Alex Crichton 54452cdd68 std: Second pass stabilization for ptr
This commit performs a second pass for stabilization over the `std::ptr` module.
The specific actions taken were:

* The `RawPtr` trait was renamed to `PtrExt`
* The `RawMutPtr` trait was renamed to `MutPtrExt`
* The module name `ptr` is now stable.
* These functions were all marked `#[stable]` with no modification:
  * `null`
  * `null_mut`
  * `swap`
  * `replace`
  * `read`
  * `write`
  * `PtrExt::is_null`
  * `PtrExt::offset`
* These functions remain unstable:
  * `as_ref`, `as_mut` - the return value of an `Option` is not fully expressive
                         as null isn't the only bad value, and it's unclear
                         whether we want to commit to these functions at this
                         time. The reference/lifetime semantics as written are
                         also problematic in how they encourage arbitrary
                         lifetimes.
  * `zero_memory` - This function is currently not used at all in the
                    distribution, and in general it plays a broader role in the
                    "working with unsafe pointers" story. This story is not yet
                    fully developed, so at this time the function remains
                    unstable for now.
  * `read_and_zero` - This function remains unstable for largely the same
                      reasons as `zero_memory`.
* These functions are now all deprecated:
  * `PtrExt::null` - call `ptr::null` or `ptr::null_mut` instead.
  * `PtrExt::to_uint` - use an `as` expression instead.
  * `PtrExt::is_not_null` - use `!p.is_null()` instead.
2014-12-29 15:57:28 -08:00

167 lines
4.7 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use llvm;
use llvm::{UseRef, ValueRef};
use trans::basic_block::BasicBlock;
use trans::common::Block;
use libc::c_uint;
#[deriving(Copy)]
pub struct Value(pub ValueRef);
macro_rules! opt_val { ($e:expr) => (
unsafe {
match $e {
p if !p.is_null() => Some(Value(p)),
_ => None
}
}
) }
/// Wrapper for LLVM ValueRef
impl Value {
/// Returns the native ValueRef
pub fn get(&self) -> ValueRef {
let Value(v) = *self; v
}
/// Returns the BasicBlock that contains this value
pub fn get_parent(self) -> Option<BasicBlock> {
unsafe {
match llvm::LLVMGetInstructionParent(self.get()) {
p if !p.is_null() => Some(BasicBlock(p)),
_ => None
}
}
}
/// Removes this value from its containing BasicBlock
pub fn erase_from_parent(self) {
unsafe {
llvm::LLVMInstructionEraseFromParent(self.get());
}
}
/// Returns the single dominating store to this value, if any
/// This only performs a search for a trivially dominating store. The store
/// must be the only user of this value, and there must not be any conditional
/// branches between the store and the given block.
pub fn get_dominating_store(self, bcx: Block) -> Option<Value> {
match self.get_single_user().and_then(|user| user.as_store_inst()) {
Some(store) => {
store.get_parent().and_then(|store_bb| {
let mut bb = BasicBlock(bcx.llbb);
let mut ret = Some(store);
while bb.get() != store_bb.get() {
match bb.get_single_predecessor() {
Some(pred) => bb = pred,
None => { ret = None; break }
}
}
ret
})
}
_ => None
}
}
/// Returns the first use of this value, if any
pub fn get_first_use(self) -> Option<Use> {
unsafe {
match llvm::LLVMGetFirstUse(self.get()) {
u if !u.is_null() => Some(Use(u)),
_ => None
}
}
}
/// Tests if there are no uses of this value
pub fn has_no_uses(self) -> bool {
self.get_first_use().is_none()
}
/// Returns the single user of this value
/// If there are no users or multiple users, this returns None
pub fn get_single_user(self) -> Option<Value> {
let mut iter = self.user_iter();
match (iter.next(), iter.next()) {
(Some(first), None) => Some(first),
_ => None
}
}
/// Returns an iterator for the users of this value
pub fn user_iter(self) -> Users {
Users {
next: self.get_first_use()
}
}
/// Returns the requested operand of this instruction
/// Returns None, if there's no operand at the given index
pub fn get_operand(self, i: uint) -> Option<Value> {
opt_val!(llvm::LLVMGetOperand(self.get(), i as c_uint))
}
/// Returns the Store represent by this value, if any
pub fn as_store_inst(self) -> Option<Value> {
opt_val!(llvm::LLVMIsAStoreInst(self.get()))
}
/// Tests if this value is a terminator instruction
pub fn is_a_terminator_inst(self) -> bool {
unsafe {
!llvm::LLVMIsATerminatorInst(self.get()).is_null()
}
}
}
/// Wrapper for LLVM UseRef
#[deriving(Copy)]
pub struct Use(UseRef);
impl Use {
pub fn get(&self) -> UseRef {
let Use(v) = *self; v
}
pub fn get_user(self) -> Value {
unsafe {
Value(llvm::LLVMGetUser(self.get()))
}
}
pub fn get_next_use(self) -> Option<Use> {
unsafe {
match llvm::LLVMGetNextUse(self.get()) {
u if !u.is_null() => Some(Use(u)),
_ => None
}
}
}
}
/// Iterator for the users of a value
#[allow(missing_copy_implementations)]
pub struct Users {
next: Option<Use>
}
impl Iterator<Value> for Users {
fn next(&mut self) -> Option<Value> {
let current = self.next;
self.next = current.and_then(|u| u.get_next_use());
current.map(|u| u.get_user())
}
}