rust/src/libcollections/btree.rs
Niko Matsakis 9e3d0b002a librustc: Remove the fallback to int from typechecking.
This breaks a fair amount of code. The typical patterns are:

* `for _ in range(0, 10)`: change to `for _ in range(0u, 10)`;

* `println!("{}", 3)`: change to `println!("{}", 3i)`;

* `[1, 2, 3].len()`: change to `[1i, 2, 3].len()`.

RFC #30. Closes #6023.

[breaking-change]
2014-06-24 17:18:48 -07:00

916 lines
31 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// btree.rs
//
//! Starting implementation of a btree for rust.
//! Structure inspired by github user davidhalperin's gist.
///A B-tree contains a root node (which contains a vector of elements),
///a length (the height of the tree), and lower and upper bounds on the
///number of elements that a given node can contain.
use core::prelude::*;
use alloc::owned::Box;
use core::fmt;
use core::fmt::Show;
use Collection;
use vec::Vec;
#[allow(missing_doc)]
pub struct BTree<K, V> {
root: Node<K, V>,
len: uint,
lower_bound: uint,
upper_bound: uint
}
impl<K: Ord, V> BTree<K, V> {
///Returns new BTree with root node (leaf) and user-supplied lower bound
///The lower bound applies to every node except the root node.
pub fn new(k: K, v: V, lb: uint) -> BTree<K, V> {
BTree {
root: Node::new_leaf(vec!(LeafElt::new(k, v))),
len: 1,
lower_bound: lb,
upper_bound: 2 * lb
}
}
///Helper function for clone: returns new BTree with supplied root node,
///length, and lower bound. For use when the length is known already.
fn new_with_node_len(n: Node<K, V>,
length: uint,
lb: uint) -> BTree<K, V> {
BTree {
root: n,
len: length,
lower_bound: lb,
upper_bound: 2 * lb
}
}
}
//We would probably want to remove the dependence on the Clone trait in the future.
//It is here as a crutch to ensure values can be passed around through the tree's nodes
//especially during insertions and deletions.
impl<K: Clone + Ord, V: Clone> BTree<K, V> {
///Returns the value of a given key, which may not exist in the tree.
///Calls the root node's get method.
pub fn get(self, k: K) -> Option<V> {
return self.root.get(k);
}
///An insert method that uses the clone() feature for support.
pub fn insert(mut self, k: K, v: V) -> BTree<K, V> {
let (a, b) = self.root.clone().insert(k, v, self.upper_bound.clone());
if b {
match a.clone() {
LeafNode(leaf) => {
self.root = Node::new_leaf(leaf.clone().elts);
}
BranchNode(branch) => {
self.root = Node::new_branch(branch.clone().elts,
branch.clone().rightmost_child);
}
}
}
self
}
}
impl<K: Clone + Ord, V: Clone> Clone for BTree<K, V> {
///Implements the Clone trait for the BTree.
///Uses a helper function/constructor to produce a new BTree.
fn clone(&self) -> BTree<K, V> {
BTree::new_with_node_len(self.root.clone(), self.len, self.lower_bound)
}
}
impl<K: Ord, V: Eq> PartialEq for BTree<K, V> {
fn eq(&self, other: &BTree<K, V>) -> bool {
self.root.cmp(&other.root) == Equal
}
}
impl<K: Ord, V: Eq> Eq for BTree<K, V> {}
impl<K: Ord, V: Eq> PartialOrd for BTree<K, V> {
fn lt(&self, other: &BTree<K, V>) -> bool {
self.cmp(other) == Less
}
}
impl<K: Ord, V: Eq> Ord for BTree<K, V> {
///Returns an ordering based on the root nodes of each BTree.
fn cmp(&self, other: &BTree<K, V>) -> Ordering {
self.root.cmp(&other.root)
}
}
impl<K: fmt::Show + Ord, V: fmt::Show> fmt::Show for BTree<K, V> {
///Returns a string representation of the BTree
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.root.fmt(f)
}
}
//Node types
//A node is either a LeafNode or a BranchNode, which contain either a Leaf or a Branch.
//Branches contain BranchElts, which contain a left child (another node) and a key-value
//pair. Branches also contain the rightmost child of the elements in the array.
//Leaves contain LeafElts, which do not have children.
enum Node<K, V> {
LeafNode(Leaf<K, V>),
BranchNode(Branch<K, V>)
}
//Node functions/methods
impl<K: Ord, V> Node<K, V> {
///Creates a new leaf node given a vector of elements.
fn new_leaf(vec: Vec<LeafElt<K, V>>) -> Node<K,V> {
LeafNode(Leaf::new(vec))
}
///Creates a new branch node given a vector of an elements and a pointer to a rightmost child.
fn new_branch(vec: Vec<BranchElt<K, V>>, right: Box<Node<K, V>>)
-> Node<K, V> {
BranchNode(Branch::new(vec, right))
}
///Determines whether the given Node contains a Branch or a Leaf.
///Used in testing.
fn is_leaf(&self) -> bool {
match self {
&LeafNode(..) => true,
&BranchNode(..) => false
}
}
///A binary search function for Nodes.
///Calls either the Branch's or the Leaf's bsearch function.
fn bsearch_node(&self, k: K) -> Option<uint> {
match self {
&LeafNode(ref leaf) => leaf.bsearch_leaf(k),
&BranchNode(ref branch) => branch.bsearch_branch(k)
}
}
}
impl<K: Clone + Ord, V: Clone> Node<K, V> {
///Returns the corresponding value to the provided key.
///get() is called in different ways on a branch or a leaf.
fn get(&self, k: K) -> Option<V> {
match *self {
LeafNode(ref leaf) => return leaf.get(k),
BranchNode(ref branch) => return branch.get(k)
}
}
///Matches on the Node, then performs and returns the appropriate insert method.
fn insert(self, k: K, v: V, ub: uint) -> (Node<K, V>, bool) {
match self {
LeafNode(leaf) => leaf.insert(k, v, ub),
BranchNode(branch) => branch.insert(k, v, ub)
}
}
}
impl<K: Clone + Ord, V: Clone> Clone for Node<K, V> {
///Returns a new node based on whether or not it is a branch or a leaf.
fn clone(&self) -> Node<K, V> {
match *self {
LeafNode(ref leaf) => {
Node::new_leaf(leaf.elts.clone())
}
BranchNode(ref branch) => {
Node::new_branch(branch.elts.clone(),
branch.rightmost_child.clone())
}
}
}
}
impl<K: Ord, V: Eq> PartialEq for Node<K, V> {
fn eq(&self, other: &Node<K, V>) -> bool {
match *self{
BranchNode(ref branch) => {
if other.is_leaf() {
return false;
}
match *other {
BranchNode(ref branch2) => branch.cmp(branch2) == Equal,
LeafNode(..) => false
}
}
LeafNode(ref leaf) => {
match *other {
LeafNode(ref leaf2) => leaf.cmp(leaf2) == Equal,
BranchNode(..) => false
}
}
}
}
}
impl<K: Ord, V: Eq> Eq for Node<K, V> {}
impl<K: Ord, V: Eq> PartialOrd for Node<K, V> {
fn lt(&self, other: &Node<K, V>) -> bool {
self.cmp(other) == Less
}
}
impl<K: Ord, V: Eq> Ord for Node<K, V> {
///Implementation of Ord for Nodes.
fn cmp(&self, other: &Node<K, V>) -> Ordering {
match *self {
LeafNode(ref leaf) => {
match *other {
LeafNode(ref leaf2) => leaf.cmp(leaf2),
BranchNode(_) => Less
}
}
BranchNode(ref branch) => {
match *other {
BranchNode(ref branch2) => branch.cmp(branch2),
LeafNode(_) => Greater
}
}
}
}
}
impl<K: fmt::Show + Ord, V: fmt::Show> fmt::Show for Node<K, V> {
///Returns a string representation of a Node.
///Will iterate over the Node and show "Key: x, value: y, child: () // "
///for all elements in the Node. "Child" only exists if the Node contains
///a branch.
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
LeafNode(ref leaf) => leaf.fmt(f),
BranchNode(ref branch) => branch.fmt(f),
}
}
}
//A leaf is a vector with elements that contain no children. A leaf also
//does not contain a rightmost child.
struct Leaf<K, V> {
elts: Vec<LeafElt<K, V>>
}
//Vector of values with children, plus a rightmost child (greater than all)
struct Branch<K, V> {
elts: Vec<BranchElt<K,V>>,
rightmost_child: Box<Node<K, V>>,
}
impl<K: Ord, V> Leaf<K, V> {
///Creates a new Leaf from a vector of LeafElts.
fn new(vec: Vec<LeafElt<K, V>>) -> Leaf<K, V> {
Leaf {
elts: vec
}
}
///Searches a leaf for a spot for a new element using a binary search.
///Returns None if the element is already in the vector.
fn bsearch_leaf(&self, k: K) -> Option<uint> {
let mut high: uint = self.elts.len();
let mut low: uint = 0;
let mut midpoint: uint = (high - low) / 2 ;
if midpoint == high {
midpoint = 0;
}
loop {
let order = self.elts.get(midpoint).key.cmp(&k);
match order {
Equal => {
return None;
}
Greater => {
if midpoint > 0 {
if self.elts.get(midpoint - 1).key.cmp(&k) == Less {
return Some(midpoint);
}
else {
let tmp = midpoint;
midpoint = midpoint / 2;
high = tmp;
continue;
}
}
else {
return Some(0);
}
}
Less => {
if midpoint + 1 < self.elts.len() {
if self.elts.get(midpoint + 1).key.cmp(&k) == Greater {
return Some(midpoint);
}
else {
let tmp = midpoint;
midpoint = (high + low) / 2;
low = tmp;
}
}
else {
return Some(self.elts.len());
}
}
}
}
}
}
impl<K: Clone + Ord, V: Clone> Leaf<K, V> {
///Returns the corresponding value to the supplied key.
fn get(&self, k: K) -> Option<V> {
for s in self.elts.iter() {
let order = s.key.cmp(&k);
match order {
Equal => return Some(s.value.clone()),
_ => {}
}
}
return None;
}
///Uses clone() to facilitate inserting new elements into a tree.
fn insert(mut self, k: K, v: V, ub: uint) -> (Node<K, V>, bool) {
let to_insert = LeafElt::new(k, v);
let index: Option<uint> = self.bsearch_leaf(to_insert.clone().key);
//Check index to see whether we actually inserted the element into the vector.
match index {
//If the index is None, the new element already exists in the vector.
None => {
return (Node::new_leaf(self.clone().elts), false);
}
//If there is an index, insert at that index.
_ => {
if index.unwrap() >= self.elts.len() {
self.elts.push(to_insert.clone());
}
else {
self.elts.insert(index.unwrap(), to_insert.clone());
}
}
}
//If we have overfilled the vector (by making its size greater than the
//upper bound), we return a new Branch with one element and two children.
if self.elts.len() > ub {
let midpoint_opt = self.elts.remove(ub / 2);
let midpoint = midpoint_opt.unwrap();
let (left_leaf, right_leaf) = self.elts.partition(|le|
le.key.cmp(&midpoint.key.clone())
== Less);
let branch_return = Node::new_branch(vec!(BranchElt::new(midpoint.key.clone(),
midpoint.value.clone(),
box Node::new_leaf(left_leaf))),
box Node::new_leaf(right_leaf));
return (branch_return, true);
}
(Node::new_leaf(self.elts.clone()), true)
}
}
impl<K: Clone + Ord, V: Clone> Clone for Leaf<K, V> {
///Returns a new Leaf with the same elts.
fn clone(&self) -> Leaf<K, V> {
Leaf::new(self.elts.clone())
}
}
impl<K: Ord, V: Eq> PartialEq for Leaf<K, V> {
fn eq(&self, other: &Leaf<K, V>) -> bool {
self.elts == other.elts
}
}
impl<K: Ord, V: Eq> Eq for Leaf<K, V> {}
impl<K: Ord, V: Eq> PartialOrd for Leaf<K, V> {
fn lt(&self, other: &Leaf<K, V>) -> bool {
self.cmp(other) == Less
}
}
impl<K: Ord, V: Eq> Ord for Leaf<K, V> {
///Returns an ordering based on the first element of each Leaf.
fn cmp(&self, other: &Leaf<K, V>) -> Ordering {
if self.elts.len() > other.elts.len() {
return Greater;
}
if self.elts.len() < other.elts.len() {
return Less;
}
self.elts.get(0).cmp(other.elts.get(0))
}
}
impl<K: fmt::Show + Ord, V: fmt::Show> fmt::Show for Leaf<K, V> {
///Returns a string representation of a Leaf.
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
for (i, s) in self.elts.iter().enumerate() {
if i != 0 { try!(write!(f, " // ")) }
try!(write!(f, "{}", *s))
}
Ok(())
}
}
impl<K: Ord, V> Branch<K, V> {
///Creates a new Branch from a vector of BranchElts and a rightmost child (a node).
fn new(vec: Vec<BranchElt<K, V>>, right: Box<Node<K, V>>)
-> Branch<K, V> {
Branch {
elts: vec,
rightmost_child: right
}
}
fn bsearch_branch(&self, k: K) -> Option<uint> {
let mut midpoint: uint = self.elts.len() / 2;
let mut high: uint = self.elts.len();
let mut low: uint = 0u;
if midpoint == high {
midpoint = 0u;
}
loop {
let order = self.elts.get(midpoint).key.cmp(&k);
match order {
Equal => {
return None;
}
Greater => {
if midpoint > 0 {
if self.elts.get(midpoint - 1).key.cmp(&k) == Less {
return Some(midpoint);
}
else {
let tmp = midpoint;
midpoint = (midpoint - low) / 2;
high = tmp;
continue;
}
}
else {
return Some(0);
}
}
Less => {
if midpoint + 1 < self.elts.len() {
if self.elts.get(midpoint + 1).key.cmp(&k) == Greater {
return Some(midpoint);
}
else {
let tmp = midpoint;
midpoint = (high - midpoint) / 2;
low = tmp;
}
}
else {
return Some(self.elts.len());
}
}
}
}
}
}
impl<K: Clone + Ord, V: Clone> Branch<K, V> {
///Returns the corresponding value to the supplied key.
///If the key is not there, find the child that might hold it.
fn get(&self, k: K) -> Option<V> {
for s in self.elts.iter() {
let order = s.key.cmp(&k);
match order {
Less => return s.left.get(k),
Equal => return Some(s.value.clone()),
_ => {}
}
}
self.rightmost_child.get(k)
}
///An insert method that uses .clone() for support.
fn insert(mut self, k: K, v: V, ub: uint) -> (Node<K, V>, bool) {
let mut new_branch = Node::new_branch(self.clone().elts, self.clone().rightmost_child);
let mut outcome = false;
let index: Option<uint> = new_branch.bsearch_node(k.clone());
//First, find which path down the tree will lead to the appropriate leaf
//for the key-value pair.
match index.clone() {
None => {
return (Node::new_branch(self.clone().elts,
self.clone().rightmost_child),
outcome);
}
_ => {
if index.unwrap() == self.elts.len() {
let new_outcome = self.clone().rightmost_child.insert(k.clone(),
v.clone(),
ub.clone());
new_branch = new_outcome.clone().val0();
outcome = new_outcome.val1();
}
else {
let new_outcome = self.elts.get(index.unwrap()).left.clone().insert(k.clone(),
v.clone(),
ub.clone());
new_branch = new_outcome.clone().val0();
outcome = new_outcome.val1();
}
//Check to see whether a branch or a leaf was returned from the
//tree traversal.
match new_branch.clone() {
//If we have a leaf, we do not need to resize the tree,
//so we can return false.
LeafNode(..) => {
if index.unwrap() == self.elts.len() {
self.rightmost_child = box new_branch.clone();
}
else {
self.elts.get_mut(index.unwrap()).left = box new_branch.clone();
}
return (Node::new_branch(self.clone().elts,
self.clone().rightmost_child),
true);
}
//If we have a branch, we might need to refactor the tree.
BranchNode(..) => {}
}
}
}
//If we inserted something into the tree, do the following:
if outcome {
match new_branch.clone() {
//If we have a new leaf node, integrate it into the current branch
//and return it, saying we have inserted a new element.
LeafNode(..) => {
if index.unwrap() == self.elts.len() {
self.rightmost_child = box new_branch;
}
else {
self.elts.get_mut(index.unwrap()).left = box new_branch;
}
return (Node::new_branch(self.clone().elts,
self.clone().rightmost_child),
true);
}
//If we have a new branch node, attempt to insert it into the tree
//as with the key-value pair, then check to see if the node is overfull.
BranchNode(branch) => {
let new_elt = branch.elts.get(0).clone();
let new_elt_index = self.bsearch_branch(new_elt.clone().key);
match new_elt_index {
None => {
return (Node::new_branch(self.clone().elts,
self.clone().rightmost_child),
false);
}
_ => {
self.elts.insert(new_elt_index.unwrap(), new_elt);
if new_elt_index.unwrap() + 1 >= self.elts.len() {
self.rightmost_child = branch.clone().rightmost_child;
}
else {
self.elts.get_mut(new_elt_index.unwrap() + 1).left =
branch.clone().rightmost_child;
}
}
}
}
}
//If the current node is overfilled, create a new branch with one element
//and two children.
if self.elts.len() > ub {
let midpoint = self.elts.remove(ub / 2).unwrap();
let (new_left, new_right) = self.clone().elts.partition(|le|
midpoint.key.cmp(&le.key)
== Greater);
new_branch = Node::new_branch(
vec!(BranchElt::new(midpoint.clone().key,
midpoint.clone().value,
box Node::new_branch(new_left,
midpoint.clone().left))),
box Node::new_branch(new_right, self.clone().rightmost_child));
return (new_branch, true);
}
}
(Node::new_branch(self.elts.clone(), self.rightmost_child.clone()), outcome)
}
}
impl<K: Clone + Ord, V: Clone> Clone for Branch<K, V> {
///Returns a new branch using the clone methods of the Branch's internal variables.
fn clone(&self) -> Branch<K, V> {
Branch::new(self.elts.clone(), self.rightmost_child.clone())
}
}
impl<K: Ord, V: Eq> PartialEq for Branch<K, V> {
fn eq(&self, other: &Branch<K, V>) -> bool {
self.elts == other.elts
}
}
impl<K: Ord, V: Eq> Eq for Branch<K, V> {}
impl<K: Ord, V: Eq> PartialOrd for Branch<K, V> {
fn lt(&self, other: &Branch<K, V>) -> bool {
self.cmp(other) == Less
}
}
impl<K: Ord, V: Eq> Ord for Branch<K, V> {
///Compares the first elements of two branches to determine an ordering
fn cmp(&self, other: &Branch<K, V>) -> Ordering {
if self.elts.len() > other.elts.len() {
return Greater;
}
if self.elts.len() < other.elts.len() {
return Less;
}
self.elts.get(0).cmp(other.elts.get(0))
}
}
impl<K: fmt::Show + Ord, V: fmt::Show> fmt::Show for Branch<K, V> {
///Returns a string representation of a Branch.
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
for (i, s) in self.elts.iter().enumerate() {
if i != 0 { try!(write!(f, " // ")) }
try!(write!(f, "{}", *s))
}
write!(f, " // rightmost child: ({}) ", *self.rightmost_child)
}
}
//A LeafElt contains no left child, but a key-value pair.
struct LeafElt<K, V> {
key: K,
value: V
}
//A BranchElt has a left child in insertion to a key-value pair.
struct BranchElt<K, V> {
left: Box<Node<K, V>>,
key: K,
value: V
}
impl<K: Ord, V> LeafElt<K, V> {
///Creates a new LeafElt from a supplied key-value pair.
fn new(k: K, v: V) -> LeafElt<K, V> {
LeafElt {
key: k,
value: v
}
}
}
impl<K: Clone + Ord, V: Clone> Clone for LeafElt<K, V> {
///Returns a new LeafElt by cloning the key and value.
fn clone(&self) -> LeafElt<K, V> {
LeafElt::new(self.key.clone(), self.value.clone())
}
}
impl<K: Ord, V: Eq> PartialEq for LeafElt<K, V> {
fn eq(&self, other: &LeafElt<K, V>) -> bool {
self.key == other.key && self.value == other.value
}
}
impl<K: Ord, V: Eq> Eq for LeafElt<K, V> {}
impl<K: Ord, V: Eq> PartialOrd for LeafElt<K, V> {
fn lt(&self, other: &LeafElt<K, V>) -> bool {
self.cmp(other) == Less
}
}
impl<K: Ord, V: Eq> Ord for LeafElt<K, V> {
///Returns an ordering based on the keys of the LeafElts.
fn cmp(&self, other: &LeafElt<K, V>) -> Ordering {
self.key.cmp(&other.key)
}
}
impl<K: fmt::Show + Ord, V: fmt::Show> fmt::Show for LeafElt<K, V> {
///Returns a string representation of a LeafElt.
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Key: {}, value: {};", self.key, self.value)
}
}
impl<K: Ord, V> BranchElt<K, V> {
///Creates a new BranchElt from a supplied key, value, and left child.
fn new(k: K, v: V, n: Box<Node<K, V>>) -> BranchElt<K, V> {
BranchElt {
left: n,
key: k,
value: v
}
}
}
impl<K: Clone + Ord, V: Clone> Clone for BranchElt<K, V> {
///Returns a new BranchElt by cloning the key, value, and left child.
fn clone(&self) -> BranchElt<K, V> {
BranchElt::new(self.key.clone(),
self.value.clone(),
self.left.clone())
}
}
impl<K: Ord, V: Eq> PartialEq for BranchElt<K, V>{
fn eq(&self, other: &BranchElt<K, V>) -> bool {
self.key == other.key && self.value == other.value
}
}
impl<K: Ord, V: Eq> Eq for BranchElt<K, V>{}
impl<K: Ord, V: Eq> PartialOrd for BranchElt<K, V> {
fn lt(&self, other: &BranchElt<K, V>) -> bool {
self.cmp(other) == Less
}
}
impl<K: Ord, V: Eq> Ord for BranchElt<K, V> {
///Fulfills Ord for BranchElts
fn cmp(&self, other: &BranchElt<K, V>) -> Ordering {
self.key.cmp(&other.key)
}
}
impl<K: fmt::Show + Ord, V: fmt::Show> fmt::Show for BranchElt<K, V> {
/// Returns string containing key, value, and child (which should recur to a
/// leaf) Consider changing in future to be more readable.
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Key: {}, value: {}, (child: {})",
self.key, self.value, *self.left)
}
}
#[cfg(test)]
mod test_btree {
use std::prelude::*;
use super::{BTree, Node, LeafElt};
//Tests the functionality of the insert methods (which are unfinished).
#[test]
fn insert_test_one() {
let b = BTree::new(1i, "abc".to_string(), 2);
let is_insert = b.insert(2i, "xyz".to_string());
//println!("{}", is_insert.clone().to_str());
assert!(is_insert.root.is_leaf());
}
#[test]
fn insert_test_two() {
let leaf_elt_1 = LeafElt::new(1i, "aaa".to_string());
let leaf_elt_2 = LeafElt::new(2i, "bbb".to_string());
let leaf_elt_3 = LeafElt::new(3i, "ccc".to_string());
let n = Node::new_leaf(vec!(leaf_elt_1, leaf_elt_2, leaf_elt_3));
let b = BTree::new_with_node_len(n, 3, 2);
//println!("{}", b.clone().insert(4, "ddd".to_string()).to_str());
assert!(b.insert(4, "ddd".to_string()).root.is_leaf());
}
#[test]
fn insert_test_three() {
let leaf_elt_1 = LeafElt::new(1i, "aaa".to_string());
let leaf_elt_2 = LeafElt::new(2i, "bbb".to_string());
let leaf_elt_3 = LeafElt::new(3i, "ccc".to_string());
let leaf_elt_4 = LeafElt::new(4i, "ddd".to_string());
let n = Node::new_leaf(vec!(leaf_elt_1, leaf_elt_2, leaf_elt_3, leaf_elt_4));
let b = BTree::new_with_node_len(n, 3, 2);
//println!("{}", b.clone().insert(5, "eee".to_string()).to_str());
assert!(!b.insert(5, "eee".to_string()).root.is_leaf());
}
#[test]
fn insert_test_four() {
let leaf_elt_1 = LeafElt::new(1i, "aaa".to_string());
let leaf_elt_2 = LeafElt::new(2i, "bbb".to_string());
let leaf_elt_3 = LeafElt::new(3i, "ccc".to_string());
let leaf_elt_4 = LeafElt::new(4i, "ddd".to_string());
let n = Node::new_leaf(vec!(leaf_elt_1, leaf_elt_2, leaf_elt_3, leaf_elt_4));
let mut b = BTree::new_with_node_len(n, 3, 2);
b = b.clone().insert(5, "eee".to_string());
b = b.clone().insert(6, "fff".to_string());
b = b.clone().insert(7, "ggg".to_string());
b = b.clone().insert(8, "hhh".to_string());
b = b.clone().insert(0, "omg".to_string());
//println!("{}", b.clone().to_str());
assert!(!b.root.is_leaf());
}
#[test]
fn bsearch_test_one() {
let b = BTree::new(1i, "abc".to_string(), 2u);
assert_eq!(Some(1), b.root.bsearch_node(2));
}
#[test]
fn bsearch_test_two() {
let b = BTree::new(1i, "abc".to_string(), 2u);
assert_eq!(Some(0), b.root.bsearch_node(0));
}
#[test]
fn bsearch_test_three() {
let leaf_elt_1 = LeafElt::new(1i, "aaa".to_string());
let leaf_elt_2 = LeafElt::new(2i, "bbb".to_string());
let leaf_elt_3 = LeafElt::new(4i, "ccc".to_string());
let leaf_elt_4 = LeafElt::new(5i, "ddd".to_string());
let n = Node::new_leaf(vec!(leaf_elt_1, leaf_elt_2, leaf_elt_3, leaf_elt_4));
let b = BTree::new_with_node_len(n, 3, 2);
assert_eq!(Some(2), b.root.bsearch_node(3));
}
#[test]
fn bsearch_test_four() {
let leaf_elt_1 = LeafElt::new(1i, "aaa".to_string());
let leaf_elt_2 = LeafElt::new(2i, "bbb".to_string());
let leaf_elt_3 = LeafElt::new(4i, "ccc".to_string());
let leaf_elt_4 = LeafElt::new(5i, "ddd".to_string());
let n = Node::new_leaf(vec!(leaf_elt_1, leaf_elt_2, leaf_elt_3, leaf_elt_4));
let b = BTree::new_with_node_len(n, 3, 2);
assert_eq!(Some(4), b.root.bsearch_node(800));
}
//Tests the functionality of the get method.
#[test]
fn get_test() {
let b = BTree::new(1i, "abc".to_string(), 2);
let val = b.get(1);
assert_eq!(val, Some("abc".to_string()));
}
//Tests the BTree's clone() method.
#[test]
fn btree_clone_test() {
let b = BTree::new(1i, "abc".to_string(), 2);
let b2 = b.clone();
assert!(b.root == b2.root)
}
//Tests the BTree's cmp() method when one node is "less than" another.
#[test]
fn btree_cmp_test_less() {
let b = BTree::new(1i, "abc".to_string(), 2);
let b2 = BTree::new(2i, "bcd".to_string(), 2);
assert!(&b.cmp(&b2) == &Less)
}
//Tests the BTree's cmp() method when two nodes are equal.
#[test]
fn btree_cmp_test_eq() {
let b = BTree::new(1i, "abc".to_string(), 2);
let b2 = BTree::new(1i, "bcd".to_string(), 2);
assert!(&b.cmp(&b2) == &Equal)
}
//Tests the BTree's cmp() method when one node is "greater than" another.
#[test]
fn btree_cmp_test_greater() {
let b = BTree::new(1i, "abc".to_string(), 2);
let b2 = BTree::new(2i, "bcd".to_string(), 2);
assert!(&b2.cmp(&b) == &Greater)
}
//Tests the BTree's to_str() method.
#[test]
fn btree_tostr_test() {
let b = BTree::new(1i, "abc".to_string(), 2);
assert_eq!(b.to_str(), "Key: 1, value: abc;".to_string())
}
}