rust/src/librustc_trans/context.rs
2017-08-19 13:27:16 +03:00

898 lines
35 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use llvm;
use llvm::{ContextRef, ModuleRef, ValueRef};
use rustc::dep_graph::{DepGraph, DepGraphSafe};
use rustc::hir;
use rustc::hir::def_id::DefId;
use rustc::traits;
use debuginfo;
use callee;
use back::symbol_export::ExportedSymbols;
use base;
use declare;
use monomorphize::Instance;
use partitioning::CodegenUnit;
use trans_item::TransItem;
use type_::Type;
use rustc_data_structures::base_n;
use rustc::session::config::{self, NoDebugInfo, OutputFilenames};
use rustc::session::Session;
use rustc::ty::{self, Ty, TyCtxt};
use rustc::ty::layout::{LayoutCx, LayoutError, LayoutTyper, TyLayout};
use rustc::util::nodemap::{FxHashMap, FxHashSet};
use std::ffi::{CStr, CString};
use std::cell::{Cell, RefCell};
use std::ptr;
use std::iter;
use std::str;
use std::sync::Arc;
use std::marker::PhantomData;
use syntax::symbol::InternedString;
use syntax_pos::DUMMY_SP;
use abi::Abi;
#[derive(Clone, Default)]
pub struct Stats {
pub n_glues_created: Cell<usize>,
pub n_null_glues: Cell<usize>,
pub n_real_glues: Cell<usize>,
pub n_fns: Cell<usize>,
pub n_inlines: Cell<usize>,
pub n_closures: Cell<usize>,
pub n_llvm_insns: Cell<usize>,
pub llvm_insns: RefCell<FxHashMap<String, usize>>,
// (ident, llvm-instructions)
pub fn_stats: RefCell<Vec<(String, usize)> >,
}
impl Stats {
pub fn extend(&mut self, stats: Stats) {
self.n_glues_created.set(self.n_glues_created.get() + stats.n_glues_created.get());
self.n_null_glues.set(self.n_null_glues.get() + stats.n_null_glues.get());
self.n_real_glues.set(self.n_real_glues.get() + stats.n_real_glues.get());
self.n_fns.set(self.n_fns.get() + stats.n_fns.get());
self.n_inlines.set(self.n_inlines.get() + stats.n_inlines.get());
self.n_closures.set(self.n_closures.get() + stats.n_closures.get());
self.n_llvm_insns.set(self.n_llvm_insns.get() + stats.n_llvm_insns.get());
self.llvm_insns.borrow_mut().extend(
stats.llvm_insns.borrow().iter()
.map(|(key, value)| (key.clone(), value.clone())));
self.fn_stats.borrow_mut().append(&mut *stats.fn_stats.borrow_mut());
}
}
/// The shared portion of a `CrateContext`. There is one `SharedCrateContext`
/// per crate. The data here is shared between all compilation units of the
/// crate, so it must not contain references to any LLVM data structures
/// (aside from metadata-related ones).
pub struct SharedCrateContext<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
check_overflow: bool,
use_dll_storage_attrs: bool,
output_filenames: &'a OutputFilenames,
}
/// The local portion of a `CrateContext`. There is one `LocalCrateContext`
/// per compilation unit. Each one has its own LLVM `ContextRef` so that
/// several compilation units may be optimized in parallel. All other LLVM
/// data structures in the `LocalCrateContext` are tied to that `ContextRef`.
pub struct LocalCrateContext<'a, 'tcx: 'a> {
llmod: ModuleRef,
llcx: ContextRef,
stats: Stats,
codegen_unit: CodegenUnit<'tcx>,
/// The translation items of the whole crate.
crate_trans_items: Arc<FxHashSet<TransItem<'tcx>>>,
/// Information about which symbols are exported from the crate.
exported_symbols: Arc<ExportedSymbols>,
/// Cache instances of monomorphic and polymorphic items
instances: RefCell<FxHashMap<Instance<'tcx>, ValueRef>>,
/// Cache generated vtables
vtables: RefCell<FxHashMap<(ty::Ty<'tcx>,
Option<ty::PolyExistentialTraitRef<'tcx>>), ValueRef>>,
/// Cache of constant strings,
const_cstr_cache: RefCell<FxHashMap<InternedString, ValueRef>>,
/// Reverse-direction for const ptrs cast from globals.
/// Key is a ValueRef holding a *T,
/// Val is a ValueRef holding a *[T].
///
/// Needed because LLVM loses pointer->pointee association
/// when we ptrcast, and we have to ptrcast during translation
/// of a [T] const because we form a slice, a (*T,usize) pair, not
/// a pointer to an LLVM array type. Similar for trait objects.
const_unsized: RefCell<FxHashMap<ValueRef, ValueRef>>,
/// Cache of emitted const globals (value -> global)
const_globals: RefCell<FxHashMap<ValueRef, ValueRef>>,
/// Mapping from static definitions to their DefId's.
statics: RefCell<FxHashMap<ValueRef, DefId>>,
/// List of globals for static variables which need to be passed to the
/// LLVM function ReplaceAllUsesWith (RAUW) when translation is complete.
/// (We have to make sure we don't invalidate any ValueRefs referring
/// to constants.)
statics_to_rauw: RefCell<Vec<(ValueRef, ValueRef)>>,
/// Statics that will be placed in the llvm.used variable
/// See http://llvm.org/docs/LangRef.html#the-llvm-used-global-variable for details
used_statics: RefCell<Vec<ValueRef>>,
lltypes: RefCell<FxHashMap<Ty<'tcx>, Type>>,
int_type: Type,
opaque_vec_type: Type,
str_slice_type: Type,
dbg_cx: Option<debuginfo::CrateDebugContext<'tcx>>,
eh_personality: Cell<Option<ValueRef>>,
eh_unwind_resume: Cell<Option<ValueRef>>,
rust_try_fn: Cell<Option<ValueRef>>,
intrinsics: RefCell<FxHashMap<&'static str, ValueRef>>,
/// A counter that is used for generating local symbol names
local_gen_sym_counter: Cell<usize>,
/// A placeholder so we can add lifetimes
placeholder: PhantomData<&'a ()>,
}
/// A CrateContext value binds together one LocalCrateContext with the
/// SharedCrateContext. It exists as a convenience wrapper, so we don't have to
/// pass around (SharedCrateContext, LocalCrateContext) tuples all over trans.
pub struct CrateContext<'a, 'tcx: 'a> {
shared: &'a SharedCrateContext<'a, 'tcx>,
local_ccx: &'a LocalCrateContext<'a, 'tcx>,
}
impl<'a, 'tcx> CrateContext<'a, 'tcx> {
pub fn new(shared: &'a SharedCrateContext<'a, 'tcx>,
local_ccx: &'a LocalCrateContext<'a, 'tcx>)
-> Self {
CrateContext { shared, local_ccx }
}
}
impl<'a, 'tcx> DepGraphSafe for CrateContext<'a, 'tcx> {
}
pub fn get_reloc_model(sess: &Session) -> llvm::RelocMode {
let reloc_model_arg = match sess.opts.cg.relocation_model {
Some(ref s) => &s[..],
None => &sess.target.target.options.relocation_model[..],
};
match ::back::write::RELOC_MODEL_ARGS.iter().find(
|&&arg| arg.0 == reloc_model_arg) {
Some(x) => x.1,
_ => {
sess.err(&format!("{:?} is not a valid relocation mode",
sess.opts
.cg
.code_model));
sess.abort_if_errors();
bug!();
}
}
}
fn is_any_library(sess: &Session) -> bool {
sess.crate_types.borrow().iter().any(|ty| {
*ty != config::CrateTypeExecutable
})
}
pub fn is_pie_binary(sess: &Session) -> bool {
!is_any_library(sess) && get_reloc_model(sess) == llvm::RelocMode::PIC
}
pub unsafe fn create_context_and_module(sess: &Session, mod_name: &str) -> (ContextRef, ModuleRef) {
let llcx = llvm::LLVMContextCreate();
let mod_name = CString::new(mod_name).unwrap();
let llmod = llvm::LLVMModuleCreateWithNameInContext(mod_name.as_ptr(), llcx);
// Ensure the data-layout values hardcoded remain the defaults.
if sess.target.target.options.is_builtin {
let tm = ::back::write::create_target_machine(sess);
llvm::LLVMRustSetDataLayoutFromTargetMachine(llmod, tm);
llvm::LLVMRustDisposeTargetMachine(tm);
let data_layout = llvm::LLVMGetDataLayout(llmod);
let data_layout = str::from_utf8(CStr::from_ptr(data_layout).to_bytes())
.ok().expect("got a non-UTF8 data-layout from LLVM");
// Unfortunately LLVM target specs change over time, and right now we
// don't have proper support to work with any more than one
// `data_layout` than the one that is in the rust-lang/rust repo. If
// this compiler is configured against a custom LLVM, we may have a
// differing data layout, even though we should update our own to use
// that one.
//
// As an interim hack, if CFG_LLVM_ROOT is not an empty string then we
// disable this check entirely as we may be configured with something
// that has a different target layout.
//
// Unsure if this will actually cause breakage when rustc is configured
// as such.
//
// FIXME(#34960)
let cfg_llvm_root = option_env!("CFG_LLVM_ROOT").unwrap_or("");
let custom_llvm_used = cfg_llvm_root.trim() != "";
if !custom_llvm_used && sess.target.target.data_layout != data_layout {
bug!("data-layout for builtin `{}` target, `{}`, \
differs from LLVM default, `{}`",
sess.target.target.llvm_target,
sess.target.target.data_layout,
data_layout);
}
}
let data_layout = CString::new(&sess.target.target.data_layout[..]).unwrap();
llvm::LLVMSetDataLayout(llmod, data_layout.as_ptr());
let llvm_target = sess.target.target.llvm_target.as_bytes();
let llvm_target = CString::new(llvm_target).unwrap();
llvm::LLVMRustSetNormalizedTarget(llmod, llvm_target.as_ptr());
if is_pie_binary(sess) {
llvm::LLVMRustSetModulePIELevel(llmod);
}
(llcx, llmod)
}
impl<'b, 'tcx> SharedCrateContext<'b, 'tcx> {
pub fn new(tcx: TyCtxt<'b, 'tcx, 'tcx>,
check_overflow: bool,
output_filenames: &'b OutputFilenames)
-> SharedCrateContext<'b, 'tcx> {
// An interesting part of Windows which MSVC forces our hand on (and
// apparently MinGW didn't) is the usage of `dllimport` and `dllexport`
// attributes in LLVM IR as well as native dependencies (in C these
// correspond to `__declspec(dllimport)`).
//
// Whenever a dynamic library is built by MSVC it must have its public
// interface specified by functions tagged with `dllexport` or otherwise
// they're not available to be linked against. This poses a few problems
// for the compiler, some of which are somewhat fundamental, but we use
// the `use_dll_storage_attrs` variable below to attach the `dllexport`
// attribute to all LLVM functions that are exported e.g. they're
// already tagged with external linkage). This is suboptimal for a few
// reasons:
//
// * If an object file will never be included in a dynamic library,
// there's no need to attach the dllexport attribute. Most object
// files in Rust are not destined to become part of a dll as binaries
// are statically linked by default.
// * If the compiler is emitting both an rlib and a dylib, the same
// source object file is currently used but with MSVC this may be less
// feasible. The compiler may be able to get around this, but it may
// involve some invasive changes to deal with this.
//
// The flipside of this situation is that whenever you link to a dll and
// you import a function from it, the import should be tagged with
// `dllimport`. At this time, however, the compiler does not emit
// `dllimport` for any declarations other than constants (where it is
// required), which is again suboptimal for even more reasons!
//
// * Calling a function imported from another dll without using
// `dllimport` causes the linker/compiler to have extra overhead (one
// `jmp` instruction on x86) when calling the function.
// * The same object file may be used in different circumstances, so a
// function may be imported from a dll if the object is linked into a
// dll, but it may be just linked against if linked into an rlib.
// * The compiler has no knowledge about whether native functions should
// be tagged dllimport or not.
//
// For now the compiler takes the perf hit (I do not have any numbers to
// this effect) by marking very little as `dllimport` and praying the
// linker will take care of everything. Fixing this problem will likely
// require adding a few attributes to Rust itself (feature gated at the
// start) and then strongly recommending static linkage on MSVC!
let use_dll_storage_attrs = tcx.sess.target.target.options.is_like_msvc;
SharedCrateContext {
tcx,
check_overflow,
use_dll_storage_attrs,
output_filenames,
}
}
pub fn type_needs_drop(&self, ty: Ty<'tcx>) -> bool {
ty.needs_drop(self.tcx, ty::ParamEnv::empty(traits::Reveal::All))
}
pub fn type_is_sized(&self, ty: Ty<'tcx>) -> bool {
ty.is_sized(self.tcx, ty::ParamEnv::empty(traits::Reveal::All), DUMMY_SP)
}
pub fn type_is_freeze(&self, ty: Ty<'tcx>) -> bool {
ty.is_freeze(self.tcx, ty::ParamEnv::empty(traits::Reveal::All), DUMMY_SP)
}
pub fn tcx<'a>(&'a self) -> TyCtxt<'a, 'tcx, 'tcx> {
self.tcx
}
pub fn sess<'a>(&'a self) -> &'a Session {
&self.tcx.sess
}
pub fn dep_graph<'a>(&'a self) -> &'a DepGraph {
&self.tcx.dep_graph
}
pub fn use_dll_storage_attrs(&self) -> bool {
self.use_dll_storage_attrs
}
pub fn output_filenames(&self) -> &OutputFilenames {
self.output_filenames
}
}
impl<'a, 'tcx> LocalCrateContext<'a, 'tcx> {
pub fn new(shared: &SharedCrateContext<'a, 'tcx>,
codegen_unit: CodegenUnit<'tcx>,
crate_trans_items: Arc<FxHashSet<TransItem<'tcx>>>,
exported_symbols: Arc<ExportedSymbols>,)
-> LocalCrateContext<'a, 'tcx> {
unsafe {
// Append ".rs" to LLVM module identifier.
//
// LLVM code generator emits a ".file filename" directive
// for ELF backends. Value of the "filename" is set as the
// LLVM module identifier. Due to a LLVM MC bug[1], LLVM
// crashes if the module identifier is same as other symbols
// such as a function name in the module.
// 1. http://llvm.org/bugs/show_bug.cgi?id=11479
let llmod_id = format!("{}.rs", codegen_unit.name());
let (llcx, llmod) = create_context_and_module(&shared.tcx.sess,
&llmod_id[..]);
let dbg_cx = if shared.tcx.sess.opts.debuginfo != NoDebugInfo {
let dctx = debuginfo::CrateDebugContext::new(llmod);
debuginfo::metadata::compile_unit_metadata(shared,
codegen_unit.name(),
&dctx,
shared.tcx.sess);
Some(dctx)
} else {
None
};
let local_ccx = LocalCrateContext {
llmod,
llcx,
stats: Stats::default(),
codegen_unit,
crate_trans_items,
exported_symbols,
instances: RefCell::new(FxHashMap()),
vtables: RefCell::new(FxHashMap()),
const_cstr_cache: RefCell::new(FxHashMap()),
const_unsized: RefCell::new(FxHashMap()),
const_globals: RefCell::new(FxHashMap()),
statics: RefCell::new(FxHashMap()),
statics_to_rauw: RefCell::new(Vec::new()),
used_statics: RefCell::new(Vec::new()),
lltypes: RefCell::new(FxHashMap()),
int_type: Type::from_ref(ptr::null_mut()),
opaque_vec_type: Type::from_ref(ptr::null_mut()),
str_slice_type: Type::from_ref(ptr::null_mut()),
dbg_cx,
eh_personality: Cell::new(None),
eh_unwind_resume: Cell::new(None),
rust_try_fn: Cell::new(None),
intrinsics: RefCell::new(FxHashMap()),
local_gen_sym_counter: Cell::new(0),
placeholder: PhantomData,
};
let (int_type, opaque_vec_type, str_slice_ty, mut local_ccx) = {
// Do a little dance to create a dummy CrateContext, so we can
// create some things in the LLVM module of this codegen unit
let mut local_ccxs = vec![local_ccx];
let (int_type, opaque_vec_type, str_slice_ty) = {
let dummy_ccx = LocalCrateContext::dummy_ccx(shared,
local_ccxs.as_mut_slice());
let mut str_slice_ty = Type::named_struct(&dummy_ccx, "str_slice");
str_slice_ty.set_struct_body(&[Type::i8p(&dummy_ccx),
Type::int(&dummy_ccx)],
false);
(Type::int(&dummy_ccx), Type::opaque_vec(&dummy_ccx), str_slice_ty)
};
(int_type, opaque_vec_type, str_slice_ty, local_ccxs.pop().unwrap())
};
local_ccx.int_type = int_type;
local_ccx.opaque_vec_type = opaque_vec_type;
local_ccx.str_slice_type = str_slice_ty;
local_ccx
}
}
/// Create a dummy `CrateContext` from `self` and the provided
/// `SharedCrateContext`. This is somewhat dangerous because `self` may
/// not be fully initialized.
///
/// This is used in the `LocalCrateContext` constructor to allow calling
/// functions that expect a complete `CrateContext`, even before the local
/// portion is fully initialized and attached to the `SharedCrateContext`.
fn dummy_ccx(shared: &'a SharedCrateContext<'a, 'tcx>,
local_ccxs: &'a [LocalCrateContext<'a, 'tcx>])
-> CrateContext<'a, 'tcx> {
assert!(local_ccxs.len() == 1);
CrateContext {
shared,
local_ccx: &local_ccxs[0]
}
}
pub fn into_stats(self) -> Stats {
self.stats
}
}
impl<'b, 'tcx> CrateContext<'b, 'tcx> {
pub fn shared(&self) -> &'b SharedCrateContext<'b, 'tcx> {
self.shared
}
fn local(&self) -> &'b LocalCrateContext<'b, 'tcx> {
self.local_ccx
}
pub fn tcx<'a>(&'a self) -> TyCtxt<'a, 'tcx, 'tcx> {
self.shared.tcx
}
pub fn sess<'a>(&'a self) -> &'a Session {
&self.shared.tcx.sess
}
pub fn get_intrinsic(&self, key: &str) -> ValueRef {
if let Some(v) = self.intrinsics().borrow().get(key).cloned() {
return v;
}
match declare_intrinsic(self, key) {
Some(v) => return v,
None => bug!("unknown intrinsic '{}'", key)
}
}
pub fn llmod(&self) -> ModuleRef {
self.local().llmod
}
pub fn llcx(&self) -> ContextRef {
self.local().llcx
}
pub fn codegen_unit(&self) -> &CodegenUnit<'tcx> {
&self.local().codegen_unit
}
pub fn crate_trans_items(&self) -> &FxHashSet<TransItem<'tcx>> {
&self.local().crate_trans_items
}
pub fn exported_symbols(&self) -> &ExportedSymbols {
&self.local().exported_symbols
}
pub fn td(&self) -> llvm::TargetDataRef {
unsafe { llvm::LLVMRustGetModuleDataLayout(self.llmod()) }
}
pub fn instances<'a>(&'a self) -> &'a RefCell<FxHashMap<Instance<'tcx>, ValueRef>> {
&self.local().instances
}
pub fn vtables<'a>(&'a self)
-> &'a RefCell<FxHashMap<(ty::Ty<'tcx>,
Option<ty::PolyExistentialTraitRef<'tcx>>), ValueRef>> {
&self.local().vtables
}
pub fn const_cstr_cache<'a>(&'a self) -> &'a RefCell<FxHashMap<InternedString, ValueRef>> {
&self.local().const_cstr_cache
}
pub fn const_unsized<'a>(&'a self) -> &'a RefCell<FxHashMap<ValueRef, ValueRef>> {
&self.local().const_unsized
}
pub fn const_globals<'a>(&'a self) -> &'a RefCell<FxHashMap<ValueRef, ValueRef>> {
&self.local().const_globals
}
pub fn statics<'a>(&'a self) -> &'a RefCell<FxHashMap<ValueRef, DefId>> {
&self.local().statics
}
pub fn statics_to_rauw<'a>(&'a self) -> &'a RefCell<Vec<(ValueRef, ValueRef)>> {
&self.local().statics_to_rauw
}
pub fn used_statics<'a>(&'a self) -> &'a RefCell<Vec<ValueRef>> {
&self.local().used_statics
}
pub fn lltypes<'a>(&'a self) -> &'a RefCell<FxHashMap<Ty<'tcx>, Type>> {
&self.local().lltypes
}
pub fn stats<'a>(&'a self) -> &'a Stats {
&self.local().stats
}
pub fn int_type(&self) -> Type {
self.local().int_type
}
pub fn str_slice_type(&self) -> Type {
self.local().str_slice_type
}
pub fn dbg_cx<'a>(&'a self) -> &'a Option<debuginfo::CrateDebugContext<'tcx>> {
&self.local().dbg_cx
}
pub fn rust_try_fn<'a>(&'a self) -> &'a Cell<Option<ValueRef>> {
&self.local().rust_try_fn
}
fn intrinsics<'a>(&'a self) -> &'a RefCell<FxHashMap<&'static str, ValueRef>> {
&self.local().intrinsics
}
pub fn check_overflow(&self) -> bool {
self.shared.check_overflow
}
pub fn use_dll_storage_attrs(&self) -> bool {
self.shared.use_dll_storage_attrs()
}
/// Generate a new symbol name with the given prefix. This symbol name must
/// only be used for definitions with `internal` or `private` linkage.
pub fn generate_local_symbol_name(&self, prefix: &str) -> String {
let idx = self.local().local_gen_sym_counter.get();
self.local().local_gen_sym_counter.set(idx + 1);
// Include a '.' character, so there can be no accidental conflicts with
// user defined names
let mut name = String::with_capacity(prefix.len() + 6);
name.push_str(prefix);
name.push_str(".");
base_n::push_str(idx as u64, base_n::ALPHANUMERIC_ONLY, &mut name);
name
}
pub fn eh_personality(&self) -> ValueRef {
// The exception handling personality function.
//
// If our compilation unit has the `eh_personality` lang item somewhere
// within it, then we just need to translate that. Otherwise, we're
// building an rlib which will depend on some upstream implementation of
// this function, so we just codegen a generic reference to it. We don't
// specify any of the types for the function, we just make it a symbol
// that LLVM can later use.
//
// Note that MSVC is a little special here in that we don't use the
// `eh_personality` lang item at all. Currently LLVM has support for
// both Dwarf and SEH unwind mechanisms for MSVC targets and uses the
// *name of the personality function* to decide what kind of unwind side
// tables/landing pads to emit. It looks like Dwarf is used by default,
// injecting a dependency on the `_Unwind_Resume` symbol for resuming
// an "exception", but for MSVC we want to force SEH. This means that we
// can't actually have the personality function be our standard
// `rust_eh_personality` function, but rather we wired it up to the
// CRT's custom personality function, which forces LLVM to consider
// landing pads as "landing pads for SEH".
if let Some(llpersonality) = self.local().eh_personality.get() {
return llpersonality
}
let tcx = self.tcx();
let llfn = match tcx.lang_items.eh_personality() {
Some(def_id) if !base::wants_msvc_seh(self.sess()) => {
callee::resolve_and_get_fn(self, def_id, tcx.intern_substs(&[]))
}
_ => {
let name = if base::wants_msvc_seh(self.sess()) {
"__CxxFrameHandler3"
} else {
"rust_eh_personality"
};
let fty = Type::variadic_func(&[], &Type::i32(self));
declare::declare_cfn(self, name, fty)
}
};
self.local().eh_personality.set(Some(llfn));
llfn
}
// Returns a ValueRef of the "eh_unwind_resume" lang item if one is defined,
// otherwise declares it as an external function.
pub fn eh_unwind_resume(&self) -> ValueRef {
use attributes;
let unwresume = &self.local().eh_unwind_resume;
if let Some(llfn) = unwresume.get() {
return llfn;
}
let tcx = self.tcx();
assert!(self.sess().target.target.options.custom_unwind_resume);
if let Some(def_id) = tcx.lang_items.eh_unwind_resume() {
let llfn = callee::resolve_and_get_fn(self, def_id, tcx.intern_substs(&[]));
unwresume.set(Some(llfn));
return llfn;
}
let ty = tcx.mk_fn_ptr(ty::Binder(tcx.mk_fn_sig(
iter::once(tcx.mk_mut_ptr(tcx.types.u8)),
tcx.types.never,
false,
hir::Unsafety::Unsafe,
Abi::C
)));
let llfn = declare::declare_fn(self, "rust_eh_unwind_resume", ty);
attributes::unwind(llfn, true);
unwresume.set(Some(llfn));
llfn
}
}
impl<'a, 'tcx> ty::layout::HasDataLayout for &'a SharedCrateContext<'a, 'tcx> {
fn data_layout(&self) -> &ty::layout::TargetDataLayout {
&self.tcx.data_layout
}
}
impl<'a, 'tcx> ty::layout::HasDataLayout for &'a CrateContext<'a, 'tcx> {
fn data_layout(&self) -> &ty::layout::TargetDataLayout {
&self.shared.tcx.data_layout
}
}
impl<'a, 'tcx> LayoutTyper<'tcx> for &'a SharedCrateContext<'a, 'tcx> {
type TyLayout = TyLayout<'tcx>;
fn tcx<'b>(&'b self) -> TyCtxt<'b, 'tcx, 'tcx> {
self.tcx
}
fn layout_of(self, ty: Ty<'tcx>) -> Self::TyLayout {
let param_env = ty::ParamEnv::empty(traits::Reveal::All);
LayoutCx::new(self.tcx, param_env)
.layout_of(ty)
.unwrap_or_else(|e| match e {
LayoutError::SizeOverflow(_) => self.sess().fatal(&e.to_string()),
_ => bug!("failed to get layout for `{}`: {}", ty, e)
})
}
fn normalize_projections(self, ty: Ty<'tcx>) -> Ty<'tcx> {
self.tcx().normalize_associated_type(&ty)
}
}
impl<'a, 'tcx> LayoutTyper<'tcx> for &'a CrateContext<'a, 'tcx> {
type TyLayout = TyLayout<'tcx>;
fn tcx<'b>(&'b self) -> TyCtxt<'b, 'tcx, 'tcx> {
self.shared.tcx
}
fn layout_of(self, ty: Ty<'tcx>) -> Self::TyLayout {
self.shared.layout_of(ty)
}
fn normalize_projections(self, ty: Ty<'tcx>) -> Ty<'tcx> {
self.shared.normalize_projections(ty)
}
}
/// Declare any llvm intrinsics that you might need
fn declare_intrinsic(ccx: &CrateContext, key: &str) -> Option<ValueRef> {
macro_rules! ifn {
($name:expr, fn() -> $ret:expr) => (
if key == $name {
let f = declare::declare_cfn(ccx, $name, Type::func(&[], &$ret));
llvm::SetUnnamedAddr(f, false);
ccx.intrinsics().borrow_mut().insert($name, f.clone());
return Some(f);
}
);
($name:expr, fn(...) -> $ret:expr) => (
if key == $name {
let f = declare::declare_cfn(ccx, $name, Type::variadic_func(&[], &$ret));
llvm::SetUnnamedAddr(f, false);
ccx.intrinsics().borrow_mut().insert($name, f.clone());
return Some(f);
}
);
($name:expr, fn($($arg:expr),*) -> $ret:expr) => (
if key == $name {
let f = declare::declare_cfn(ccx, $name, Type::func(&[$($arg),*], &$ret));
llvm::SetUnnamedAddr(f, false);
ccx.intrinsics().borrow_mut().insert($name, f.clone());
return Some(f);
}
);
}
macro_rules! mk_struct {
($($field_ty:expr),*) => (Type::struct_(ccx, &[$($field_ty),*], false))
}
let i8p = Type::i8p(ccx);
let void = Type::void(ccx);
let i1 = Type::i1(ccx);
let t_i8 = Type::i8(ccx);
let t_i16 = Type::i16(ccx);
let t_i32 = Type::i32(ccx);
let t_i64 = Type::i64(ccx);
let t_i128 = Type::i128(ccx);
let t_f32 = Type::f32(ccx);
let t_f64 = Type::f64(ccx);
ifn!("llvm.memcpy.p0i8.p0i8.i16", fn(i8p, i8p, t_i16, t_i32, i1) -> void);
ifn!("llvm.memcpy.p0i8.p0i8.i32", fn(i8p, i8p, t_i32, t_i32, i1) -> void);
ifn!("llvm.memcpy.p0i8.p0i8.i64", fn(i8p, i8p, t_i64, t_i32, i1) -> void);
ifn!("llvm.memmove.p0i8.p0i8.i16", fn(i8p, i8p, t_i16, t_i32, i1) -> void);
ifn!("llvm.memmove.p0i8.p0i8.i32", fn(i8p, i8p, t_i32, t_i32, i1) -> void);
ifn!("llvm.memmove.p0i8.p0i8.i64", fn(i8p, i8p, t_i64, t_i32, i1) -> void);
ifn!("llvm.memset.p0i8.i16", fn(i8p, t_i8, t_i16, t_i32, i1) -> void);
ifn!("llvm.memset.p0i8.i32", fn(i8p, t_i8, t_i32, t_i32, i1) -> void);
ifn!("llvm.memset.p0i8.i64", fn(i8p, t_i8, t_i64, t_i32, i1) -> void);
ifn!("llvm.trap", fn() -> void);
ifn!("llvm.debugtrap", fn() -> void);
ifn!("llvm.frameaddress", fn(t_i32) -> i8p);
ifn!("llvm.powi.f32", fn(t_f32, t_i32) -> t_f32);
ifn!("llvm.powi.f64", fn(t_f64, t_i32) -> t_f64);
ifn!("llvm.pow.f32", fn(t_f32, t_f32) -> t_f32);
ifn!("llvm.pow.f64", fn(t_f64, t_f64) -> t_f64);
ifn!("llvm.sqrt.f32", fn(t_f32) -> t_f32);
ifn!("llvm.sqrt.f64", fn(t_f64) -> t_f64);
ifn!("llvm.sin.f32", fn(t_f32) -> t_f32);
ifn!("llvm.sin.f64", fn(t_f64) -> t_f64);
ifn!("llvm.cos.f32", fn(t_f32) -> t_f32);
ifn!("llvm.cos.f64", fn(t_f64) -> t_f64);
ifn!("llvm.exp.f32", fn(t_f32) -> t_f32);
ifn!("llvm.exp.f64", fn(t_f64) -> t_f64);
ifn!("llvm.exp2.f32", fn(t_f32) -> t_f32);
ifn!("llvm.exp2.f64", fn(t_f64) -> t_f64);
ifn!("llvm.log.f32", fn(t_f32) -> t_f32);
ifn!("llvm.log.f64", fn(t_f64) -> t_f64);
ifn!("llvm.log10.f32", fn(t_f32) -> t_f32);
ifn!("llvm.log10.f64", fn(t_f64) -> t_f64);
ifn!("llvm.log2.f32", fn(t_f32) -> t_f32);
ifn!("llvm.log2.f64", fn(t_f64) -> t_f64);
ifn!("llvm.fma.f32", fn(t_f32, t_f32, t_f32) -> t_f32);
ifn!("llvm.fma.f64", fn(t_f64, t_f64, t_f64) -> t_f64);
ifn!("llvm.fabs.f32", fn(t_f32) -> t_f32);
ifn!("llvm.fabs.f64", fn(t_f64) -> t_f64);
ifn!("llvm.floor.f32", fn(t_f32) -> t_f32);
ifn!("llvm.floor.f64", fn(t_f64) -> t_f64);
ifn!("llvm.ceil.f32", fn(t_f32) -> t_f32);
ifn!("llvm.ceil.f64", fn(t_f64) -> t_f64);
ifn!("llvm.trunc.f32", fn(t_f32) -> t_f32);
ifn!("llvm.trunc.f64", fn(t_f64) -> t_f64);
ifn!("llvm.copysign.f32", fn(t_f32, t_f32) -> t_f32);
ifn!("llvm.copysign.f64", fn(t_f64, t_f64) -> t_f64);
ifn!("llvm.round.f32", fn(t_f32) -> t_f32);
ifn!("llvm.round.f64", fn(t_f64) -> t_f64);
ifn!("llvm.rint.f32", fn(t_f32) -> t_f32);
ifn!("llvm.rint.f64", fn(t_f64) -> t_f64);
ifn!("llvm.nearbyint.f32", fn(t_f32) -> t_f32);
ifn!("llvm.nearbyint.f64", fn(t_f64) -> t_f64);
ifn!("llvm.ctpop.i8", fn(t_i8) -> t_i8);
ifn!("llvm.ctpop.i16", fn(t_i16) -> t_i16);
ifn!("llvm.ctpop.i32", fn(t_i32) -> t_i32);
ifn!("llvm.ctpop.i64", fn(t_i64) -> t_i64);
ifn!("llvm.ctpop.i128", fn(t_i128) -> t_i128);
ifn!("llvm.ctlz.i8", fn(t_i8 , i1) -> t_i8);
ifn!("llvm.ctlz.i16", fn(t_i16, i1) -> t_i16);
ifn!("llvm.ctlz.i32", fn(t_i32, i1) -> t_i32);
ifn!("llvm.ctlz.i64", fn(t_i64, i1) -> t_i64);
ifn!("llvm.ctlz.i128", fn(t_i128, i1) -> t_i128);
ifn!("llvm.cttz.i8", fn(t_i8 , i1) -> t_i8);
ifn!("llvm.cttz.i16", fn(t_i16, i1) -> t_i16);
ifn!("llvm.cttz.i32", fn(t_i32, i1) -> t_i32);
ifn!("llvm.cttz.i64", fn(t_i64, i1) -> t_i64);
ifn!("llvm.cttz.i128", fn(t_i128, i1) -> t_i128);
ifn!("llvm.bswap.i16", fn(t_i16) -> t_i16);
ifn!("llvm.bswap.i32", fn(t_i32) -> t_i32);
ifn!("llvm.bswap.i64", fn(t_i64) -> t_i64);
ifn!("llvm.bswap.i128", fn(t_i128) -> t_i128);
ifn!("llvm.sadd.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.sadd.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.sadd.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.sadd.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.sadd.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1});
ifn!("llvm.uadd.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.uadd.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.uadd.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.uadd.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.uadd.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1});
ifn!("llvm.ssub.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.ssub.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.ssub.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.ssub.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.ssub.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1});
ifn!("llvm.usub.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.usub.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.usub.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.usub.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.usub.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1});
ifn!("llvm.smul.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.smul.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.smul.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.smul.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.smul.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1});
ifn!("llvm.umul.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.umul.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.umul.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.umul.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.umul.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1});
ifn!("llvm.lifetime.start", fn(t_i64,i8p) -> void);
ifn!("llvm.lifetime.end", fn(t_i64, i8p) -> void);
ifn!("llvm.expect.i1", fn(i1, i1) -> i1);
ifn!("llvm.eh.typeid.for", fn(i8p) -> t_i32);
ifn!("llvm.localescape", fn(...) -> void);
ifn!("llvm.localrecover", fn(i8p, i8p, t_i32) -> i8p);
ifn!("llvm.x86.seh.recoverfp", fn(i8p, i8p) -> i8p);
ifn!("llvm.assume", fn(i1) -> void);
ifn!("llvm.prefetch", fn(i8p, t_i32, t_i32, t_i32) -> void);
if ccx.sess().opts.debuginfo != NoDebugInfo {
ifn!("llvm.dbg.declare", fn(Type::metadata(ccx), Type::metadata(ccx)) -> void);
ifn!("llvm.dbg.value", fn(Type::metadata(ccx), t_i64, Type::metadata(ccx)) -> void);
}
return None;
}