bors 2f41a85d8e auto merge of #13431 : lifthrasiir/rust/rustdoc-smaller-index, r=alexcrichton
This is a series of inter-related commits which depend on #13402 (Prune the paths that do not appear in the index). Please consider this as an early review request; I'll rebase this when the parent PR get merged and rebase is required.

----

This PR aims at reducing the search index without removing the actual information. In my measurement with both library and compiler docs, the search index is 52% smaller before gzipped, and 16% smaller after gzipped:

```
 1719473 search-index-old.js
 1503299 search-index.js (after #13402, 13% gain)
  724955 search-index-new.js (after this PR, 52% gain w.r.t. #13402)

  262711 search-index-old.js.gz
  214205 search-index.js.gz (after #13402, 18.5% gain)
  179396 search-index-new.js.gz (after this PR, 16% gain w.r.t. #13402)
```

Both the uncompressed and compressed size of the search index have been accounted. While the former would be less relevant when #12597 (Web site should be transferring data compressed) is resolved, the uncompressed index will be around for a while anyway and directly affects the UX of docs. Moreover, LZ77 (and gzip) can only remove *some* repeated strings (since its search window is limited in size), so optimizing for the uncompressed size often has a positive effect on the compressed size as well.

Each commit represents the following incremental improvements, in the order:

1. Parent paths were referred by its AST `NodeId`, which tends to be large. We don't need the actual node ID, so we remap them to the smaller sequential numbers. This also means that the list of paths can be a flat array instead of an object.
2. We remap each item type to small predefined numbers. This is strictly intended to reduce the uncompressed size of the search index.
3. We use arrays instead of objects and reconstruct the original objects in the JavaScript code. Since this removes a lot of boilerplates, this affects both the uncompressed and compressed size.
4. (I've found that a centralized `searchIndex` is easier to handle in JS, so I shot one global variable down.)
5. Finally, the repeated paths in the consecutive items are omitted (replaced by an empty string). This also greatly affects both the uncompressed and compressed size.

There had been several unsuccessful attempts to reduce the search index. Especially, I explicitly avoided complex optimizations like encoding paths in a compressed form, and only applied the optimizations when it had a substantial gain compared to the changes. Also, while I've tried to be careful, the lack of proper (non-smoke) tests makes me a bit worry; any advice on testing the search indices would be appreciated.
2014-04-14 08:36:56 -07:00
2014-04-03 16:28:46 -07:00
2014-04-11 11:16:10 -07:00
2014-04-02 16:57:41 -07:00
2014-04-06 16:06:46 -04:00

The Rust Programming Language

This is a compiler for Rust, including standard libraries, tools and documentation.

Quick Start

  1. Download a binary installer for your platform.
  2. Read the tutorial.
  3. Enjoy!

Note: Windows users can read the detailed getting started notes on the wiki.

Building from Source

  1. Make sure you have installed the dependencies:

    • g++ 4.4 or clang++ 3.x
    • python 2.6 or later (but not 3.x)
    • perl 5.0 or later
    • GNU make 3.81 or later
    • curl
  2. Download and build Rust:

    You can either download a tarball or build directly from the repo.

    To build from the tarball do:

     $ curl -O http://static.rust-lang.org/dist/rust-nightly.tar.gz
     $ tar -xzf rust-nightly.tar.gz
     $ cd rust-nightly
    

    Or to build from the repo do:

     $ git clone https://github.com/mozilla/rust.git
     $ cd rust
    

    Now that you have Rust's source code, you can configure and build it:

     $ ./configure
     $ make && make install
    

    Note: You may need to use sudo make install if you do not normally have permission to modify the destination directory. The install locations can be adjusted by passing a --prefix argument to configure. Various other options are also supported, pass --help for more information on them.

    When complete, make install will place several programs into /usr/local/bin: rustc, the Rust compiler, and rustdoc, the API-documentation tool. system.

  3. Read the tutorial.

  4. Enjoy!

Notes

Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier state of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.

Snapshot binaries are currently built and tested on several platforms:

  • Windows (7, 8, Server 2008 R2), x86 only
  • Linux (2.6.18 or later, various distributions), x86 and x86-64
  • OSX 10.7 (Lion) or greater, x86 and x86-64

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

Rust currently needs about 1.5 GiB of RAM to build without swapping; if it hits swap, it will take a very long time to build.

There is a lot more documentation in the wiki.

License

Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.

See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.

Description
No description provided
Readme 1.4 GiB
Languages
Rust 96.2%
RenderScript 0.7%
JavaScript 0.6%
Shell 0.6%
Fluent 0.4%
Other 1.3%