Improve the `array::map` codegen
The `map` method on arrays [is documented as sometimes performing poorly](https://doc.rust-lang.org/std/primitive.array.html#note-on-performance-and-stack-usage), and after [a question on URLO](https://users.rust-lang.org/t/try-trait-residual-o-trait-and-try-collect-into-array/88510?u=scottmcm) prompted me to take another look at the core [`try_collect_into_array`](7c46fb2111/library/core/src/array/mod.rs (L865-L912)) function, I had some ideas that ended up working better than I'd expected.
There's three main ideas in here, split over three commits:
1. Don't use `array::IntoIter` when we can avoid it, since that seems to not get SRoA'd, meaning that every step writes things like loop counters into the stack unnecessarily
2. Don't return arrays in `Result`s unnecessarily, as that doesn't seem to optimize away even with `unwrap_unchecked` (perhaps because it needs to get moved into a new LLVM type to account for the discriminant)
3. Don't distract LLVM with all the `Option` dances when we know for sure we have enough items (like in `map` and `zip`). This one's a larger commit as to do it I ended up adding a new `pub(crate)` trait, but hopefully those changes are still straight-forward.
(No libs-api changes; everything should be completely implementation-detail-internal.)
It's still not completely fixed -- I think it needs pcwalton's `memcpy` optimizations still (#103830) to get further -- but this seems to go much better than before. And the remaining `memcpy`s are just `transmute`-equivalent (`[T; N] -> ManuallyDrop<[T; N]>` and `[MaybeUninit<T>; N] -> [T; N]`), so hopefully those will be easier to remove with LLVM16 than the previous subobject copies 🤞
r? `@thomcc`
As a simple example, this test
```rust
pub fn long_integer_map(x: [u32; 64]) -> [u32; 64] {
x.map(|x| 13 * x + 7)
}
```
On nightly <https://rust.godbolt.org/z/xK7548TGj> takes `sub rsp, 808`
```llvm
start:
%array.i.i.i.i = alloca [64 x i32], align 4
%_3.sroa.5.i.i.i = alloca [65 x i32], align 4
%_5.i = alloca %"core::iter::adapters::map::Map<core::array::iter::IntoIter<u32, 64>, [closure@/app/example.rs:2:11: 2:14]>", align 8
```
(and yes, that's a 6**5**-element array `alloca` despite 6**4**-element input and output)
But with this PR it's only `sub rsp, 520`
```llvm
start:
%array.i.i.i.i.i.i = alloca [64 x i32], align 4
%array1.i.i.i = alloca %"core::mem::manually_drop::ManuallyDrop<[u32; 64]>", align 4
```
Similarly, the loop it emits on nightly is scalar-only and horrifying
```nasm
.LBB0_1:
mov esi, 64
mov edi, 0
cmp rdx, 64
je .LBB0_3
lea rsi, [rdx + 1]
mov qword ptr [rsp + 784], rsi
mov r8d, dword ptr [rsp + 4*rdx + 528]
mov edi, 1
lea edx, [r8 + 2*r8]
lea r8d, [r8 + 4*rdx]
add r8d, 7
.LBB0_3:
test edi, edi
je .LBB0_11
mov dword ptr [rsp + 4*rcx + 272], r8d
cmp rsi, 64
jne .LBB0_6
xor r8d, r8d
mov edx, 64
test r8d, r8d
jne .LBB0_8
jmp .LBB0_11
.LBB0_6:
lea rdx, [rsi + 1]
mov qword ptr [rsp + 784], rdx
mov edi, dword ptr [rsp + 4*rsi + 528]
mov r8d, 1
lea esi, [rdi + 2*rdi]
lea edi, [rdi + 4*rsi]
add edi, 7
test r8d, r8d
je .LBB0_11
.LBB0_8:
mov dword ptr [rsp + 4*rcx + 276], edi
add rcx, 2
cmp rcx, 64
jne .LBB0_1
```
whereas with this PR it's unrolled and vectorized
```nasm
vpmulld ymm1, ymm0, ymmword ptr [rsp + 64]
vpaddd ymm1, ymm1, ymm2
vmovdqu ymmword ptr [rsp + 328], ymm1
vpmulld ymm1, ymm0, ymmword ptr [rsp + 96]
vpaddd ymm1, ymm1, ymm2
vmovdqu ymmword ptr [rsp + 360], ymm1
```
(though sadly still stack-to-stack)
One extension worth noting is the use of revisions as custom prefixes for
FileCheck. If your codegen test has different behavior based on the chosen
target or different compiler flags that you want to exercise, you can use a
revisions annotation, like so:
After specifying those variations, you can write different expected, or
explicitly unexpected output by using <prefix>-SAME: and <prefix>-NOT:,
like so: