
ty::TyBox(inner) => {
attrs.arg(idx, llvm::Attribute::NoAlias);
if common::type_is_sized(ccx.tcx(), inner) {
let llsz = machine::llsize_of_real(ccx, type_of::type_of(ccx, inner));
attrs.arg(idx, llvm::DereferenceableAttribute(llsz));
} else {
attrs.arg(idx, llvm::NonNullAttribute);
if inner.is_trait() {
attrs.arg(idx + 1, llvm::NonNullAttribute);
}
}
}
ty::TyRef(b, mt) => {
// `&mut` pointer parameters never alias other parameters, or mutable global data
//
// `&T` where `T` contains no `UnsafeCell<U>` is immutable, and can be marked as
// both `readonly` and `noalias`, as LLVM's definition of `noalias` is based solely
// on memory dependencies rather than pointer equality
let interior_unsafe = mt.ty.type_contents(ccx.tcx()).interior_unsafe();
if mt.mutbl == ast::MutMutable || !interior_unsafe {
attrs.arg(idx, llvm::Attribute::NoAlias);
}
if mt.mutbl == ast::MutImmutable && !interior_unsafe {
attrs.arg(idx, llvm::Attribute::ReadOnly);
}
// & pointer parameters are also never null and for sized types we also know
// exactly how many bytes we can dereference
if common::type_is_sized(ccx.tcx(), mt.ty) {
let llsz = machine::llsize_of_real(ccx, type_of::type_of(ccx, mt.ty));
attrs.arg(idx, llvm::DereferenceableAttribute(llsz));
} else {
attrs.arg(idx, llvm::NonNullAttribute);
if mt.ty.is_trait() {
attrs.arg(idx + 1, llvm::NonNullAttribute);
}
}
// When a reference in an argument has no named lifetime, it's
// impossible for that reference to escape this function
// (returned or stored beyond the call by a closure).
if let ReLateBound(_, BrAnon(_)) = *b {
attrs.arg(idx, llvm::Attribute::NoCapture);
}
}
_ => ()
}
if common::type_is_fat_ptr(ccx.tcx(), t) {
idx += 2;
} else {
idx += 1;
}
}
attrs
}