Niko Matsakis 498595a3dc Teach project to unify the return type even if a precise match is not
possible.  There is some amount of duplication as a result (similar to
select) -- I am not happy about this but not sure how to fix it
without deeper rewrites.
2015-02-03 11:55:45 -05:00

2476 lines
103 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! See `doc.rs` for high-level documentation
#![allow(dead_code)] // FIXME -- just temporarily
pub use self::MethodMatchResult::*;
pub use self::MethodMatchedData::*;
use self::SelectionCandidate::*;
use self::BuiltinBoundConditions::*;
use self::EvaluationResult::*;
use super::{DerivedObligationCause};
use super::{project};
use super::project::Normalized;
use super::{PredicateObligation, Obligation, TraitObligation, ObligationCause};
use super::{ObligationCauseCode, BuiltinDerivedObligation};
use super::{SelectionError, Unimplemented, Overflow, OutputTypeParameterMismatch};
use super::{Selection};
use super::{SelectionResult};
use super::{VtableBuiltin, VtableImpl, VtableParam, VtableClosure,
VtableFnPointer, VtableObject};
use super::{VtableImplData, VtableObjectData, VtableBuiltinData};
use super::object_safety;
use super::{util};
use middle::fast_reject;
use middle::mem_categorization::Typer;
use middle::subst::{Subst, Substs, TypeSpace, VecPerParamSpace};
use middle::ty::{self, AsPredicate, RegionEscape, ToPolyTraitRef, Ty};
use middle::infer;
use middle::infer::{InferCtxt, TypeFreshener};
use middle::ty_fold::TypeFoldable;
use std::cell::RefCell;
use std::collections::hash_map::HashMap;
use std::rc::Rc;
use syntax::{abi, ast};
use util::common::ErrorReported;
use util::ppaux::Repr;
pub struct SelectionContext<'cx, 'tcx:'cx> {
infcx: &'cx InferCtxt<'cx, 'tcx>,
closure_typer: &'cx (ty::ClosureTyper<'tcx>+'cx),
/// Freshener used specifically for skolemizing entries on the
/// obligation stack. This ensures that all entries on the stack
/// at one time will have the same set of skolemized entries,
/// which is important for checking for trait bounds that
/// recursively require themselves.
freshener: TypeFreshener<'cx, 'tcx>,
/// If true, indicates that the evaluation should be conservative
/// and consider the possibility of types outside this crate.
/// This comes up primarily when resolving ambiguity. Imagine
/// there is some trait reference `$0 : Bar` where `$0` is an
/// inference variable. If `intercrate` is true, then we can never
/// say for sure that this reference is not implemented, even if
/// there are *no impls at all for `Bar`*, because `$0` could be
/// bound to some type that in a downstream crate that implements
/// `Bar`. This is the suitable mode for coherence. Elsewhere,
/// though, we set this to false, because we are only interested
/// in types that the user could actually have written --- in
/// other words, we consider `$0 : Bar` to be unimplemented if
/// there is no type that the user could *actually name* that
/// would satisfy it. This avoids crippling inference, basically.
intercrate: bool,
}
// A stack that walks back up the stack frame.
struct TraitObligationStack<'prev, 'tcx: 'prev> {
obligation: &'prev TraitObligation<'tcx>,
/// Trait ref from `obligation` but skolemized with the
/// selection-context's freshener. Used to check for recursion.
fresh_trait_ref: ty::PolyTraitRef<'tcx>,
previous: Option<&'prev TraitObligationStack<'prev, 'tcx>>
}
#[derive(Clone)]
pub struct SelectionCache<'tcx> {
hashmap: RefCell<HashMap<Rc<ty::TraitRef<'tcx>>,
SelectionResult<'tcx, SelectionCandidate<'tcx>>>>,
}
pub enum MethodMatchResult {
MethodMatched(MethodMatchedData),
MethodAmbiguous(/* list of impls that could apply */ Vec<ast::DefId>),
MethodDidNotMatch,
}
#[derive(Copy, Debug)]
pub enum MethodMatchedData {
// In the case of a precise match, we don't really need to store
// how the match was found. So don't.
PreciseMethodMatch,
// In the case of a coercion, we need to know the precise impl so
// that we can determine the type to which things were coerced.
CoerciveMethodMatch(/* impl we matched */ ast::DefId)
}
/// The selection process begins by considering all impls, where
/// clauses, and so forth that might resolve an obligation. Sometimes
/// we'll be able to say definitively that (e.g.) an impl does not
/// apply to the obligation: perhaps it is defined for `uint` but the
/// obligation is for `int`. In that case, we drop the impl out of the
/// list. But the other cases are considered *candidates*.
///
/// Candidates can either be definitive or ambiguous. An ambiguous
/// candidate is one that might match or might not, depending on how
/// type variables wind up being resolved. This only occurs during inference.
///
/// For selection to succeed, there must be exactly one non-ambiguous
/// candidate. Usually, it is not possible to have more than one
/// definitive candidate, due to the coherence rules. However, there is
/// one case where it could occur: if there is a blanket impl for a
/// trait (that is, an impl applied to all T), and a type parameter
/// with a where clause. In that case, we can have a candidate from the
/// where clause and a second candidate from the impl. This is not a
/// problem because coherence guarantees us that the impl which would
/// be used to satisfy the where clause is the same one that we see
/// now. To resolve this issue, therefore, we ignore impls if we find a
/// matching where clause. Part of the reason for this is that where
/// clauses can give additional information (like, the types of output
/// parameters) that would have to be inferred from the impl.
#[derive(PartialEq,Eq,Debug,Clone)]
enum SelectionCandidate<'tcx> {
BuiltinCandidate(ty::BuiltinBound),
ParamCandidate(ty::PolyTraitRef<'tcx>),
ImplCandidate(ast::DefId),
/// This is a trait matching with a projected type as `Self`, and
/// we found an applicable bound in the trait definition.
ProjectionCandidate,
/// Implementation of a `Fn`-family trait by one of the
/// anonymous types generated for a `||` expression.
ClosureCandidate(/* closure */ ast::DefId, Substs<'tcx>),
/// Implementation of a `Fn`-family trait by one of the anonymous
/// types generated for a fn pointer type (e.g., `fn(int)->int`)
FnPointerCandidate,
ObjectCandidate,
ErrorCandidate,
}
struct SelectionCandidateSet<'tcx> {
// a list of candidates that definitely apply to the current
// obligation (meaning: types unify).
vec: Vec<SelectionCandidate<'tcx>>,
// if this is true, then there were candidates that might or might
// not have applied, but we couldn't tell. This occurs when some
// of the input types are type variables, in which case there are
// various "builtin" rules that might or might not trigger.
ambiguous: bool,
}
enum BuiltinBoundConditions<'tcx> {
If(Vec<Ty<'tcx>>),
ParameterBuiltin,
AmbiguousBuiltin
}
#[derive(Debug)]
enum EvaluationResult<'tcx> {
EvaluatedToOk,
EvaluatedToAmbig,
EvaluatedToErr(SelectionError<'tcx>),
}
impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
pub fn new(infcx: &'cx InferCtxt<'cx, 'tcx>,
closure_typer: &'cx ty::ClosureTyper<'tcx>)
-> SelectionContext<'cx, 'tcx> {
SelectionContext {
infcx: infcx,
closure_typer: closure_typer,
freshener: infcx.freshener(),
intercrate: false,
}
}
pub fn intercrate(infcx: &'cx InferCtxt<'cx, 'tcx>,
closure_typer: &'cx ty::ClosureTyper<'tcx>)
-> SelectionContext<'cx, 'tcx> {
SelectionContext {
infcx: infcx,
closure_typer: closure_typer,
freshener: infcx.freshener(),
intercrate: true,
}
}
pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'tcx> {
self.infcx
}
pub fn tcx(&self) -> &'cx ty::ctxt<'tcx> {
self.infcx.tcx
}
pub fn param_env(&self) -> &'cx ty::ParameterEnvironment<'cx, 'tcx> {
self.closure_typer.param_env()
}
pub fn closure_typer(&self) -> &'cx (ty::ClosureTyper<'tcx>+'cx) {
self.closure_typer
}
///////////////////////////////////////////////////////////////////////////
// Selection
//
// The selection phase tries to identify *how* an obligation will
// be resolved. For example, it will identify which impl or
// parameter bound is to be used. The process can be inconclusive
// if the self type in the obligation is not fully inferred. Selection
// can result in an error in one of two ways:
//
// 1. If no applicable impl or parameter bound can be found.
// 2. If the output type parameters in the obligation do not match
// those specified by the impl/bound. For example, if the obligation
// is `Vec<Foo>:Iterable<Bar>`, but the impl specifies
// `impl<T> Iterable<T> for Vec<T>`, than an error would result.
/// Attempts to satisfy the obligation. If successful, this will affect the surrounding
/// type environment by performing unification.
pub fn select(&mut self, obligation: &TraitObligation<'tcx>)
-> SelectionResult<'tcx, Selection<'tcx>> {
debug!("select({})", obligation.repr(self.tcx()));
assert!(!obligation.predicate.has_escaping_regions());
let stack = self.push_stack(None, obligation);
match try!(self.candidate_from_obligation(&stack)) {
None => {
self.consider_unification_despite_ambiguity(obligation);
Ok(None)
}
Some(candidate) => Ok(Some(try!(self.confirm_candidate(obligation, candidate)))),
}
}
/// In the particular case of unboxed closure obligations, we can
/// sometimes do some amount of unification for the
/// argument/return types even though we can't yet fully match obligation.
/// The particular case we are interesting in is an obligation of the form:
///
/// C : FnFoo<A>
///
/// where `C` is an unboxed closure type and `FnFoo` is one of the
/// `Fn` traits. Because we know that users cannot write impls for closure types
/// themselves, the only way that `C : FnFoo` can fail to match is under two
/// conditions:
///
/// 1. The closure kind for `C` is not yet known, because inference isn't complete.
/// 2. The closure kind for `C` *is* known, but doesn't match what is needed.
/// For example, `C` may be a `FnOnce` closure, but a `Fn` closure is needed.
///
/// In either case, we always know what argument types are
/// expected by `C`, no matter what kind of `Fn` trait it
/// eventually matches. So we can go ahead and unify the argument
/// types, even though the end result is ambiguous.
///
/// Note that this is safe *even if* the trait would never be
/// matched (case 2 above). After all, in that case, an error will
/// result, so it kind of doesn't matter what we do --- unifying
/// the argument types can only be helpful to the user, because
/// once they patch up the kind of closure that is expected, the
/// argment types won't really change.
fn consider_unification_despite_ambiguity(&mut self, obligation: &TraitObligation<'tcx>) {
// Is this a `C : FnFoo(...)` trait reference for some trait binding `FnFoo`?
match self.tcx().lang_items.fn_trait_kind(obligation.predicate.0.def_id()) {
Some(_) => { }
None => { return; }
}
// Is the self-type a closure type? We ignore bindings here
// because if it is a closure type, it must be a closure type from
// within this current fn, and hence none of the higher-ranked
// lifetimes can appear inside the self-type.
let self_ty = self.infcx.shallow_resolve(obligation.self_ty());
let (closure_def_id, substs) = match self_ty.sty {
ty::ty_closure(id, _, ref substs) => (id, substs.clone()),
_ => { return; }
};
assert!(!substs.has_escaping_regions());
let closure_trait_ref = self.closure_trait_ref(obligation, closure_def_id, substs);
match self.confirm_poly_trait_refs(obligation.cause.clone(),
obligation.predicate.to_poly_trait_ref(),
closure_trait_ref) {
Ok(()) => { }
Err(_) => { /* Silently ignore errors. */ }
}
}
///////////////////////////////////////////////////////////////////////////
// EVALUATION
//
// Tests whether an obligation can be selected or whether an impl
// can be applied to particular types. It skips the "confirmation"
// step and hence completely ignores output type parameters.
//
// The result is "true" if the obligation *may* hold and "false" if
// we can be sure it does not.
/// Evaluates whether the obligation `obligation` can be satisfied (by any means).
pub fn evaluate_obligation(&mut self,
obligation: &PredicateObligation<'tcx>)
-> bool
{
debug!("evaluate_obligation({})",
obligation.repr(self.tcx()));
self.evaluate_predicate_recursively(None, obligation).may_apply()
}
fn evaluate_builtin_bound_recursively<'o>(&mut self,
bound: ty::BuiltinBound,
previous_stack: &TraitObligationStack<'o, 'tcx>,
ty: Ty<'tcx>)
-> EvaluationResult<'tcx>
{
let obligation =
util::predicate_for_builtin_bound(
self.tcx(),
previous_stack.obligation.cause.clone(),
bound,
previous_stack.obligation.recursion_depth + 1,
ty);
match obligation {
Ok(obligation) => {
self.evaluate_predicate_recursively(Some(previous_stack), &obligation)
}
Err(ErrorReported) => {
EvaluatedToOk
}
}
}
fn evaluate_predicates_recursively<'a,'o,I>(&mut self,
stack: Option<&TraitObligationStack<'o, 'tcx>>,
predicates: I)
-> EvaluationResult<'tcx>
where I : Iterator<Item=&'a PredicateObligation<'tcx>>, 'tcx:'a
{
let mut result = EvaluatedToOk;
for obligation in predicates {
match self.evaluate_predicate_recursively(stack, obligation) {
EvaluatedToErr(e) => { return EvaluatedToErr(e); }
EvaluatedToAmbig => { result = EvaluatedToAmbig; }
EvaluatedToOk => { }
}
}
result
}
fn evaluate_predicate_recursively<'o>(&mut self,
previous_stack: Option<&TraitObligationStack<'o, 'tcx>>,
obligation: &PredicateObligation<'tcx>)
-> EvaluationResult<'tcx>
{
debug!("evaluate_predicate_recursively({})",
obligation.repr(self.tcx()));
match obligation.predicate {
ty::Predicate::Trait(ref t) => {
assert!(!t.has_escaping_regions());
let obligation = obligation.with(t.clone());
self.evaluate_obligation_recursively(previous_stack, &obligation)
}
ty::Predicate::Equate(ref p) => {
let result = self.infcx.probe(|_| {
self.infcx.equality_predicate(obligation.cause.span, p)
});
match result {
Ok(()) => EvaluatedToOk,
Err(_) => EvaluatedToErr(Unimplemented),
}
}
ty::Predicate::TypeOutlives(..) | ty::Predicate::RegionOutlives(..) => {
// we do not consider region relationships when
// evaluating trait matches
EvaluatedToOk
}
ty::Predicate::Projection(ref data) => {
self.infcx.probe(|_| {
let project_obligation = obligation.with(data.clone());
match project::poly_project_and_unify_type(self, &project_obligation) {
Ok(Some(subobligations)) => {
self.evaluate_predicates_recursively(previous_stack,
subobligations.iter())
}
Ok(None) => {
EvaluatedToAmbig
}
Err(_) => {
EvaluatedToErr(Unimplemented)
}
}
})
}
}
}
fn evaluate_obligation_recursively<'o>(&mut self,
previous_stack: Option<&TraitObligationStack<'o, 'tcx>>,
obligation: &TraitObligation<'tcx>)
-> EvaluationResult<'tcx>
{
debug!("evaluate_obligation_recursively({})",
obligation.repr(self.tcx()));
let stack = self.push_stack(previous_stack.map(|x| x), obligation);
let result = self.evaluate_stack(&stack);
debug!("result: {:?}", result);
result
}
fn evaluate_stack<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>)
-> EvaluationResult<'tcx>
{
// In intercrate mode, whenever any of the types are unbound,
// there can always be an impl. Even if there are no impls in
// this crate, perhaps the type would be unified with
// something from another crate that does provide an impl.
//
// In intracrate mode, we must still be conservative. The reason is
// that we want to avoid cycles. Imagine an impl like:
//
// impl<T:Eq> Eq for Vec<T>
//
// and a trait reference like `$0 : Eq` where `$0` is an
// unbound variable. When we evaluate this trait-reference, we
// will unify `$0` with `Vec<$1>` (for some fresh variable
// `$1`), on the condition that `$1 : Eq`. We will then wind
// up with many candidates (since that are other `Eq` impls
// that apply) and try to winnow things down. This results in
// a recursive evaluation that `$1 : Eq` -- as you can
// imagine, this is just where we started. To avoid that, we
// check for unbound variables and return an ambiguous (hence possible)
// match if we've seen this trait before.
//
// This suffices to allow chains like `FnMut` implemented in
// terms of `Fn` etc, but we could probably make this more
// precise still.
let input_types = stack.fresh_trait_ref.0.input_types();
let unbound_input_types = input_types.iter().any(|&t| ty::type_is_fresh(t));
if
unbound_input_types &&
(self.intercrate ||
stack.iter().skip(1).any(
|prev| stack.fresh_trait_ref.def_id() == prev.fresh_trait_ref.def_id()))
{
debug!("evaluate_stack({}) --> unbound argument, recursion --> ambiguous",
stack.fresh_trait_ref.repr(self.tcx()));
return EvaluatedToAmbig;
}
// If there is any previous entry on the stack that precisely
// matches this obligation, then we can assume that the
// obligation is satisfied for now (still all other conditions
// must be met of course). One obvious case this comes up is
// marker traits like `Send`. Think of a linked list:
//
// struct List<T> { data: T, next: Option<Box<List<T>>> {
//
// `Box<List<T>>` will be `Send` if `T` is `Send` and
// `Option<Box<List<T>>>` is `Send`, and in turn
// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
// `Send`.
//
// Note that we do this comparison using the `fresh_trait_ref`
// fields. Because these have all been skolemized using
// `self.freshener`, we can be sure that (a) this will not
// affect the inferencer state and (b) that if we see two
// skolemized types with the same index, they refer to the
// same unbound type variable.
if
stack.iter()
.skip(1) // skip top-most frame
.any(|prev| stack.fresh_trait_ref == prev.fresh_trait_ref)
{
debug!("evaluate_stack({}) --> recursive",
stack.fresh_trait_ref.repr(self.tcx()));
return EvaluatedToOk;
}
match self.candidate_from_obligation(stack) {
Ok(Some(c)) => self.winnow_candidate(stack, &c),
Ok(None) => EvaluatedToAmbig,
Err(e) => EvaluatedToErr(e),
}
}
/// Evaluates whether the impl with id `impl_def_id` could be applied to the self type
/// `obligation_self_ty`. This can be used either for trait or inherent impls.
pub fn evaluate_impl(&mut self,
impl_def_id: ast::DefId,
obligation: &TraitObligation<'tcx>)
-> bool
{
debug!("evaluate_impl(impl_def_id={}, obligation={})",
impl_def_id.repr(self.tcx()),
obligation.repr(self.tcx()));
self.infcx.probe(|snapshot| {
let (skol_obligation_trait_ref, skol_map) =
self.infcx().skolemize_late_bound_regions(&obligation.predicate, snapshot);
match self.match_impl(impl_def_id, obligation, snapshot,
&skol_map, skol_obligation_trait_ref.trait_ref.clone()) {
Ok(substs) => {
let vtable_impl = self.vtable_impl(impl_def_id,
substs,
obligation.cause.clone(),
obligation.recursion_depth + 1,
skol_map,
snapshot);
self.winnow_selection(None, VtableImpl(vtable_impl)).may_apply()
}
Err(()) => {
false
}
}
})
}
///////////////////////////////////////////////////////////////////////////
// CANDIDATE ASSEMBLY
//
// The selection process begins by examining all in-scope impls,
// caller obligations, and so forth and assembling a list of
// candidates. See `doc.rs` and the `Candidate` type for more details.
fn candidate_from_obligation<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>)
-> SelectionResult<'tcx, SelectionCandidate<'tcx>>
{
// Watch out for overflow. This intentionally bypasses (and does
// not update) the cache.
let recursion_limit = self.infcx.tcx.sess.recursion_limit.get();
if stack.obligation.recursion_depth >= recursion_limit {
debug!("{} --> overflow (limit={})",
stack.obligation.repr(self.tcx()),
recursion_limit);
return Err(Overflow)
}
// Check the cache. Note that we skolemize the trait-ref
// separately rather than using `stack.fresh_trait_ref` -- this
// is because we want the unbound variables to be replaced
// with fresh skolemized types starting from index 0.
let cache_fresh_trait_pred =
self.infcx.freshen(stack.obligation.predicate.clone());
debug!("candidate_from_obligation(cache_fresh_trait_pred={}, obligation={})",
cache_fresh_trait_pred.repr(self.tcx()),
stack.repr(self.tcx()));
assert!(!stack.obligation.predicate.has_escaping_regions());
match self.check_candidate_cache(&cache_fresh_trait_pred) {
Some(c) => {
debug!("CACHE HIT: cache_fresh_trait_pred={}, candidate={}",
cache_fresh_trait_pred.repr(self.tcx()),
c.repr(self.tcx()));
return c;
}
None => { }
}
// If no match, compute result and insert into cache.
let candidate = self.candidate_from_obligation_no_cache(stack);
if self.should_update_candidate_cache(&cache_fresh_trait_pred, &candidate) {
debug!("CACHE MISS: cache_fresh_trait_pred={}, candidate={}",
cache_fresh_trait_pred.repr(self.tcx()), candidate.repr(self.tcx()));
self.insert_candidate_cache(cache_fresh_trait_pred, candidate.clone());
}
candidate
}
fn candidate_from_obligation_no_cache<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>)
-> SelectionResult<'tcx, SelectionCandidate<'tcx>>
{
if ty::type_is_error(stack.obligation.predicate.0.self_ty()) {
return Ok(Some(ErrorCandidate));
}
let candidate_set = try!(self.assemble_candidates(stack));
if candidate_set.ambiguous {
debug!("candidate set contains ambig");
return Ok(None);
}
let mut candidates = candidate_set.vec;
debug!("assembled {} candidates for {}: {}",
candidates.len(),
stack.repr(self.tcx()),
candidates.repr(self.tcx()));
// At this point, we know that each of the entries in the
// candidate set is *individually* applicable. Now we have to
// figure out if they contain mutual incompatibilities. This
// frequently arises if we have an unconstrained input type --
// for example, we are looking for $0:Eq where $0 is some
// unconstrained type variable. In that case, we'll get a
// candidate which assumes $0 == int, one that assumes $0 ==
// uint, etc. This spells an ambiguity.
// If there is more than one candidate, first winnow them down
// by considering extra conditions (nested obligations and so
// forth). We don't winnow if there is exactly one
// candidate. This is a relatively minor distinction but it
// can lead to better inference and error-reporting. An
// example would be if there was an impl:
//
// impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
//
// and we were to see some code `foo.push_clone()` where `boo`
// is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
// we were to winnow, we'd wind up with zero candidates.
// Instead, we select the right impl now but report `Bar does
// not implement Clone`.
if candidates.len() > 1 {
candidates.retain(|c| self.winnow_candidate(stack, c).may_apply())
}
// If there are STILL multiple candidate, we can further reduce
// the list by dropping duplicates.
if candidates.len() > 1 {
let mut i = 0;
while i < candidates.len() {
let is_dup =
(0..candidates.len())
.filter(|&j| i != j)
.any(|j| self.candidate_should_be_dropped_in_favor_of(stack,
&candidates[i],
&candidates[j]));
if is_dup {
debug!("Dropping candidate #{}/{}: {}",
i, candidates.len(), candidates[i].repr(self.tcx()));
candidates.swap_remove(i);
} else {
debug!("Retaining candidate #{}/{}: {}",
i, candidates.len(), candidates[i].repr(self.tcx()));
i += 1;
}
}
}
// If there are *STILL* multiple candidates, give up and
// report ambiguity.
if candidates.len() > 1 {
debug!("multiple matches, ambig");
return Ok(None);
}
// If there are *NO* candidates, that there are no impls --
// that we know of, anyway. Note that in the case where there
// are unbound type variables within the obligation, it might
// be the case that you could still satisfy the obligation
// from another crate by instantiating the type variables with
// a type from another crate that does have an impl. This case
// is checked for in `evaluate_stack` (and hence users
// who might care about this case, like coherence, should use
// that function).
if candidates.len() == 0 {
return Err(Unimplemented);
}
// Just one candidate left.
let candidate = candidates.pop().unwrap();
match candidate {
ImplCandidate(def_id) => {
match ty::trait_impl_polarity(self.tcx(), def_id) {
Some(ast::ImplPolarity::Negative) => return Err(Unimplemented),
_ => {}
}
}
_ => {}
}
Ok(Some(candidate))
}
fn pick_candidate_cache(&self,
cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>)
-> &SelectionCache<'tcx>
{
// High-level idea: we have to decide whether to consult the
// cache that is specific to this scope, or to consult the
// global cache. We want the cache that is specific to this
// scope whenever where clauses might affect the result.
// Avoid using the master cache during coherence and just rely
// on the local cache. This effectively disables caching
// during coherence. It is really just a simplification to
// avoid us having to fear that coherence results "pollute"
// the master cache. Since coherence executes pretty quickly,
// it's not worth going to more trouble to increase the
// hit-rate I don't think.
if self.intercrate {
return &self.param_env().selection_cache;
}
// If the trait refers to any parameters in scope, then use
// the cache of the param-environment.
if
cache_fresh_trait_pred.0.input_types().iter().any(
|&t| ty::type_has_self(t) || ty::type_has_params(t))
{
return &self.param_env().selection_cache;
}
// If the trait refers to unbound type variables, and there
// are where clauses in scope, then use the local environment.
// If there are no where clauses in scope, which is a very
// common case, then we can use the global environment.
// See the discussion in doc.rs for more details.
if
!self.param_env().caller_bounds.is_empty() &&
cache_fresh_trait_pred.0.input_types().iter().any(
|&t| ty::type_has_ty_infer(t))
{
return &self.param_env().selection_cache;
}
// Otherwise, we can use the global cache.
&self.tcx().selection_cache
}
fn check_candidate_cache(&mut self,
cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>)
-> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>>
{
let cache = self.pick_candidate_cache(cache_fresh_trait_pred);
let hashmap = cache.hashmap.borrow();
hashmap.get(&cache_fresh_trait_pred.0.trait_ref).map(|c| (*c).clone())
}
fn insert_candidate_cache(&mut self,
cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>)
{
let cache = self.pick_candidate_cache(&cache_fresh_trait_pred);
let mut hashmap = cache.hashmap.borrow_mut();
hashmap.insert(cache_fresh_trait_pred.0.trait_ref.clone(), candidate);
}
fn should_update_candidate_cache(&mut self,
cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>,
candidate: &SelectionResult<'tcx, SelectionCandidate<'tcx>>)
-> bool
{
// In general, it's a good idea to cache results, even
// ambigious ones, to save us some trouble later. But we have
// to be careful not to cache results that could be
// invalidated later by advances in inference. Normally, this
// is not an issue, because any inference variables whose
// types are not yet bound are "freshened" in the cache key,
// which means that if we later get the same request once that
// type variable IS bound, we'll have a different cache key.
// For example, if we have `Vec<_#0t> : Foo`, and `_#0t` is
// not yet known, we may cache the result as `None`. But if
// later `_#0t` is bound to `Bar`, then when we freshen we'll
// have `Vec<Bar> : Foo` as the cache key.
//
// HOWEVER, it CAN happen that we get an ambiguity result in
// one particular case around closures where the cache key
// would not change. That is when the precise types of the
// upvars that a closure references have not yet been figured
// out (i.e., because it is not yet known if they are captured
// by ref, and if by ref, what kind of ref). In these cases,
// when matching a builtin bound, we will yield back an
// ambiguous result. But the *cache key* is just the closure type,
// it doesn't capture the state of the upvar computation.
//
// To avoid this trap, just don't cache ambiguous results if
// the self-type contains no inference byproducts (that really
// shouldn't happen in other circumstances anyway, given
// coherence).
match *candidate {
Ok(Some(_)) | Err(_) => true,
Ok(None) => {
cache_fresh_trait_pred.0.input_types().iter().any(|&t| ty::type_has_ty_infer(t))
}
}
}
fn assemble_candidates<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>)
-> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>>
{
// Check for overflow.
let TraitObligationStack { obligation, .. } = *stack;
let mut candidates = SelectionCandidateSet {
vec: Vec::new(),
ambiguous: false
};
// Other bounds. Consider both in-scope bounds from fn decl
// and applicable impls. There is a certain set of precedence rules here.
match self.tcx().lang_items.to_builtin_kind(obligation.predicate.def_id()) {
Some(ty::BoundCopy) => {
debug!("obligation self ty is {}",
obligation.predicate.0.self_ty().repr(self.tcx()));
try!(self.assemble_candidates_from_impls(obligation, &mut candidates));
try!(self.assemble_builtin_bound_candidates(ty::BoundCopy,
stack,
&mut candidates));
}
Some(bound @ ty::BoundSend) |
Some(bound @ ty::BoundSync) => {
try!(self.assemble_candidates_from_impls(obligation, &mut candidates));
// No explicit impls were declared for this type, consider the fallback rules.
if candidates.vec.is_empty() && !candidates.ambiguous {
try!(self.assemble_builtin_bound_candidates(bound, stack, &mut candidates));
}
}
Some(bound @ ty::BoundSized) => {
// Sized and Copy are always automatically computed.
try!(self.assemble_builtin_bound_candidates(bound, stack, &mut candidates));
}
None => {
// For the time being, we ignore user-defined impls for builtin-bounds, other than
// `Copy`.
// (And unboxed candidates only apply to the Fn/FnMut/etc traits.)
try!(self.assemble_closure_candidates(obligation, &mut candidates));
try!(self.assemble_fn_pointer_candidates(obligation, &mut candidates));
try!(self.assemble_candidates_from_impls(obligation, &mut candidates));
self.assemble_candidates_from_object_ty(obligation, &mut candidates);
}
}
self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
try!(self.assemble_candidates_from_caller_bounds(stack, &mut candidates));
debug!("candidate list size: {}", candidates.vec.len());
Ok(candidates)
}
fn assemble_candidates_from_projected_tys(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
{
let poly_trait_predicate =
self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
debug!("assemble_candidates_for_projected_tys({},{})",
obligation.repr(self.tcx()),
poly_trait_predicate.repr(self.tcx()));
// FIXME(#20297) -- just examining the self-type is very simplistic
// before we go into the whole skolemization thing, just
// quickly check if the self-type is a projection at all.
let trait_def_id = match poly_trait_predicate.0.trait_ref.self_ty().sty {
ty::ty_projection(ref data) => data.trait_ref.def_id,
ty::ty_infer(ty::TyVar(_)) => {
// If the self-type is an inference variable, then it MAY wind up
// being a projected type, so induce an ambiguity.
//
// FIXME(#20297) -- being strict about this can cause
// inference failures with BorrowFrom, which is
// unfortunate. Can we do better here?
debug!("assemble_candidates_for_projected_tys: ambiguous self-type");
candidates.ambiguous = true;
return;
}
_ => { return; }
};
debug!("assemble_candidates_for_projected_tys: trait_def_id={}",
trait_def_id.repr(self.tcx()));
let result = self.infcx.probe(|snapshot| {
self.match_projection_obligation_against_bounds_from_trait(obligation,
snapshot)
});
if result {
candidates.vec.push(ProjectionCandidate);
}
}
fn match_projection_obligation_against_bounds_from_trait(
&mut self,
obligation: &TraitObligation<'tcx>,
snapshot: &infer::CombinedSnapshot)
-> bool
{
let poly_trait_predicate =
self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
let (skol_trait_predicate, skol_map) =
self.infcx().skolemize_late_bound_regions(&poly_trait_predicate, snapshot);
debug!("match_projection_obligation_against_bounds_from_trait: \
skol_trait_predicate={} skol_map={}",
skol_trait_predicate.repr(self.tcx()),
skol_map.repr(self.tcx()));
let projection_trait_ref = match skol_trait_predicate.trait_ref.self_ty().sty {
ty::ty_projection(ref data) => &data.trait_ref,
_ => {
self.tcx().sess.span_bug(
obligation.cause.span,
format!("match_projection_obligation_against_bounds_from_trait() called \
but self-ty not a projection: {}",
skol_trait_predicate.trait_ref.self_ty().repr(self.tcx())).as_slice());
}
};
debug!("match_projection_obligation_against_bounds_from_trait: \
projection_trait_ref={}",
projection_trait_ref.repr(self.tcx()));
let trait_def = ty::lookup_trait_def(self.tcx(), projection_trait_ref.def_id);
let bounds = trait_def.generics.to_bounds(self.tcx(), projection_trait_ref.substs);
debug!("match_projection_obligation_against_bounds_from_trait: \
bounds={}",
bounds.repr(self.tcx()));
let matching_bound =
util::elaborate_predicates(self.tcx(), bounds.predicates.into_vec())
.filter_to_traits()
.find(
|bound| self.infcx.probe(
|_| self.match_projection(obligation,
bound.clone(),
skol_trait_predicate.trait_ref.clone(),
&skol_map,
snapshot)));
debug!("match_projection_obligation_against_bounds_from_trait: \
matching_bound={}",
matching_bound.repr(self.tcx()));
match matching_bound {
None => false,
Some(bound) => {
// Repeat the successful match, if any, this time outside of a probe.
let result = self.match_projection(obligation,
bound,
skol_trait_predicate.trait_ref.clone(),
&skol_map,
snapshot);
assert!(result);
true
}
}
}
fn match_projection(&mut self,
obligation: &TraitObligation<'tcx>,
trait_bound: ty::PolyTraitRef<'tcx>,
skol_trait_ref: Rc<ty::TraitRef<'tcx>>,
skol_map: &infer::SkolemizationMap,
snapshot: &infer::CombinedSnapshot)
-> bool
{
assert!(!skol_trait_ref.has_escaping_regions());
let origin = infer::RelateOutputImplTypes(obligation.cause.span);
match self.infcx.sub_poly_trait_refs(false,
origin,
trait_bound.clone(),
ty::Binder(skol_trait_ref.clone())) {
Ok(()) => { }
Err(_) => { return false; }
}
self.infcx.leak_check(skol_map, snapshot).is_ok()
}
/// Given an obligation like `<SomeTrait for T>`, search the obligations that the caller
/// supplied to find out whether it is listed among them.
///
/// Never affects inference environment.
fn assemble_candidates_from_caller_bounds<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(),SelectionError<'tcx>>
{
debug!("assemble_candidates_from_caller_bounds({})",
stack.obligation.repr(self.tcx()));
let caller_trait_refs: Vec<_> =
self.param_env().caller_bounds.iter()
.filter_map(|o| o.to_opt_poly_trait_ref())
.collect();
let all_bounds =
util::transitive_bounds(
self.tcx(), &caller_trait_refs[]);
let matching_bounds =
all_bounds.filter(
|bound| self.evaluate_where_clause(stack, bound.clone()).may_apply());
let param_candidates =
matching_bounds.map(|bound| ParamCandidate(bound));
candidates.vec.extend(param_candidates);
Ok(())
}
fn evaluate_where_clause<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
-> EvaluationResult<'tcx>
{
self.infcx().probe(move |_| {
match self.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
Ok(obligations) => {
self.evaluate_predicates_recursively(Some(stack), obligations.iter())
}
Err(()) => {
EvaluatedToErr(Unimplemented)
}
}
})
}
/// Check for the artificial impl that the compiler will create for an obligation like `X :
/// FnMut<..>` where `X` is a closure type.
///
/// Note: the type parameters on a closure candidate are modeled as *output* type
/// parameters and hence do not affect whether this trait is a match or not. They will be
/// unified during the confirmation step.
fn assemble_closure_candidates(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(),SelectionError<'tcx>>
{
let kind = match self.tcx().lang_items.fn_trait_kind(obligation.predicate.0.def_id()) {
Some(k) => k,
None => { return Ok(()); }
};
let self_ty = self.infcx.shallow_resolve(obligation.self_ty());
let (closure_def_id, substs) = match self_ty.sty {
ty::ty_closure(id, _, ref substs) => (id, substs.clone()),
ty::ty_infer(ty::TyVar(_)) => {
debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
candidates.ambiguous = true;
return Ok(());
}
_ => { return Ok(()); }
};
debug!("assemble_unboxed_candidates: self_ty={} kind={:?} obligation={}",
self_ty.repr(self.tcx()),
kind,
obligation.repr(self.tcx()));
match self.closure_typer.closure_kind(closure_def_id) {
Some(closure_kind) => {
debug!("assemble_unboxed_candidates: closure_kind = {:?}", closure_kind);
if closure_kind == kind {
candidates.vec.push(ClosureCandidate(closure_def_id, substs.clone()));
}
}
None => {
debug!("assemble_unboxed_candidates: closure_kind not yet known");
candidates.ambiguous = true;
}
}
Ok(())
}
/// Implement one of the `Fn()` family for a fn pointer.
fn assemble_fn_pointer_candidates(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(),SelectionError<'tcx>>
{
// We provide a `Fn` impl for fn pointers. There is no need to provide
// the other traits (e.g. `FnMut`) since those are provided by blanket
// impls.
if Some(obligation.predicate.def_id()) != self.tcx().lang_items.fn_trait() {
return Ok(());
}
let self_ty = self.infcx.shallow_resolve(obligation.self_ty());
match self_ty.sty {
ty::ty_infer(ty::TyVar(_)) => {
debug!("assemble_fn_pointer_candidates: ambiguous self-type");
candidates.ambiguous = true; // could wind up being a fn() type
}
// provide an impl, but only for suitable `fn` pointers
ty::ty_bare_fn(_, &ty::BareFnTy {
unsafety: ast::Unsafety::Normal,
abi: abi::Rust,
sig: ty::Binder(ty::FnSig {
inputs: _,
output: ty::FnConverging(_),
variadic: false
})
}) => {
candidates.vec.push(FnPointerCandidate);
}
_ => { }
}
Ok(())
}
/// Search for impls that might apply to `obligation`.
fn assemble_candidates_from_impls(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(), SelectionError<'tcx>>
{
let self_ty = self.infcx.shallow_resolve(obligation.self_ty());
debug!("assemble_candidates_from_impls(self_ty={})", self_ty.repr(self.tcx()));
let all_impls = self.all_impls(obligation.predicate.def_id());
for &impl_def_id in &all_impls {
self.infcx.probe(|snapshot| {
let (skol_obligation_trait_pred, skol_map) =
self.infcx().skolemize_late_bound_regions(&obligation.predicate, snapshot);
match self.match_impl(impl_def_id, obligation, snapshot,
&skol_map, skol_obligation_trait_pred.trait_ref.clone()) {
Ok(_) => {
candidates.vec.push(ImplCandidate(impl_def_id));
}
Err(()) => { }
}
});
}
Ok(())
}
/// Search for impls that might apply to `obligation`.
fn assemble_candidates_from_object_ty(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
{
let self_ty = self.infcx.shallow_resolve(obligation.self_ty());
debug!("assemble_candidates_from_object_ty(self_ty={})",
self_ty.repr(self.tcx()));
// Object-safety candidates are only applicable to object-safe
// traits. Including this check is useful because it helps
// inference in cases of traits like `BorrowFrom`, which are
// not object-safe, and which rely on being able to infer the
// self-type from one of the other inputs. Without this check,
// these cases wind up being considered ambiguous due to a
// (spurious) ambiguity introduced here.
if !object_safety::is_object_safe(self.tcx(), obligation.predicate.to_poly_trait_ref()) {
return;
}
let poly_trait_ref = match self_ty.sty {
ty::ty_trait(ref data) => {
data.principal_trait_ref_with_self_ty(self.tcx(), self_ty)
}
ty::ty_infer(ty::TyVar(_)) => {
debug!("assemble_candidates_from_object_ty: ambiguous");
candidates.ambiguous = true; // could wind up being an object type
return;
}
_ => {
return;
}
};
debug!("assemble_candidates_from_object_ty: poly_trait_ref={}",
poly_trait_ref.repr(self.tcx()));
// see whether the object trait can be upcast to the trait we are looking for
let obligation_def_id = obligation.predicate.def_id();
let upcast_trait_ref = match util::upcast(self.tcx(), poly_trait_ref, obligation_def_id) {
Some(r) => r,
None => { return; }
};
debug!("assemble_candidates_from_object_ty: upcast_trait_ref={}",
upcast_trait_ref.repr(self.tcx()));
// check whether the upcast version of the trait-ref matches what we are looking for
if let Ok(()) = self.infcx.probe(|_| self.match_poly_trait_ref(obligation,
upcast_trait_ref.clone())) {
debug!("assemble_candidates_from_object_ty: matched, pushing candidate");
candidates.vec.push(ObjectCandidate);
}
}
///////////////////////////////////////////////////////////////////////////
// WINNOW
//
// Winnowing is the process of attempting to resolve ambiguity by
// probing further. During the winnowing process, we unify all
// type variables (ignoring skolemization) and then we also
// attempt to evaluate recursive bounds to see if they are
// satisfied.
/// Further evaluate `candidate` to decide whether all type parameters match and whether nested
/// obligations are met. Returns true if `candidate` remains viable after this further
/// scrutiny.
fn winnow_candidate<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
candidate: &SelectionCandidate<'tcx>)
-> EvaluationResult<'tcx>
{
debug!("winnow_candidate: candidate={}", candidate.repr(self.tcx()));
let result = self.infcx.probe(|_| {
let candidate = (*candidate).clone();
match self.confirm_candidate(stack.obligation, candidate) {
Ok(selection) => self.winnow_selection(Some(stack), selection),
Err(error) => EvaluatedToErr(error),
}
});
debug!("winnow_candidate depth={} result={:?}",
stack.obligation.recursion_depth, result);
result
}
fn winnow_selection<'o>(&mut self,
stack: Option<&TraitObligationStack<'o, 'tcx>>,
selection: Selection<'tcx>)
-> EvaluationResult<'tcx>
{
self.evaluate_predicates_recursively(stack, selection.iter_nested())
}
/// Returns true if `candidate_i` should be dropped in favor of `candidate_j`.
///
/// This is generally true if either:
/// - candidate i and candidate j are equivalent; or,
/// - candidate i is a concrete impl and candidate j is a where clause bound,
/// and the concrete impl is applicable to the types in the where clause bound.
///
/// The last case refers to cases where there are blanket impls (often conditional
/// blanket impls) as well as a where clause. This can come down to one of two cases:
///
/// - The impl is truly unconditional (it has no where clauses
/// of its own), in which case the where clause is
/// unnecessary, because coherence requires that we would
/// pick that particular impl anyhow (at least so long as we
/// don't have specialization).
///
/// - The impl is conditional, in which case we may not have winnowed it out
/// because we don't know if the conditions apply, but the where clause is basically
/// telling us taht there is some impl, though not necessarily the one we see.
///
/// In both cases we prefer to take the where clause, which is
/// essentially harmless. See issue #18453 for more details of
/// a case where doing the opposite caused us harm.
fn candidate_should_be_dropped_in_favor_of<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
candidate_i: &SelectionCandidate<'tcx>,
candidate_j: &SelectionCandidate<'tcx>)
-> bool
{
if candidate_i == candidate_j {
return true;
}
match (candidate_i, candidate_j) {
(&ImplCandidate(impl_def_id), &ParamCandidate(ref bound)) => {
debug!("Considering whether to drop param {} in favor of impl {}",
candidate_i.repr(self.tcx()),
candidate_j.repr(self.tcx()));
self.infcx.probe(|snapshot| {
let (skol_obligation_trait_ref, skol_map) =
self.infcx().skolemize_late_bound_regions(
&stack.obligation.predicate, snapshot);
let impl_substs =
self.rematch_impl(impl_def_id, stack.obligation, snapshot,
&skol_map, skol_obligation_trait_ref.trait_ref.clone());
let impl_trait_ref =
ty::impl_trait_ref(self.tcx(), impl_def_id).unwrap();
let impl_trait_ref =
impl_trait_ref.subst(self.tcx(), &impl_substs.value);
let poly_impl_trait_ref =
ty::Binder(impl_trait_ref);
let origin =
infer::RelateOutputImplTypes(stack.obligation.cause.span);
self.infcx
.sub_poly_trait_refs(false, origin, poly_impl_trait_ref, bound.clone())
.is_ok()
})
}
(&BuiltinCandidate(_), &ParamCandidate(_)) => {
// If we have a where-clause like `Option<K> : Send`,
// then we wind up in a situation where there is a
// default rule (`Option<K>:Send if K:Send) and the
// where-clause that both seem applicable. Just take
// the where-clause in that case.
true
}
(&ProjectionCandidate, &ParamCandidate(_)) => {
// FIXME(#20297) -- this gives where clauses precedent
// over projections. Really these are just two means
// of deducing information (one based on the where
// clauses on the trait definition; one based on those
// on the enclosing scope), and it'd be better to
// integrate them more intelligently. But for now this
// seems ok. If we DON'T give where clauses
// precedence, we run into trouble in default methods,
// where both the projection bounds for `Self::A` and
// the where clauses are in scope.
true
}
(&ParamCandidate(ref bound1), &ParamCandidate(ref bound2)) => {
self.infcx.probe(|_| {
let bound1 =
project::normalize_with_depth(self,
stack.obligation.cause.clone(),
stack.obligation.recursion_depth+1,
bound1);
let bound2 =
project::normalize_with_depth(self,
stack.obligation.cause.clone(),
stack.obligation.recursion_depth+1,
bound2);
let origin =
infer::RelateOutputImplTypes(stack.obligation.cause.span);
self.infcx
.sub_poly_trait_refs(false, origin, bound1.value, bound2.value)
.is_ok()
})
}
_ => {
false
}
}
}
///////////////////////////////////////////////////////////////////////////
// BUILTIN BOUNDS
//
// These cover the traits that are built-in to the language
// itself. This includes `Copy` and `Sized` for sure. For the
// moment, it also includes `Send` / `Sync` and a few others, but
// those will hopefully change to library-defined traits in the
// future.
fn assemble_builtin_bound_candidates<'o>(&mut self,
bound: ty::BuiltinBound,
stack: &TraitObligationStack<'o, 'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(),SelectionError<'tcx>>
{
match self.builtin_bound(bound, stack.obligation) {
Ok(If(..)) => {
debug!("builtin_bound: bound={}",
bound.repr(self.tcx()));
candidates.vec.push(BuiltinCandidate(bound));
Ok(())
}
Ok(ParameterBuiltin) => { Ok(()) }
Ok(AmbiguousBuiltin) => {
debug!("assemble_builtin_bound_candidates: ambiguous builtin");
Ok(candidates.ambiguous = true)
}
Err(e) => { Err(e) }
}
}
fn builtin_bound(&mut self,
bound: ty::BuiltinBound,
obligation: &TraitObligation<'tcx>)
-> Result<BuiltinBoundConditions<'tcx>,SelectionError<'tcx>>
{
// Note: these tests operate on types that may contain bound
// regions. To be proper, we ought to skolemize here, but we
// forego the skolemization and defer it until the
// confirmation step.
let self_ty = self.infcx.shallow_resolve(obligation.predicate.0.self_ty());
return match self_ty.sty {
ty::ty_infer(ty::IntVar(_)) |
ty::ty_infer(ty::FloatVar(_)) |
ty::ty_uint(_) |
ty::ty_int(_) |
ty::ty_bool |
ty::ty_float(_) |
ty::ty_bare_fn(..) |
ty::ty_char => {
// safe for everything
Ok(If(Vec::new()))
}
ty::ty_uniq(referent_ty) => { // Box<T>
match bound {
ty::BoundCopy => {
Err(Unimplemented)
}
ty::BoundSized => {
Ok(If(Vec::new()))
}
ty::BoundSync |
ty::BoundSend => {
Ok(If(vec![referent_ty]))
}
}
}
ty::ty_ptr(..) => { // *const T, *mut T
match bound {
ty::BoundCopy |
ty::BoundSized => {
Ok(If(Vec::new()))
}
ty::BoundSync |
ty::BoundSend => {
// sync and send are not implemented for *const, *mut
Err(Unimplemented)
}
}
}
ty::ty_trait(ref data) => {
match bound {
ty::BoundSized => {
Err(Unimplemented)
}
ty::BoundCopy | ty::BoundSync | ty::BoundSend => {
if data.bounds.builtin_bounds.contains(&bound) {
Ok(If(Vec::new()))
} else {
// Recursively check all supertraits to find out if any further
// bounds are required and thus we must fulfill.
let principal =
data.principal_trait_ref_with_self_ty(self.tcx(),
self.tcx().types.err);
for tr in util::supertraits(self.tcx(), principal) {
let td = ty::lookup_trait_def(self.tcx(), tr.def_id());
if td.bounds.builtin_bounds.contains(&bound) {
return Ok(If(Vec::new()))
}
}
Err(Unimplemented)
}
}
}
}
ty::ty_rptr(_, ty::mt { ty: referent_ty, mutbl }) => {
// &mut T or &T
match bound {
ty::BoundCopy => {
match mutbl {
// &mut T is affine and hence never `Copy`
ast::MutMutable => {
Err(Unimplemented)
}
// &T is always copyable
ast::MutImmutable => {
Ok(If(Vec::new()))
}
}
}
ty::BoundSized => {
Ok(If(Vec::new()))
}
ty::BoundSync |
ty::BoundSend => {
// Note: technically, a region pointer is only
// sendable if it has lifetime
// `'static`. However, we don't take regions
// into account when doing trait matching:
// instead, when we decide that `T : Send`, we
// will register a separate constraint with
// the region inferencer that `T : 'static`
// holds as well (because the trait `Send`
// requires it). This will ensure that there
// is no borrowed data in `T` (or else report
// an inference error). The reason we do it
// this way is that we do not yet *know* what
// lifetime the borrowed reference has, since
// we haven't finished running inference -- in
// other words, there's a kind of
// chicken-and-egg problem.
Ok(If(vec![referent_ty]))
}
}
}
ty::ty_vec(element_ty, ref len) => {
// [T, ..n] and [T]
match bound {
ty::BoundCopy => {
match *len {
Some(_) => {
// [T, ..n] is copy iff T is copy
Ok(If(vec![element_ty]))
}
None => {
// [T] is unsized and hence affine
Err(Unimplemented)
}
}
}
ty::BoundSized => {
if len.is_some() {
Ok(If(Vec::new()))
} else {
Err(Unimplemented)
}
}
ty::BoundSync |
ty::BoundSend => {
Ok(If(vec![element_ty]))
}
}
}
ty::ty_str => {
// Equivalent to [u8]
match bound {
ty::BoundSync |
ty::BoundSend => {
Ok(If(Vec::new()))
}
ty::BoundCopy |
ty::BoundSized => {
Err(Unimplemented)
}
}
}
ty::ty_tup(ref tys) => {
// (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
Ok(If(tys.clone()))
}
ty::ty_closure(def_id, _, substs) => {
// FIXME -- This case is tricky. In the case of by-ref
// closures particularly, we need the results of
// inference to decide how to reflect the type of each
// upvar (the upvar may have type `T`, but the runtime
// type could be `&mut`, `&`, or just `T`). For now,
// though, we'll do this unsoundly and assume that all
// captures are by value. Really what we ought to do
// is reserve judgement and then intertwine this
// analysis with closure inference.
assert_eq!(def_id.krate, ast::LOCAL_CRATE);
// Unboxed closures shouldn't be
// implicitly copyable
if bound == ty::BoundCopy {
return Ok(ParameterBuiltin);
}
match self.closure_typer.closure_upvars(def_id, substs) {
Some(upvars) => {
Ok(If(upvars.iter().map(|c| c.ty).collect()))
}
None => {
debug!("assemble_builtin_bound_candidates: no upvar types available yet");
Ok(AmbiguousBuiltin)
}
}
}
ty::ty_struct(def_id, substs) => {
let types: Vec<Ty> =
ty::struct_fields(self.tcx(), def_id, substs).iter()
.map(|f| f.mt.ty)
.collect();
nominal(self, bound, def_id, types)
}
ty::ty_enum(def_id, substs) => {
let types: Vec<Ty> =
ty::substd_enum_variants(self.tcx(), def_id, substs)
.iter()
.flat_map(|variant| variant.args.iter())
.map(|&ty| ty)
.collect();
nominal(self, bound, def_id, types)
}
ty::ty_projection(_) |
ty::ty_param(_) => {
// Note: A type parameter is only considered to meet a
// particular bound if there is a where clause telling
// us that it does, and that case is handled by
// `assemble_candidates_from_caller_bounds()`.
Ok(ParameterBuiltin)
}
ty::ty_infer(ty::TyVar(_)) => {
// Unbound type variable. Might or might not have
// applicable impls and so forth, depending on what
// those type variables wind up being bound to.
debug!("assemble_builtin_bound_candidates: ambiguous builtin");
Ok(AmbiguousBuiltin)
}
ty::ty_open(ty) => {
// these only crop up in trans, and represent an
// "opened" unsized/existential type (one that has
// been dereferenced)
match bound {
ty::BoundCopy |
ty::BoundSync |
ty::BoundSend => {
Ok(If(vec!(ty)))
}
ty::BoundSized => {
Err(Unimplemented)
}
}
}
ty::ty_err => {
Ok(If(Vec::new()))
}
ty::ty_infer(ty::FreshTy(_)) |
ty::ty_infer(ty::FreshIntTy(_)) => {
self.tcx().sess.bug(
&format!(
"asked to assemble builtin bounds of unexpected type: {}",
self_ty.repr(self.tcx()))[]);
}
};
fn nominal<'cx, 'tcx>(this: &mut SelectionContext<'cx, 'tcx>,
bound: ty::BuiltinBound,
def_id: ast::DefId,
types: Vec<Ty<'tcx>>)
-> Result<BuiltinBoundConditions<'tcx>,SelectionError<'tcx>>
{
// First check for markers and other nonsense.
let tcx = this.tcx();
match bound {
ty::BoundSend => {
if Some(def_id) == tcx.lang_items.managed_bound() {
return Err(Unimplemented)
}
}
ty::BoundCopy => {
return Ok(ParameterBuiltin)
}
ty::BoundSync => {
if
Some(def_id) == tcx.lang_items.managed_bound() ||
Some(def_id) == tcx.lang_items.unsafe_type()
{
return Err(Unimplemented)
}
}
ty::BoundSized => { }
}
Ok(If(types))
}
}
///////////////////////////////////////////////////////////////////////////
// CONFIRMATION
//
// Confirmation unifies the output type parameters of the trait
// with the values found in the obligation, possibly yielding a
// type error. See `doc.rs` for more details.
fn confirm_candidate(&mut self,
obligation: &TraitObligation<'tcx>,
candidate: SelectionCandidate<'tcx>)
-> Result<Selection<'tcx>,SelectionError<'tcx>>
{
debug!("confirm_candidate({}, {})",
obligation.repr(self.tcx()),
candidate.repr(self.tcx()));
match candidate {
BuiltinCandidate(builtin_bound) => {
Ok(VtableBuiltin(
try!(self.confirm_builtin_candidate(obligation, builtin_bound))))
}
ErrorCandidate => {
Ok(VtableBuiltin(VtableBuiltinData { nested: VecPerParamSpace::empty() }))
}
ParamCandidate(param) => {
let obligations = self.confirm_param_candidate(obligation, param);
Ok(VtableParam(obligations))
}
ImplCandidate(impl_def_id) => {
let vtable_impl =
try!(self.confirm_impl_candidate(obligation, impl_def_id));
Ok(VtableImpl(vtable_impl))
}
ClosureCandidate(closure_def_id, substs) => {
try!(self.confirm_closure_candidate(obligation, closure_def_id, &substs));
Ok(VtableClosure(closure_def_id, substs))
}
ObjectCandidate => {
let data = self.confirm_object_candidate(obligation);
Ok(VtableObject(data))
}
FnPointerCandidate => {
let fn_type =
try!(self.confirm_fn_pointer_candidate(obligation));
Ok(VtableFnPointer(fn_type))
}
ProjectionCandidate => {
self.confirm_projection_candidate(obligation);
Ok(VtableParam(Vec::new()))
}
}
}
fn confirm_projection_candidate(&mut self,
obligation: &TraitObligation<'tcx>)
{
let _: Result<(),()> =
self.infcx.try(|snapshot| {
let result =
self.match_projection_obligation_against_bounds_from_trait(obligation,
snapshot);
assert!(result);
Ok(())
});
}
fn confirm_param_candidate(&mut self,
obligation: &TraitObligation<'tcx>,
param: ty::PolyTraitRef<'tcx>)
-> Vec<PredicateObligation<'tcx>>
{
debug!("confirm_param_candidate({},{})",
obligation.repr(self.tcx()),
param.repr(self.tcx()));
// During evaluation, we already checked that this
// where-clause trait-ref could be unified with the obligation
// trait-ref. Repeat that unification now without any
// transactional boundary; it should not fail.
match self.match_where_clause_trait_ref(obligation, param.clone()) {
Ok(obligations) => obligations,
Err(()) => {
self.tcx().sess.bug(
format!("Where clause `{}` was applicable to `{}` but now is not",
param.repr(self.tcx()),
obligation.repr(self.tcx())).as_slice());
}
}
}
fn confirm_builtin_candidate(&mut self,
obligation: &TraitObligation<'tcx>,
bound: ty::BuiltinBound)
-> Result<VtableBuiltinData<PredicateObligation<'tcx>>,
SelectionError<'tcx>>
{
debug!("confirm_builtin_candidate({})",
obligation.repr(self.tcx()));
match try!(self.builtin_bound(bound, obligation)) {
If(nested) => Ok(self.vtable_builtin_data(obligation, bound, nested)),
AmbiguousBuiltin | ParameterBuiltin => {
self.tcx().sess.span_bug(
obligation.cause.span,
&format!("builtin bound for {} was ambig",
obligation.repr(self.tcx()))[]);
}
}
}
fn vtable_builtin_data(&mut self,
obligation: &TraitObligation<'tcx>,
bound: ty::BuiltinBound,
nested: Vec<Ty<'tcx>>)
-> VtableBuiltinData<PredicateObligation<'tcx>>
{
let derived_cause = self.derived_cause(obligation, BuiltinDerivedObligation);
let obligations = nested.iter().map(|&bound_ty| {
// the obligation might be higher-ranked, e.g. for<'a> &'a
// int : Copy. In that case, we will wind up with
// late-bound regions in the `nested` vector. So for each
// one we instantiate to a skolemized region, do our work
// to produce something like `&'0 int : Copy`, and then
// re-bind it. This is a bit of busy-work but preserves
// the invariant that we only manipulate free regions, not
// bound ones.
self.infcx.try(|snapshot| {
let (skol_ty, skol_map) =
self.infcx().skolemize_late_bound_regions(&ty::Binder(bound_ty), snapshot);
let skol_predicate =
util::predicate_for_builtin_bound(
self.tcx(),
derived_cause.clone(),
bound,
obligation.recursion_depth + 1,
skol_ty);
match skol_predicate {
Ok(skol_predicate) => Ok(self.infcx().plug_leaks(skol_map, snapshot,
&skol_predicate)),
Err(ErrorReported) => Err(ErrorReported)
}
})
}).collect::<Result<_, _>>();
let mut obligations = match obligations {
Ok(o) => o,
Err(ErrorReported) => Vec::new()
};
// as a special case, `Send` requires `'static`
if bound == ty::BoundSend {
obligations.push(Obligation {
cause: obligation.cause.clone(),
recursion_depth: obligation.recursion_depth+1,
predicate: ty::Binder(ty::OutlivesPredicate(obligation.self_ty(),
ty::ReStatic)).as_predicate(),
});
}
let obligations = VecPerParamSpace::new(obligations, Vec::new(), Vec::new());
debug!("vtable_builtin_data: obligations={}",
obligations.repr(self.tcx()));
VtableBuiltinData { nested: obligations }
}
fn confirm_impl_candidate(&mut self,
obligation: &TraitObligation<'tcx>,
impl_def_id: ast::DefId)
-> Result<VtableImplData<'tcx, PredicateObligation<'tcx>>,
SelectionError<'tcx>>
{
debug!("confirm_impl_candidate({},{})",
obligation.repr(self.tcx()),
impl_def_id.repr(self.tcx()));
// First, create the substitutions by matching the impl again,
// this time not in a probe.
self.infcx.try(|snapshot| {
let (skol_obligation_trait_ref, skol_map) =
self.infcx().skolemize_late_bound_regions(&obligation.predicate, snapshot);
let substs =
self.rematch_impl(impl_def_id, obligation,
snapshot, &skol_map, skol_obligation_trait_ref.trait_ref);
debug!("confirm_impl_candidate substs={}", substs.repr(self.tcx()));
Ok(self.vtable_impl(impl_def_id, substs, obligation.cause.clone(),
obligation.recursion_depth + 1, skol_map, snapshot))
})
}
fn vtable_impl(&mut self,
impl_def_id: ast::DefId,
substs: Normalized<'tcx, Substs<'tcx>>,
cause: ObligationCause<'tcx>,
recursion_depth: uint,
skol_map: infer::SkolemizationMap,
snapshot: &infer::CombinedSnapshot)
-> VtableImplData<'tcx, PredicateObligation<'tcx>>
{
debug!("vtable_impl(impl_def_id={}, substs={}, recursion_depth={}, skol_map={})",
impl_def_id.repr(self.tcx()),
substs.repr(self.tcx()),
recursion_depth,
skol_map.repr(self.tcx()));
let mut impl_obligations =
self.impl_obligations(cause,
recursion_depth,
impl_def_id,
&substs.value,
skol_map,
snapshot);
debug!("vtable_impl: impl_def_id={} impl_obligations={}",
impl_def_id.repr(self.tcx()),
impl_obligations.repr(self.tcx()));
impl_obligations.extend(TypeSpace, substs.obligations.into_iter());
VtableImplData { impl_def_id: impl_def_id,
substs: substs.value,
nested: impl_obligations }
}
fn confirm_object_candidate(&mut self,
obligation: &TraitObligation<'tcx>)
-> VtableObjectData<'tcx>
{
debug!("confirm_object_candidate({})",
obligation.repr(self.tcx()));
let self_ty = self.infcx.shallow_resolve(obligation.self_ty());
let poly_trait_ref = match self_ty.sty {
ty::ty_trait(ref data) => {
data.principal_trait_ref_with_self_ty(self.tcx(), self_ty)
}
_ => {
self.tcx().sess.span_bug(obligation.cause.span,
"object candidate with non-object");
}
};
let obligation_def_id = obligation.predicate.def_id();
let upcast_trait_ref = match util::upcast(self.tcx(),
poly_trait_ref.clone(),
obligation_def_id) {
Some(r) => r,
None => {
self.tcx().sess.span_bug(obligation.cause.span,
format!("unable to upcast from {} to {}",
poly_trait_ref.repr(self.tcx()),
obligation_def_id.repr(self.tcx())).as_slice());
}
};
match self.match_poly_trait_ref(obligation, upcast_trait_ref) {
Ok(()) => { }
Err(()) => {
self.tcx().sess.span_bug(obligation.cause.span,
"failed to match trait refs");
}
}
VtableObjectData { object_ty: self_ty }
}
fn confirm_fn_pointer_candidate(&mut self,
obligation: &TraitObligation<'tcx>)
-> Result<ty::Ty<'tcx>,SelectionError<'tcx>>
{
debug!("confirm_fn_pointer_candidate({})",
obligation.repr(self.tcx()));
let self_ty = self.infcx.shallow_resolve(obligation.self_ty());
let sig = ty::ty_fn_sig(self_ty);
let ty::Binder((trait_ref, _)) =
util::closure_trait_ref_and_return_type(self.tcx(),
obligation.predicate.def_id(),
self_ty,
sig,
util::TupleArgumentsFlag::Yes);
let trait_ref = ty::Binder(trait_ref);
try!(self.confirm_poly_trait_refs(obligation.cause.clone(),
obligation.predicate.to_poly_trait_ref(),
trait_ref));
Ok(self_ty)
}
fn confirm_closure_candidate(&mut self,
obligation: &TraitObligation<'tcx>,
closure_def_id: ast::DefId,
substs: &Substs<'tcx>)
-> Result<(),SelectionError<'tcx>>
{
debug!("confirm_closure_candidate({},{},{})",
obligation.repr(self.tcx()),
closure_def_id.repr(self.tcx()),
substs.repr(self.tcx()));
let trait_ref = self.closure_trait_ref(obligation,
closure_def_id,
substs);
debug!("confirm_closure_candidate(closure_def_id={}, trait_ref={})",
closure_def_id.repr(self.tcx()),
trait_ref.repr(self.tcx()));
self.confirm_poly_trait_refs(obligation.cause.clone(),
obligation.predicate.to_poly_trait_ref(),
trait_ref)
}
/// In the case of closure types and fn pointers,
/// we currently treat the input type parameters on the trait as
/// outputs. This means that when we have a match we have only
/// considered the self type, so we have to go back and make sure
/// to relate the argument types too. This is kind of wrong, but
/// since we control the full set of impls, also not that wrong,
/// and it DOES yield better error messages (since we don't report
/// errors as if there is no applicable impl, but rather report
/// errors are about mismatched argument types.
///
/// Here is an example. Imagine we have an closure expression
/// and we desugared it so that the type of the expression is
/// `Closure`, and `Closure` expects an int as argument. Then it
/// is "as if" the compiler generated this impl:
///
/// impl Fn(int) for Closure { ... }
///
/// Now imagine our obligation is `Fn(uint) for Closure`. So far
/// we have matched the self-type `Closure`. At this point we'll
/// compare the `int` to `uint` and generate an error.
///
/// Note that this checking occurs *after* the impl has selected,
/// because these output type parameters should not affect the
/// selection of the impl. Therefore, if there is a mismatch, we
/// report an error to the user.
fn confirm_poly_trait_refs(&mut self,
obligation_cause: ObligationCause,
obligation_trait_ref: ty::PolyTraitRef<'tcx>,
expected_trait_ref: ty::PolyTraitRef<'tcx>)
-> Result<(), SelectionError<'tcx>>
{
let origin = infer::RelateOutputImplTypes(obligation_cause.span);
let obligation_trait_ref = obligation_trait_ref.clone();
match self.infcx.sub_poly_trait_refs(false,
origin,
expected_trait_ref.clone(),
obligation_trait_ref.clone()) {
Ok(()) => Ok(()),
Err(e) => Err(OutputTypeParameterMismatch(expected_trait_ref, obligation_trait_ref, e))
}
}
///////////////////////////////////////////////////////////////////////////
// Matching
//
// Matching is a common path used for both evaluation and
// confirmation. It basically unifies types that appear in impls
// and traits. This does affect the surrounding environment;
// therefore, when used during evaluation, match routines must be
// run inside of a `probe()` so that their side-effects are
// contained.
fn rematch_impl(&mut self,
impl_def_id: ast::DefId,
obligation: &TraitObligation<'tcx>,
snapshot: &infer::CombinedSnapshot,
skol_map: &infer::SkolemizationMap,
skol_obligation_trait_ref: Rc<ty::TraitRef<'tcx>>)
-> Normalized<'tcx, Substs<'tcx>>
{
match self.match_impl(impl_def_id, obligation, snapshot,
skol_map, skol_obligation_trait_ref) {
Ok(substs) => {
substs
}
Err(()) => {
self.tcx().sess.bug(
&format!("Impl {} was matchable against {} but now is not",
impl_def_id.repr(self.tcx()),
obligation.repr(self.tcx()))[]);
}
}
}
fn match_impl(&mut self,
impl_def_id: ast::DefId,
obligation: &TraitObligation<'tcx>,
snapshot: &infer::CombinedSnapshot,
skol_map: &infer::SkolemizationMap,
skol_obligation_trait_ref: Rc<ty::TraitRef<'tcx>>)
-> Result<Normalized<'tcx, Substs<'tcx>>, ()>
{
let impl_trait_ref = ty::impl_trait_ref(self.tcx(), impl_def_id).unwrap();
// Before we create the substitutions and everything, first
// consider a "quick reject". This avoids creating more types
// and so forth that we need to.
if self.fast_reject_trait_refs(obligation, &*impl_trait_ref) {
return Err(());
}
let impl_substs = util::fresh_substs_for_impl(self.infcx,
obligation.cause.span,
impl_def_id);
let impl_trait_ref = impl_trait_ref.subst(self.tcx(),
&impl_substs);
let impl_trait_ref =
project::normalize_with_depth(self,
obligation.cause.clone(),
obligation.recursion_depth + 1,
&impl_trait_ref);
debug!("match_impl(impl_def_id={}, obligation={}, \
impl_trait_ref={}, skol_obligation_trait_ref={})",
impl_def_id.repr(self.tcx()),
obligation.repr(self.tcx()),
impl_trait_ref.repr(self.tcx()),
skol_obligation_trait_ref.repr(self.tcx()));
let origin = infer::RelateOutputImplTypes(obligation.cause.span);
match self.infcx.sub_trait_refs(false,
origin,
impl_trait_ref.value.clone(),
skol_obligation_trait_ref) {
Ok(()) => { }
Err(e) => {
debug!("match_impl: failed sub_trait_refs due to `{}`",
ty::type_err_to_str(self.tcx(), &e));
return Err(());
}
}
match self.infcx.leak_check(skol_map, snapshot) {
Ok(()) => { }
Err(e) => {
debug!("match_impl: failed leak check due to `{}`",
ty::type_err_to_str(self.tcx(), &e));
return Err(());
}
}
debug!("match_impl: success impl_substs={}", impl_substs.repr(self.tcx()));
Ok(Normalized { value: impl_substs,
obligations: impl_trait_ref.obligations })
}
fn fast_reject_trait_refs(&mut self,
obligation: &TraitObligation,
impl_trait_ref: &ty::TraitRef)
-> bool
{
// We can avoid creating type variables and doing the full
// substitution if we find that any of the input types, when
// simplified, do not match.
obligation.predicate.0.input_types().iter()
.zip(impl_trait_ref.input_types().iter())
.any(|(&obligation_ty, &impl_ty)| {
let simplified_obligation_ty =
fast_reject::simplify_type(self.tcx(), obligation_ty, true);
let simplified_impl_ty =
fast_reject::simplify_type(self.tcx(), impl_ty, false);
simplified_obligation_ty.is_some() &&
simplified_impl_ty.is_some() &&
simplified_obligation_ty != simplified_impl_ty
})
}
/// Normalize `where_clause_trait_ref` and try to match it against
/// `obligation`. If successful, return any predicates that
/// result from the normalization. Normalization is necessary
/// because where-clauses are stored in the parameter environment
/// unnormalized.
fn match_where_clause_trait_ref(&mut self,
obligation: &TraitObligation<'tcx>,
where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
-> Result<Vec<PredicateObligation<'tcx>>,()>
{
let () =
try!(self.match_poly_trait_ref(obligation, where_clause_trait_ref));
Ok(Vec::new())
}
/// Returns `Ok` if `poly_trait_ref` being true implies that the
/// obligation is satisfied.
fn match_poly_trait_ref(&mut self,
obligation: &TraitObligation<'tcx>,
poly_trait_ref: ty::PolyTraitRef<'tcx>)
-> Result<(),()>
{
debug!("match_poly_trait_ref: obligation={} poly_trait_ref={}",
obligation.repr(self.tcx()),
poly_trait_ref.repr(self.tcx()));
let origin = infer::RelateOutputImplTypes(obligation.cause.span);
match self.infcx.sub_poly_trait_refs(false,
origin,
poly_trait_ref,
obligation.predicate.to_poly_trait_ref()) {
Ok(()) => Ok(()),
Err(_) => Err(()),
}
}
/// Determines whether the self type declared against
/// `impl_def_id` matches `obligation_self_ty`. If successful,
/// returns the substitutions used to make them match. See
/// `match_impl()`. For example, if `impl_def_id` is declared
/// as:
///
/// impl<T:Copy> Foo for ~T { ... }
///
/// and `obligation_self_ty` is `int`, we'd back an `Err(_)`
/// result. But if `obligation_self_ty` were `~int`, we'd get
/// back `Ok(T=int)`.
fn match_inherent_impl(&mut self,
impl_def_id: ast::DefId,
obligation_cause: &ObligationCause,
obligation_self_ty: Ty<'tcx>)
-> Result<Substs<'tcx>,()>
{
// Create fresh type variables for each type parameter declared
// on the impl etc.
let impl_substs = util::fresh_substs_for_impl(self.infcx,
obligation_cause.span,
impl_def_id);
// Find the self type for the impl.
let impl_self_ty = ty::lookup_item_type(self.tcx(), impl_def_id).ty;
let impl_self_ty = impl_self_ty.subst(self.tcx(), &impl_substs);
debug!("match_impl_self_types(obligation_self_ty={}, impl_self_ty={})",
obligation_self_ty.repr(self.tcx()),
impl_self_ty.repr(self.tcx()));
match self.match_self_types(obligation_cause,
impl_self_ty,
obligation_self_ty) {
Ok(()) => {
debug!("Matched impl_substs={}", impl_substs.repr(self.tcx()));
Ok(impl_substs)
}
Err(()) => {
debug!("NoMatch");
Err(())
}
}
}
fn match_self_types(&mut self,
cause: &ObligationCause,
// The self type provided by the impl/caller-obligation:
provided_self_ty: Ty<'tcx>,
// The self type the obligation is for:
required_self_ty: Ty<'tcx>)
-> Result<(),()>
{
// FIXME(#5781) -- equating the types is stronger than
// necessary. Should consider variance of trait w/r/t Self.
let origin = infer::RelateSelfType(cause.span);
match self.infcx.eq_types(false,
origin,
provided_self_ty,
required_self_ty) {
Ok(()) => Ok(()),
Err(_) => Err(()),
}
}
///////////////////////////////////////////////////////////////////////////
// Miscellany
fn push_stack<'o,'s:'o>(&mut self,
previous_stack: Option<&'s TraitObligationStack<'s, 'tcx>>,
obligation: &'o TraitObligation<'tcx>)
-> TraitObligationStack<'o, 'tcx>
{
let fresh_trait_ref =
obligation.predicate.to_poly_trait_ref().fold_with(&mut self.freshener);
TraitObligationStack {
obligation: obligation,
fresh_trait_ref: fresh_trait_ref,
previous: previous_stack.map(|p| p), // FIXME variance
}
}
/// Returns set of all impls for a given trait.
fn all_impls(&self, trait_def_id: ast::DefId) -> Vec<ast::DefId> {
ty::populate_implementations_for_trait_if_necessary(self.tcx(), trait_def_id);
match self.tcx().trait_impls.borrow().get(&trait_def_id) {
None => Vec::new(),
Some(impls) => impls.borrow().clone()
}
}
fn closure_trait_ref(&self,
obligation: &TraitObligation<'tcx>,
closure_def_id: ast::DefId,
substs: &Substs<'tcx>)
-> ty::PolyTraitRef<'tcx>
{
let closure_type = self.closure_typer.closure_type(closure_def_id, substs);
let ty::Binder((trait_ref, _)) =
util::closure_trait_ref_and_return_type(self.tcx(),
obligation.predicate.def_id(),
obligation.predicate.0.self_ty(), // (1)
&closure_type.sig,
util::TupleArgumentsFlag::No);
// (1) Feels icky to skip the binder here, but OTOH we know
// that the self-type is an unboxed closure type and hence is
// in fact unparameterized (or at least does not reference any
// regions bound in the obligation). Still probably some
// refactoring could make this nicer.
ty::Binder(trait_ref)
}
fn impl_obligations(&mut self,
cause: ObligationCause<'tcx>,
recursion_depth: uint,
impl_def_id: ast::DefId,
impl_substs: &Substs<'tcx>,
skol_map: infer::SkolemizationMap,
snapshot: &infer::CombinedSnapshot)
-> VecPerParamSpace<PredicateObligation<'tcx>>
{
let impl_generics = ty::lookup_item_type(self.tcx(), impl_def_id).generics;
let bounds = impl_generics.to_bounds(self.tcx(), impl_substs);
let normalized_bounds =
project::normalize_with_depth(self, cause.clone(), recursion_depth, &bounds);
let normalized_bounds =
self.infcx().plug_leaks(skol_map, snapshot, &normalized_bounds);
let mut impl_obligations =
util::predicates_for_generics(self.tcx(),
cause,
recursion_depth,
&normalized_bounds.value);
impl_obligations.extend(TypeSpace, normalized_bounds.obligations.into_iter());
impl_obligations
}
#[allow(unused_comparisons)]
fn derived_cause(&self,
obligation: &TraitObligation<'tcx>,
variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>)
-> ObligationCause<'tcx>
{
/*!
* Creates a cause for obligations that are derived from
* `obligation` by a recursive search (e.g., for a builtin
* bound, or eventually a `impl Foo for ..`). If `obligation`
* is itself a derived obligation, this is just a clone, but
* otherwise we create a "derived obligation" cause so as to
* keep track of the original root obligation for error
* reporting.
*/
// NOTE(flaper87): As of now, it keeps track of the whole error
// chain. Ideally, we should have a way to configure this either
// by using -Z verbose or just a CLI argument.
if obligation.recursion_depth >= 0 {
let derived_cause = DerivedObligationCause {
parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
parent_code: Rc::new(obligation.cause.code.clone()),
};
ObligationCause::new(obligation.cause.span,
obligation.cause.body_id,
variant(derived_cause))
} else {
obligation.cause.clone()
}
}
}
impl<'tcx> Repr<'tcx> for SelectionCandidate<'tcx> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
match *self {
ErrorCandidate => format!("ErrorCandidate"),
BuiltinCandidate(b) => format!("BuiltinCandidate({:?})", b),
ParamCandidate(ref a) => format!("ParamCandidate({})", a.repr(tcx)),
ImplCandidate(a) => format!("ImplCandidate({})", a.repr(tcx)),
ProjectionCandidate => format!("ProjectionCandidate"),
FnPointerCandidate => format!("FnPointerCandidate"),
ObjectCandidate => {
format!("ObjectCandidate")
}
ClosureCandidate(c, ref s) => {
format!("ClosureCandidate({:?},{})", c, s.repr(tcx))
}
}
}
}
impl<'tcx> SelectionCache<'tcx> {
pub fn new() -> SelectionCache<'tcx> {
SelectionCache {
hashmap: RefCell::new(HashMap::new())
}
}
}
impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
fn iter(&self) -> Option<&TraitObligationStack<'o, 'tcx>> {
Some(self)
}
}
impl<'o, 'tcx> Iterator for Option<&'o TraitObligationStack<'o, 'tcx>> {
type Item = &'o TraitObligationStack<'o,'tcx>;
fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
match *self {
Some(o) => {
*self = o.previous;
Some(o)
}
None => {
None
}
}
}
}
impl<'o, 'tcx> Repr<'tcx> for TraitObligationStack<'o, 'tcx> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
format!("TraitObligationStack({})",
self.obligation.repr(tcx))
}
}
impl<'tcx> EvaluationResult<'tcx> {
fn may_apply(&self) -> bool {
match *self {
EvaluatedToOk |
EvaluatedToAmbig |
EvaluatedToErr(Overflow) |
EvaluatedToErr(OutputTypeParameterMismatch(..)) => {
true
}
EvaluatedToErr(Unimplemented) => {
false
}
}
}
}
impl MethodMatchResult {
pub fn may_apply(&self) -> bool {
match *self {
MethodMatched(_) => true,
MethodAmbiguous(_) => true,
MethodDidNotMatch => false,
}
}
}