91ede1f09a
This commit adds a new trait, MutableVectorAllocating, which represents functions on vectors which can allocate. This is another extension trait to slices which should be removed once a lang item exists for the ~ allocation.
1484 lines
42 KiB
Rust
1484 lines
42 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Slice management and manipulation
|
|
//!
|
|
//! For more details `std::slice`.
|
|
|
|
use cast;
|
|
use cast::transmute;
|
|
use clone::Clone;
|
|
use container::Container;
|
|
use cmp::{Eq, TotalOrd, Ordering, Less, Equal, Greater};
|
|
use cmp;
|
|
use default::Default;
|
|
use iter::*;
|
|
use num::{CheckedAdd, Saturating, div_rem};
|
|
use option::{None, Option, Some};
|
|
use ptr;
|
|
use ptr::RawPtr;
|
|
use mem;
|
|
use mem::size_of;
|
|
use kinds::marker;
|
|
use raw::{Repr, Slice};
|
|
|
|
/**
|
|
* Converts a pointer to A into a slice of length 1 (without copying).
|
|
*/
|
|
pub fn ref_slice<'a, A>(s: &'a A) -> &'a [A] {
|
|
unsafe {
|
|
transmute(Slice { data: s, len: 1 })
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Converts a pointer to A into a slice of length 1 (without copying).
|
|
*/
|
|
pub fn mut_ref_slice<'a, A>(s: &'a mut A) -> &'a mut [A] {
|
|
unsafe {
|
|
let ptr: *A = transmute(s);
|
|
transmute(Slice { data: ptr, len: 1 })
|
|
}
|
|
}
|
|
|
|
/// An iterator over the slices of a vector separated by elements that
|
|
/// match a predicate function.
|
|
pub struct Splits<'a, T> {
|
|
v: &'a [T],
|
|
pred: |t: &T|: 'a -> bool,
|
|
finished: bool
|
|
}
|
|
|
|
impl<'a, T> Iterator<&'a [T]> for Splits<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a [T]> {
|
|
if self.finished { return None; }
|
|
|
|
match self.v.iter().position(|x| (self.pred)(x)) {
|
|
None => {
|
|
self.finished = true;
|
|
Some(self.v)
|
|
}
|
|
Some(idx) => {
|
|
let ret = Some(self.v.slice(0, idx));
|
|
self.v = self.v.slice(idx + 1, self.v.len());
|
|
ret
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
if self.finished {
|
|
(0, Some(0))
|
|
} else {
|
|
(1, Some(self.v.len() + 1))
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, T> DoubleEndedIterator<&'a [T]> for Splits<'a, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<&'a [T]> {
|
|
if self.finished { return None; }
|
|
|
|
match self.v.iter().rposition(|x| (self.pred)(x)) {
|
|
None => {
|
|
self.finished = true;
|
|
Some(self.v)
|
|
}
|
|
Some(idx) => {
|
|
let ret = Some(self.v.slice(idx + 1, self.v.len()));
|
|
self.v = self.v.slice(0, idx);
|
|
ret
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator over the slices of a vector separated by elements that
|
|
/// match a predicate function, splitting at most a fixed number of times.
|
|
pub struct SplitsN<'a, T> {
|
|
iter: Splits<'a, T>,
|
|
count: uint,
|
|
invert: bool
|
|
}
|
|
|
|
impl<'a, T> Iterator<&'a [T]> for SplitsN<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a [T]> {
|
|
if self.count == 0 {
|
|
if self.iter.finished {
|
|
None
|
|
} else {
|
|
self.iter.finished = true;
|
|
Some(self.iter.v)
|
|
}
|
|
} else {
|
|
self.count -= 1;
|
|
if self.invert { self.iter.next_back() } else { self.iter.next() }
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
if self.iter.finished {
|
|
(0, Some(0))
|
|
} else {
|
|
(1, Some(cmp::min(self.count, self.iter.v.len()) + 1))
|
|
}
|
|
}
|
|
}
|
|
|
|
// Functional utilities
|
|
|
|
/// An iterator over the (overlapping) slices of length `size` within
|
|
/// a vector.
|
|
#[deriving(Clone)]
|
|
pub struct Windows<'a, T> {
|
|
v: &'a [T],
|
|
size: uint
|
|
}
|
|
|
|
impl<'a, T> Iterator<&'a [T]> for Windows<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a [T]> {
|
|
if self.size > self.v.len() {
|
|
None
|
|
} else {
|
|
let ret = Some(self.v.slice(0, self.size));
|
|
self.v = self.v.slice(1, self.v.len());
|
|
ret
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
if self.size > self.v.len() {
|
|
(0, Some(0))
|
|
} else {
|
|
let x = self.v.len() - self.size;
|
|
(x.saturating_add(1), x.checked_add(&1u))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator over a vector in (non-overlapping) chunks (`size`
|
|
/// elements at a time).
|
|
///
|
|
/// When the vector len is not evenly divided by the chunk size,
|
|
/// the last slice of the iteration will be the remainder.
|
|
#[deriving(Clone)]
|
|
pub struct Chunks<'a, T> {
|
|
v: &'a [T],
|
|
size: uint
|
|
}
|
|
|
|
impl<'a, T> Iterator<&'a [T]> for Chunks<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a [T]> {
|
|
if self.v.len() == 0 {
|
|
None
|
|
} else {
|
|
let chunksz = cmp::min(self.v.len(), self.size);
|
|
let (fst, snd) = (self.v.slice_to(chunksz),
|
|
self.v.slice_from(chunksz));
|
|
self.v = snd;
|
|
Some(fst)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
if self.v.len() == 0 {
|
|
(0, Some(0))
|
|
} else {
|
|
let (n, rem) = div_rem(self.v.len(), self.size);
|
|
let n = if rem > 0 { n+1 } else { n };
|
|
(n, Some(n))
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, T> DoubleEndedIterator<&'a [T]> for Chunks<'a, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<&'a [T]> {
|
|
if self.v.len() == 0 {
|
|
None
|
|
} else {
|
|
let remainder = self.v.len() % self.size;
|
|
let chunksz = if remainder != 0 { remainder } else { self.size };
|
|
let (fst, snd) = (self.v.slice_to(self.v.len() - chunksz),
|
|
self.v.slice_from(self.v.len() - chunksz));
|
|
self.v = fst;
|
|
Some(snd)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, T> RandomAccessIterator<&'a [T]> for Chunks<'a, T> {
|
|
#[inline]
|
|
fn indexable(&self) -> uint {
|
|
self.v.len()/self.size + if self.v.len() % self.size != 0 { 1 } else { 0 }
|
|
}
|
|
|
|
#[inline]
|
|
fn idx(&mut self, index: uint) -> Option<&'a [T]> {
|
|
if index < self.indexable() {
|
|
let lo = index * self.size;
|
|
let mut hi = lo + self.size;
|
|
if hi < lo || hi > self.v.len() { hi = self.v.len(); }
|
|
|
|
Some(self.v.slice(lo, hi))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
// Equality
|
|
|
|
#[cfg(not(test))]
|
|
#[allow(missing_doc)]
|
|
pub mod traits {
|
|
use super::*;
|
|
|
|
use cmp::{Eq, Ord, TotalEq, TotalOrd, Ordering, Equiv};
|
|
use iter::{order, Iterator};
|
|
use container::Container;
|
|
|
|
impl<'a,T:Eq> Eq for &'a [T] {
|
|
fn eq(&self, other: & &'a [T]) -> bool {
|
|
self.len() == other.len() &&
|
|
order::eq(self.iter(), other.iter())
|
|
}
|
|
fn ne(&self, other: & &'a [T]) -> bool {
|
|
self.len() != other.len() ||
|
|
order::ne(self.iter(), other.iter())
|
|
}
|
|
}
|
|
|
|
impl<T:Eq> Eq for ~[T] {
|
|
#[inline]
|
|
fn eq(&self, other: &~[T]) -> bool { self.as_slice() == *other }
|
|
#[inline]
|
|
fn ne(&self, other: &~[T]) -> bool { !self.eq(other) }
|
|
}
|
|
|
|
impl<'a,T:TotalEq> TotalEq for &'a [T] {}
|
|
|
|
impl<T:TotalEq> TotalEq for ~[T] {}
|
|
|
|
impl<'a,T:Eq, V: Vector<T>> Equiv<V> for &'a [T] {
|
|
#[inline]
|
|
fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() }
|
|
}
|
|
|
|
impl<'a,T:Eq, V: Vector<T>> Equiv<V> for ~[T] {
|
|
#[inline]
|
|
fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() }
|
|
}
|
|
|
|
impl<'a,T:TotalOrd> TotalOrd for &'a [T] {
|
|
fn cmp(&self, other: & &'a [T]) -> Ordering {
|
|
order::cmp(self.iter(), other.iter())
|
|
}
|
|
}
|
|
|
|
impl<T: TotalOrd> TotalOrd for ~[T] {
|
|
#[inline]
|
|
fn cmp(&self, other: &~[T]) -> Ordering { self.as_slice().cmp(&other.as_slice()) }
|
|
}
|
|
|
|
impl<'a, T: Ord> Ord for &'a [T] {
|
|
fn lt(&self, other: & &'a [T]) -> bool {
|
|
order::lt(self.iter(), other.iter())
|
|
}
|
|
#[inline]
|
|
fn le(&self, other: & &'a [T]) -> bool {
|
|
order::le(self.iter(), other.iter())
|
|
}
|
|
#[inline]
|
|
fn ge(&self, other: & &'a [T]) -> bool {
|
|
order::ge(self.iter(), other.iter())
|
|
}
|
|
#[inline]
|
|
fn gt(&self, other: & &'a [T]) -> bool {
|
|
order::gt(self.iter(), other.iter())
|
|
}
|
|
}
|
|
|
|
impl<T: Ord> Ord for ~[T] {
|
|
#[inline]
|
|
fn lt(&self, other: &~[T]) -> bool { self.as_slice() < other.as_slice() }
|
|
#[inline]
|
|
fn le(&self, other: &~[T]) -> bool { self.as_slice() <= other.as_slice() }
|
|
#[inline]
|
|
fn ge(&self, other: &~[T]) -> bool { self.as_slice() >= other.as_slice() }
|
|
#[inline]
|
|
fn gt(&self, other: &~[T]) -> bool { self.as_slice() > other.as_slice() }
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub mod traits {}
|
|
|
|
/// Any vector that can be represented as a slice.
|
|
pub trait Vector<T> {
|
|
/// Work with `self` as a slice.
|
|
fn as_slice<'a>(&'a self) -> &'a [T];
|
|
}
|
|
|
|
impl<'a,T> Vector<T> for &'a [T] {
|
|
#[inline(always)]
|
|
fn as_slice<'a>(&'a self) -> &'a [T] { *self }
|
|
}
|
|
|
|
impl<T> Vector<T> for ~[T] {
|
|
#[inline(always)]
|
|
fn as_slice<'a>(&'a self) -> &'a [T] { let v: &'a [T] = *self; v }
|
|
}
|
|
|
|
impl<'a, T> Container for &'a [T] {
|
|
/// Returns the length of a vector
|
|
#[inline]
|
|
fn len(&self) -> uint {
|
|
self.repr().len
|
|
}
|
|
}
|
|
|
|
impl<T> Container for ~[T] {
|
|
/// Returns the length of a vector
|
|
#[inline]
|
|
fn len(&self) -> uint {
|
|
self.as_slice().len()
|
|
}
|
|
}
|
|
|
|
/// Extension methods for vectors
|
|
pub trait ImmutableVector<'a, T> {
|
|
/**
|
|
* Returns a slice of self between `start` and `end`.
|
|
*
|
|
* Fails when `start` or `end` point outside the bounds of self,
|
|
* or when `start` > `end`.
|
|
*/
|
|
fn slice(&self, start: uint, end: uint) -> &'a [T];
|
|
|
|
/**
|
|
* Returns a slice of self from `start` to the end of the vec.
|
|
*
|
|
* Fails when `start` points outside the bounds of self.
|
|
*/
|
|
fn slice_from(&self, start: uint) -> &'a [T];
|
|
|
|
/**
|
|
* Returns a slice of self from the start of the vec to `end`.
|
|
*
|
|
* Fails when `end` points outside the bounds of self.
|
|
*/
|
|
fn slice_to(&self, end: uint) -> &'a [T];
|
|
/// Returns an iterator over the vector
|
|
fn iter(self) -> Items<'a, T>;
|
|
/// Returns a reversed iterator over a vector
|
|
#[deprecated = "replaced by .iter().rev()"]
|
|
fn rev_iter(self) -> Rev<Items<'a, T>>;
|
|
/// Returns an iterator over the subslices of the vector which are
|
|
/// separated by elements that match `pred`. The matched element
|
|
/// is not contained in the subslices.
|
|
fn split(self, pred: |&T|: 'a -> bool) -> Splits<'a, T>;
|
|
/// Returns an iterator over the subslices of the vector which are
|
|
/// separated by elements that match `pred`, limited to splitting
|
|
/// at most `n` times. The matched element is not contained in
|
|
/// the subslices.
|
|
fn splitn(self, n: uint, pred: |&T|: 'a -> bool) -> SplitsN<'a, T>;
|
|
/// Returns an iterator over the subslices of the vector which are
|
|
/// separated by elements that match `pred`. This starts at the
|
|
/// end of the vector and works backwards. The matched element is
|
|
/// not contained in the subslices.
|
|
#[deprecated = "replaced by .split(pred).rev()"]
|
|
fn rsplit(self, pred: |&T|: 'a -> bool) -> Rev<Splits<'a, T>>;
|
|
/// Returns an iterator over the subslices of the vector which are
|
|
/// separated by elements that match `pred` limited to splitting
|
|
/// at most `n` times. This starts at the end of the vector and
|
|
/// works backwards. The matched element is not contained in the
|
|
/// subslices.
|
|
fn rsplitn(self, n: uint, pred: |&T|: 'a -> bool) -> SplitsN<'a, T>;
|
|
|
|
/**
|
|
* Returns an iterator over all contiguous windows of length
|
|
* `size`. The windows overlap. If the vector is shorter than
|
|
* `size`, the iterator returns no values.
|
|
*
|
|
* # Failure
|
|
*
|
|
* Fails if `size` is 0.
|
|
*
|
|
* # Example
|
|
*
|
|
* Print the adjacent pairs of a vector (i.e. `[1,2]`, `[2,3]`,
|
|
* `[3,4]`):
|
|
*
|
|
* ```rust
|
|
* let v = &[1,2,3,4];
|
|
* for win in v.windows(2) {
|
|
* println!("{:?}", win);
|
|
* }
|
|
* ```
|
|
*
|
|
*/
|
|
fn windows(self, size: uint) -> Windows<'a, T>;
|
|
/**
|
|
*
|
|
* Returns an iterator over `size` elements of the vector at a
|
|
* time. The chunks do not overlap. If `size` does not divide the
|
|
* length of the vector, then the last chunk will not have length
|
|
* `size`.
|
|
*
|
|
* # Failure
|
|
*
|
|
* Fails if `size` is 0.
|
|
*
|
|
* # Example
|
|
*
|
|
* Print the vector two elements at a time (i.e. `[1,2]`,
|
|
* `[3,4]`, `[5]`):
|
|
*
|
|
* ```rust
|
|
* let v = &[1,2,3,4,5];
|
|
* for win in v.chunks(2) {
|
|
* println!("{:?}", win);
|
|
* }
|
|
* ```
|
|
*
|
|
*/
|
|
fn chunks(self, size: uint) -> Chunks<'a, T>;
|
|
|
|
/// Returns the element of a vector at the given index, or `None` if the
|
|
/// index is out of bounds
|
|
fn get(&self, index: uint) -> Option<&'a T>;
|
|
/// Returns the first element of a vector, or `None` if it is empty
|
|
fn head(&self) -> Option<&'a T>;
|
|
/// Returns all but the first element of a vector
|
|
fn tail(&self) -> &'a [T];
|
|
/// Returns all but the first `n' elements of a vector
|
|
fn tailn(&self, n: uint) -> &'a [T];
|
|
/// Returns all but the last element of a vector
|
|
fn init(&self) -> &'a [T];
|
|
/// Returns all but the last `n' elements of a vector
|
|
fn initn(&self, n: uint) -> &'a [T];
|
|
/// Returns the last element of a vector, or `None` if it is empty.
|
|
fn last(&self) -> Option<&'a T>;
|
|
|
|
/// Returns a pointer to the element at the given index, without doing
|
|
/// bounds checking.
|
|
unsafe fn unsafe_ref(self, index: uint) -> &'a T;
|
|
|
|
/**
|
|
* Returns an unsafe pointer to the vector's buffer
|
|
*
|
|
* The caller must ensure that the vector outlives the pointer this
|
|
* function returns, or else it will end up pointing to garbage.
|
|
*
|
|
* Modifying the vector may cause its buffer to be reallocated, which
|
|
* would also make any pointers to it invalid.
|
|
*/
|
|
fn as_ptr(&self) -> *T;
|
|
|
|
/**
|
|
* Binary search a sorted vector with a comparator function.
|
|
*
|
|
* The comparator function should implement an order consistent
|
|
* with the sort order of the underlying vector, returning an
|
|
* order code that indicates whether its argument is `Less`,
|
|
* `Equal` or `Greater` the desired target.
|
|
*
|
|
* Returns the index where the comparator returned `Equal`, or `None` if
|
|
* not found.
|
|
*/
|
|
fn bsearch(&self, f: |&T| -> Ordering) -> Option<uint>;
|
|
|
|
/**
|
|
* Returns a mutable reference to the first element in this slice
|
|
* and adjusts the slice in place so that it no longer contains
|
|
* that element. O(1).
|
|
*
|
|
* Equivalent to:
|
|
*
|
|
* ```ignore
|
|
* if self.len() == 0 { return None }
|
|
* let head = &self[0];
|
|
* *self = self.slice_from(1);
|
|
* Some(head)
|
|
* ```
|
|
*
|
|
* Returns `None` if vector is empty
|
|
*/
|
|
fn shift_ref(&mut self) -> Option<&'a T>;
|
|
|
|
/**
|
|
* Returns a mutable reference to the last element in this slice
|
|
* and adjusts the slice in place so that it no longer contains
|
|
* that element. O(1).
|
|
*
|
|
* Equivalent to:
|
|
*
|
|
* ```ignore
|
|
* if self.len() == 0 { return None; }
|
|
* let tail = &self[self.len() - 1];
|
|
* *self = self.slice_to(self.len() - 1);
|
|
* Some(tail)
|
|
* ```
|
|
*
|
|
* Returns `None` if slice is empty.
|
|
*/
|
|
fn pop_ref(&mut self) -> Option<&'a T>;
|
|
}
|
|
|
|
impl<'a,T> ImmutableVector<'a, T> for &'a [T] {
|
|
#[inline]
|
|
fn slice(&self, start: uint, end: uint) -> &'a [T] {
|
|
assert!(start <= end);
|
|
assert!(end <= self.len());
|
|
unsafe {
|
|
transmute(Slice {
|
|
data: self.as_ptr().offset(start as int),
|
|
len: (end - start)
|
|
})
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn slice_from(&self, start: uint) -> &'a [T] {
|
|
self.slice(start, self.len())
|
|
}
|
|
|
|
#[inline]
|
|
fn slice_to(&self, end: uint) -> &'a [T] {
|
|
self.slice(0, end)
|
|
}
|
|
|
|
#[inline]
|
|
fn iter(self) -> Items<'a, T> {
|
|
unsafe {
|
|
let p = self.as_ptr();
|
|
if mem::size_of::<T>() == 0 {
|
|
Items{ptr: p,
|
|
end: (p as uint + self.len()) as *T,
|
|
marker: marker::ContravariantLifetime::<'a>}
|
|
} else {
|
|
Items{ptr: p,
|
|
end: p.offset(self.len() as int),
|
|
marker: marker::ContravariantLifetime::<'a>}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
#[deprecated = "replaced by .iter().rev()"]
|
|
fn rev_iter(self) -> Rev<Items<'a, T>> {
|
|
self.iter().rev()
|
|
}
|
|
|
|
#[inline]
|
|
fn split(self, pred: |&T|: 'a -> bool) -> Splits<'a, T> {
|
|
Splits {
|
|
v: self,
|
|
pred: pred,
|
|
finished: false
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn splitn(self, n: uint, pred: |&T|: 'a -> bool) -> SplitsN<'a, T> {
|
|
SplitsN {
|
|
iter: self.split(pred),
|
|
count: n,
|
|
invert: false
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
#[deprecated = "replaced by .split(pred).rev()"]
|
|
fn rsplit(self, pred: |&T|: 'a -> bool) -> Rev<Splits<'a, T>> {
|
|
self.split(pred).rev()
|
|
}
|
|
|
|
#[inline]
|
|
fn rsplitn(self, n: uint, pred: |&T|: 'a -> bool) -> SplitsN<'a, T> {
|
|
SplitsN {
|
|
iter: self.split(pred),
|
|
count: n,
|
|
invert: true
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn windows(self, size: uint) -> Windows<'a, T> {
|
|
assert!(size != 0);
|
|
Windows { v: self, size: size }
|
|
}
|
|
|
|
#[inline]
|
|
fn chunks(self, size: uint) -> Chunks<'a, T> {
|
|
assert!(size != 0);
|
|
Chunks { v: self, size: size }
|
|
}
|
|
|
|
#[inline]
|
|
fn get(&self, index: uint) -> Option<&'a T> {
|
|
if index < self.len() { Some(&self[index]) } else { None }
|
|
}
|
|
|
|
#[inline]
|
|
fn head(&self) -> Option<&'a T> {
|
|
if self.len() == 0 { None } else { Some(&self[0]) }
|
|
}
|
|
|
|
#[inline]
|
|
fn tail(&self) -> &'a [T] { self.slice(1, self.len()) }
|
|
|
|
#[inline]
|
|
fn tailn(&self, n: uint) -> &'a [T] { self.slice(n, self.len()) }
|
|
|
|
#[inline]
|
|
fn init(&self) -> &'a [T] {
|
|
self.slice(0, self.len() - 1)
|
|
}
|
|
|
|
#[inline]
|
|
fn initn(&self, n: uint) -> &'a [T] {
|
|
self.slice(0, self.len() - n)
|
|
}
|
|
|
|
#[inline]
|
|
fn last(&self) -> Option<&'a T> {
|
|
if self.len() == 0 { None } else { Some(&self[self.len() - 1]) }
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn unsafe_ref(self, index: uint) -> &'a T {
|
|
transmute(self.repr().data.offset(index as int))
|
|
}
|
|
|
|
#[inline]
|
|
fn as_ptr(&self) -> *T {
|
|
self.repr().data
|
|
}
|
|
|
|
|
|
fn bsearch(&self, f: |&T| -> Ordering) -> Option<uint> {
|
|
let mut base : uint = 0;
|
|
let mut lim : uint = self.len();
|
|
|
|
while lim != 0 {
|
|
let ix = base + (lim >> 1);
|
|
match f(&self[ix]) {
|
|
Equal => return Some(ix),
|
|
Less => {
|
|
base = ix + 1;
|
|
lim -= 1;
|
|
}
|
|
Greater => ()
|
|
}
|
|
lim >>= 1;
|
|
}
|
|
return None;
|
|
}
|
|
|
|
fn shift_ref(&mut self) -> Option<&'a T> {
|
|
if self.len() == 0 { return None; }
|
|
unsafe {
|
|
let s: &mut Slice<T> = transmute(self);
|
|
Some(&*raw::shift_ptr(s))
|
|
}
|
|
}
|
|
|
|
fn pop_ref(&mut self) -> Option<&'a T> {
|
|
if self.len() == 0 { return None; }
|
|
unsafe {
|
|
let s: &mut Slice<T> = transmute(self);
|
|
Some(&*raw::pop_ptr(s))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Extension methods for vectors contain `Eq` elements.
|
|
pub trait ImmutableEqVector<T:Eq> {
|
|
/// Find the first index containing a matching value
|
|
fn position_elem(&self, t: &T) -> Option<uint>;
|
|
|
|
/// Find the last index containing a matching value
|
|
fn rposition_elem(&self, t: &T) -> Option<uint>;
|
|
|
|
/// Return true if a vector contains an element with the given value
|
|
fn contains(&self, x: &T) -> bool;
|
|
|
|
/// Returns true if `needle` is a prefix of the vector.
|
|
fn starts_with(&self, needle: &[T]) -> bool;
|
|
|
|
/// Returns true if `needle` is a suffix of the vector.
|
|
fn ends_with(&self, needle: &[T]) -> bool;
|
|
}
|
|
|
|
impl<'a,T:Eq> ImmutableEqVector<T> for &'a [T] {
|
|
#[inline]
|
|
fn position_elem(&self, x: &T) -> Option<uint> {
|
|
self.iter().position(|y| *x == *y)
|
|
}
|
|
|
|
#[inline]
|
|
fn rposition_elem(&self, t: &T) -> Option<uint> {
|
|
self.iter().rposition(|x| *x == *t)
|
|
}
|
|
|
|
#[inline]
|
|
fn contains(&self, x: &T) -> bool {
|
|
self.iter().any(|elt| *x == *elt)
|
|
}
|
|
|
|
#[inline]
|
|
fn starts_with(&self, needle: &[T]) -> bool {
|
|
let n = needle.len();
|
|
self.len() >= n && needle == self.slice_to(n)
|
|
}
|
|
|
|
#[inline]
|
|
fn ends_with(&self, needle: &[T]) -> bool {
|
|
let (m, n) = (self.len(), needle.len());
|
|
m >= n && needle == self.slice_from(m - n)
|
|
}
|
|
}
|
|
|
|
/// Extension methods for vectors containing `TotalOrd` elements.
|
|
pub trait ImmutableTotalOrdVector<T: TotalOrd> {
|
|
/**
|
|
* Binary search a sorted vector for a given element.
|
|
*
|
|
* Returns the index of the element or None if not found.
|
|
*/
|
|
fn bsearch_elem(&self, x: &T) -> Option<uint>;
|
|
}
|
|
|
|
impl<'a, T: TotalOrd> ImmutableTotalOrdVector<T> for &'a [T] {
|
|
fn bsearch_elem(&self, x: &T) -> Option<uint> {
|
|
self.bsearch(|p| p.cmp(x))
|
|
}
|
|
}
|
|
|
|
/// Extension methods for vectors such that their elements are
|
|
/// mutable.
|
|
pub trait MutableVector<'a, T> {
|
|
/// Work with `self` as a mut slice.
|
|
/// Primarily intended for getting a &mut [T] from a [T, ..N].
|
|
fn as_mut_slice(self) -> &'a mut [T];
|
|
|
|
/// Return a slice that points into another slice.
|
|
fn mut_slice(self, start: uint, end: uint) -> &'a mut [T];
|
|
|
|
/**
|
|
* Returns a slice of self from `start` to the end of the vec.
|
|
*
|
|
* Fails when `start` points outside the bounds of self.
|
|
*/
|
|
fn mut_slice_from(self, start: uint) -> &'a mut [T];
|
|
|
|
/**
|
|
* Returns a slice of self from the start of the vec to `end`.
|
|
*
|
|
* Fails when `end` points outside the bounds of self.
|
|
*/
|
|
fn mut_slice_to(self, end: uint) -> &'a mut [T];
|
|
|
|
/// Returns an iterator that allows modifying each value
|
|
fn mut_iter(self) -> MutItems<'a, T>;
|
|
|
|
/// Returns a mutable pointer to the last item in the vector.
|
|
fn mut_last(self) -> Option<&'a mut T>;
|
|
|
|
/// Returns a reversed iterator that allows modifying each value
|
|
#[deprecated = "replaced by .mut_iter().rev()"]
|
|
fn mut_rev_iter(self) -> Rev<MutItems<'a, T>>;
|
|
|
|
/// Returns an iterator over the mutable subslices of the vector
|
|
/// which are separated by elements that match `pred`. The
|
|
/// matched element is not contained in the subslices.
|
|
fn mut_split(self, pred: |&T|: 'a -> bool) -> MutSplits<'a, T>;
|
|
|
|
/**
|
|
* Returns an iterator over `size` elements of the vector at a time.
|
|
* The chunks are mutable and do not overlap. If `size` does not divide the
|
|
* length of the vector, then the last chunk will not have length
|
|
* `size`.
|
|
*
|
|
* # Failure
|
|
*
|
|
* Fails if `size` is 0.
|
|
*/
|
|
fn mut_chunks(self, chunk_size: uint) -> MutChunks<'a, T>;
|
|
|
|
/**
|
|
* Returns a mutable reference to the first element in this slice
|
|
* and adjusts the slice in place so that it no longer contains
|
|
* that element. O(1).
|
|
*
|
|
* Equivalent to:
|
|
*
|
|
* ```ignore
|
|
* if self.len() == 0 { return None; }
|
|
* let head = &mut self[0];
|
|
* *self = self.mut_slice_from(1);
|
|
* Some(head)
|
|
* ```
|
|
*
|
|
* Returns `None` if slice is empty
|
|
*/
|
|
fn mut_shift_ref(&mut self) -> Option<&'a mut T>;
|
|
|
|
/**
|
|
* Returns a mutable reference to the last element in this slice
|
|
* and adjusts the slice in place so that it no longer contains
|
|
* that element. O(1).
|
|
*
|
|
* Equivalent to:
|
|
*
|
|
* ```ignore
|
|
* if self.len() == 0 { return None; }
|
|
* let tail = &mut self[self.len() - 1];
|
|
* *self = self.mut_slice_to(self.len() - 1);
|
|
* Some(tail)
|
|
* ```
|
|
*
|
|
* Returns `None` if slice is empty.
|
|
*/
|
|
fn mut_pop_ref(&mut self) -> Option<&'a mut T>;
|
|
|
|
/// Swaps two elements in a vector.
|
|
///
|
|
/// Fails if `a` or `b` are out of bounds.
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * a - The index of the first element
|
|
/// * b - The index of the second element
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let mut v = ["a", "b", "c", "d"];
|
|
/// v.swap(1, 3);
|
|
/// assert!(v == ["a", "d", "c", "b"]);
|
|
/// ```
|
|
fn swap(self, a: uint, b: uint);
|
|
|
|
|
|
/// Divides one `&mut` into two at an index.
|
|
///
|
|
/// The first will contain all indices from `[0, mid)` (excluding
|
|
/// the index `mid` itself) and the second will contain all
|
|
/// indices from `[mid, len)` (excluding the index `len` itself).
|
|
///
|
|
/// Fails if `mid > len`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let mut v = [1, 2, 3, 4, 5, 6];
|
|
///
|
|
/// // scoped to restrict the lifetime of the borrows
|
|
/// {
|
|
/// let (left, right) = v.mut_split_at(0);
|
|
/// assert!(left == &mut []);
|
|
/// assert!(right == &mut [1, 2, 3, 4, 5, 6]);
|
|
/// }
|
|
///
|
|
/// {
|
|
/// let (left, right) = v.mut_split_at(2);
|
|
/// assert!(left == &mut [1, 2]);
|
|
/// assert!(right == &mut [3, 4, 5, 6]);
|
|
/// }
|
|
///
|
|
/// {
|
|
/// let (left, right) = v.mut_split_at(6);
|
|
/// assert!(left == &mut [1, 2, 3, 4, 5, 6]);
|
|
/// assert!(right == &mut []);
|
|
/// }
|
|
/// ```
|
|
fn mut_split_at(self, mid: uint) -> (&'a mut [T], &'a mut [T]);
|
|
|
|
/// Reverse the order of elements in a vector, in place.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let mut v = [1, 2, 3];
|
|
/// v.reverse();
|
|
/// assert!(v == [3, 2, 1]);
|
|
/// ```
|
|
fn reverse(self);
|
|
|
|
/// Returns an unsafe mutable pointer to the element in index
|
|
unsafe fn unsafe_mut_ref(self, index: uint) -> &'a mut T;
|
|
|
|
/// Return an unsafe mutable pointer to the vector's buffer.
|
|
///
|
|
/// The caller must ensure that the vector outlives the pointer this
|
|
/// function returns, or else it will end up pointing to garbage.
|
|
///
|
|
/// Modifying the vector may cause its buffer to be reallocated, which
|
|
/// would also make any pointers to it invalid.
|
|
#[inline]
|
|
fn as_mut_ptr(self) -> *mut T;
|
|
|
|
/// Unsafely sets the element in index to the value.
|
|
///
|
|
/// This performs no bounds checks, and it is undefined behaviour
|
|
/// if `index` is larger than the length of `self`. However, it
|
|
/// does run the destructor at `index`. It is equivalent to
|
|
/// `self[index] = val`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let mut v = ~["foo".to_owned(), "bar".to_owned(), "baz".to_owned()];
|
|
///
|
|
/// unsafe {
|
|
/// // `"baz".to_owned()` is deallocated.
|
|
/// v.unsafe_set(2, "qux".to_owned());
|
|
///
|
|
/// // Out of bounds: could cause a crash, or overwriting
|
|
/// // other data, or something else.
|
|
/// // v.unsafe_set(10, "oops".to_owned());
|
|
/// }
|
|
/// ```
|
|
unsafe fn unsafe_set(self, index: uint, val: T);
|
|
|
|
/// Unchecked vector index assignment. Does not drop the
|
|
/// old value and hence is only suitable when the vector
|
|
/// is newly allocated.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let mut v = ["foo".to_owned(), "bar".to_owned()];
|
|
///
|
|
/// // memory leak! `"bar".to_owned()` is not deallocated.
|
|
/// unsafe { v.init_elem(1, "baz".to_owned()); }
|
|
/// ```
|
|
unsafe fn init_elem(self, i: uint, val: T);
|
|
|
|
/// Copies raw bytes from `src` to `self`.
|
|
///
|
|
/// This does not run destructors on the overwritten elements, and
|
|
/// ignores move semantics. `self` and `src` must not
|
|
/// overlap. Fails if `self` is shorter than `src`.
|
|
unsafe fn copy_memory(self, src: &[T]);
|
|
}
|
|
|
|
impl<'a,T> MutableVector<'a, T> for &'a mut [T] {
|
|
#[inline]
|
|
fn as_mut_slice(self) -> &'a mut [T] { self }
|
|
|
|
fn mut_slice(self, start: uint, end: uint) -> &'a mut [T] {
|
|
assert!(start <= end);
|
|
assert!(end <= self.len());
|
|
unsafe {
|
|
transmute(Slice {
|
|
data: self.as_mut_ptr().offset(start as int) as *T,
|
|
len: (end - start)
|
|
})
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn mut_slice_from(self, start: uint) -> &'a mut [T] {
|
|
let len = self.len();
|
|
self.mut_slice(start, len)
|
|
}
|
|
|
|
#[inline]
|
|
fn mut_slice_to(self, end: uint) -> &'a mut [T] {
|
|
self.mut_slice(0, end)
|
|
}
|
|
|
|
#[inline]
|
|
fn mut_split_at(self, mid: uint) -> (&'a mut [T], &'a mut [T]) {
|
|
unsafe {
|
|
let len = self.len();
|
|
let self2: &'a mut [T] = cast::transmute_copy(&self);
|
|
(self.mut_slice(0, mid), self2.mut_slice(mid, len))
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn mut_iter(self) -> MutItems<'a, T> {
|
|
unsafe {
|
|
let p = self.as_mut_ptr();
|
|
if mem::size_of::<T>() == 0 {
|
|
MutItems{ptr: p,
|
|
end: (p as uint + self.len()) as *mut T,
|
|
marker: marker::ContravariantLifetime::<'a>,
|
|
marker2: marker::NoCopy}
|
|
} else {
|
|
MutItems{ptr: p,
|
|
end: p.offset(self.len() as int),
|
|
marker: marker::ContravariantLifetime::<'a>,
|
|
marker2: marker::NoCopy}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn mut_last(self) -> Option<&'a mut T> {
|
|
let len = self.len();
|
|
if len == 0 { return None; }
|
|
Some(&mut self[len - 1])
|
|
}
|
|
|
|
#[inline]
|
|
#[deprecated = "replaced by .mut_iter().rev()"]
|
|
fn mut_rev_iter(self) -> Rev<MutItems<'a, T>> {
|
|
self.mut_iter().rev()
|
|
}
|
|
|
|
#[inline]
|
|
fn mut_split(self, pred: |&T|: 'a -> bool) -> MutSplits<'a, T> {
|
|
MutSplits { v: self, pred: pred, finished: false }
|
|
}
|
|
|
|
#[inline]
|
|
fn mut_chunks(self, chunk_size: uint) -> MutChunks<'a, T> {
|
|
assert!(chunk_size > 0);
|
|
MutChunks { v: self, chunk_size: chunk_size }
|
|
}
|
|
|
|
fn mut_shift_ref(&mut self) -> Option<&'a mut T> {
|
|
if self.len() == 0 { return None; }
|
|
unsafe {
|
|
let s: &mut Slice<T> = transmute(self);
|
|
// FIXME #13933: this `&` -> `&mut` cast is a little
|
|
// dubious
|
|
Some(&mut *(raw::shift_ptr(s) as *mut _))
|
|
}
|
|
}
|
|
|
|
fn mut_pop_ref(&mut self) -> Option<&'a mut T> {
|
|
if self.len() == 0 { return None; }
|
|
unsafe {
|
|
let s: &mut Slice<T> = transmute(self);
|
|
// FIXME #13933: this `&` -> `&mut` cast is a little
|
|
// dubious
|
|
Some(&mut *(raw::pop_ptr(s) as *mut _))
|
|
}
|
|
}
|
|
|
|
fn swap(self, a: uint, b: uint) {
|
|
unsafe {
|
|
// Can't take two mutable loans from one vector, so instead just cast
|
|
// them to their raw pointers to do the swap
|
|
let pa: *mut T = &mut self[a];
|
|
let pb: *mut T = &mut self[b];
|
|
ptr::swap(pa, pb);
|
|
}
|
|
}
|
|
|
|
fn reverse(self) {
|
|
let mut i: uint = 0;
|
|
let ln = self.len();
|
|
while i < ln / 2 {
|
|
self.swap(i, ln - i - 1);
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn unsafe_mut_ref(self, index: uint) -> &'a mut T {
|
|
transmute((self.repr().data as *mut T).offset(index as int))
|
|
}
|
|
|
|
#[inline]
|
|
fn as_mut_ptr(self) -> *mut T {
|
|
self.repr().data as *mut T
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn unsafe_set(self, index: uint, val: T) {
|
|
*self.unsafe_mut_ref(index) = val;
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn init_elem(self, i: uint, val: T) {
|
|
mem::move_val_init(&mut (*self.as_mut_ptr().offset(i as int)), val);
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn copy_memory(self, src: &[T]) {
|
|
let len_src = src.len();
|
|
assert!(self.len() >= len_src);
|
|
ptr::copy_nonoverlapping_memory(self.as_mut_ptr(), src.as_ptr(), len_src)
|
|
}
|
|
}
|
|
|
|
/// Trait for &[T] where T is Cloneable
|
|
pub trait MutableCloneableVector<T> {
|
|
/// Copies as many elements from `src` as it can into `self` (the
|
|
/// shorter of `self.len()` and `src.len()`). Returns the number
|
|
/// of elements copied.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// use std::slice::MutableCloneableVector;
|
|
///
|
|
/// let mut dst = [0, 0, 0];
|
|
/// let src = [1, 2];
|
|
///
|
|
/// assert!(dst.copy_from(src) == 2);
|
|
/// assert!(dst == [1, 2, 0]);
|
|
///
|
|
/// let src2 = [3, 4, 5, 6];
|
|
/// assert!(dst.copy_from(src2) == 3);
|
|
/// assert!(dst == [3, 4, 5]);
|
|
/// ```
|
|
fn copy_from(self, &[T]) -> uint;
|
|
}
|
|
|
|
impl<'a, T:Clone> MutableCloneableVector<T> for &'a mut [T] {
|
|
#[inline]
|
|
fn copy_from(self, src: &[T]) -> uint {
|
|
for (a, b) in self.mut_iter().zip(src.iter()) {
|
|
a.clone_from(b);
|
|
}
|
|
cmp::min(self.len(), src.len())
|
|
}
|
|
}
|
|
|
|
/// Unsafe operations
|
|
pub mod raw {
|
|
use cast::transmute;
|
|
use iter::Iterator;
|
|
use ptr::RawPtr;
|
|
use raw::Slice;
|
|
|
|
/**
|
|
* Form a slice from a pointer and length (as a number of units,
|
|
* not bytes).
|
|
*/
|
|
#[inline]
|
|
pub unsafe fn buf_as_slice<T,U>(p: *T, len: uint, f: |v: &[T]| -> U)
|
|
-> U {
|
|
f(transmute(Slice {
|
|
data: p,
|
|
len: len
|
|
}))
|
|
}
|
|
|
|
/**
|
|
* Form a slice from a pointer and length (as a number of units,
|
|
* not bytes).
|
|
*/
|
|
#[inline]
|
|
pub unsafe fn mut_buf_as_slice<T,
|
|
U>(
|
|
p: *mut T,
|
|
len: uint,
|
|
f: |v: &mut [T]| -> U)
|
|
-> U {
|
|
f(transmute(Slice {
|
|
data: p as *T,
|
|
len: len
|
|
}))
|
|
}
|
|
|
|
/**
|
|
* Returns a pointer to first element in slice and adjusts
|
|
* slice so it no longer contains that element. Fails if
|
|
* slice is empty. O(1).
|
|
*/
|
|
pub unsafe fn shift_ptr<T>(slice: &mut Slice<T>) -> *T {
|
|
if slice.len == 0 { fail!("shift on empty slice"); }
|
|
let head: *T = slice.data;
|
|
slice.data = slice.data.offset(1);
|
|
slice.len -= 1;
|
|
head
|
|
}
|
|
|
|
/**
|
|
* Returns a pointer to last element in slice and adjusts
|
|
* slice so it no longer contains that element. Fails if
|
|
* slice is empty. O(1).
|
|
*/
|
|
pub unsafe fn pop_ptr<T>(slice: &mut Slice<T>) -> *T {
|
|
if slice.len == 0 { fail!("pop on empty slice"); }
|
|
let tail: *T = slice.data.offset((slice.len - 1) as int);
|
|
slice.len -= 1;
|
|
tail
|
|
}
|
|
}
|
|
|
|
/// Operations on `[u8]`.
|
|
pub mod bytes {
|
|
use container::Container;
|
|
use ptr;
|
|
use slice::MutableVector;
|
|
|
|
/// A trait for operations on mutable `[u8]`s.
|
|
pub trait MutableByteVector {
|
|
/// Sets all bytes of the receiver to the given value.
|
|
fn set_memory(self, value: u8);
|
|
}
|
|
|
|
impl<'a> MutableByteVector for &'a mut [u8] {
|
|
#[inline]
|
|
fn set_memory(self, value: u8) {
|
|
unsafe { ptr::set_memory(self.as_mut_ptr(), value, self.len()) };
|
|
}
|
|
}
|
|
|
|
/// Copies data from `src` to `dst`
|
|
///
|
|
/// `src` and `dst` must not overlap. Fails if the length of `dst`
|
|
/// is less than the length of `src`.
|
|
#[inline]
|
|
pub fn copy_memory(dst: &mut [u8], src: &[u8]) {
|
|
// Bound checks are done at .copy_memory.
|
|
unsafe { dst.copy_memory(src) }
|
|
}
|
|
}
|
|
|
|
/// Immutable slice iterator
|
|
pub struct Items<'a, T> {
|
|
ptr: *T,
|
|
end: *T,
|
|
marker: marker::ContravariantLifetime<'a>
|
|
}
|
|
|
|
/// Mutable slice iterator
|
|
pub struct MutItems<'a, T> {
|
|
ptr: *mut T,
|
|
end: *mut T,
|
|
marker: marker::ContravariantLifetime<'a>,
|
|
marker2: marker::NoCopy
|
|
}
|
|
|
|
macro_rules! iterator {
|
|
(struct $name:ident -> $ptr:ty, $elem:ty) => {
|
|
impl<'a, T> Iterator<$elem> for $name<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<$elem> {
|
|
// could be implemented with slices, but this avoids bounds checks
|
|
unsafe {
|
|
if self.ptr == self.end {
|
|
None
|
|
} else {
|
|
let old = self.ptr;
|
|
self.ptr = if mem::size_of::<T>() == 0 {
|
|
// purposefully don't use 'ptr.offset' because for
|
|
// vectors with 0-size elements this would return the
|
|
// same pointer.
|
|
transmute(self.ptr as uint + 1)
|
|
} else {
|
|
self.ptr.offset(1)
|
|
};
|
|
|
|
Some(transmute(old))
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
let diff = (self.end as uint) - (self.ptr as uint);
|
|
let exact = diff / mem::nonzero_size_of::<T>();
|
|
(exact, Some(exact))
|
|
}
|
|
}
|
|
|
|
impl<'a, T> DoubleEndedIterator<$elem> for $name<'a, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<$elem> {
|
|
// could be implemented with slices, but this avoids bounds checks
|
|
unsafe {
|
|
if self.end == self.ptr {
|
|
None
|
|
} else {
|
|
self.end = if mem::size_of::<T>() == 0 {
|
|
// See above for why 'ptr.offset' isn't used
|
|
transmute(self.end as uint - 1)
|
|
} else {
|
|
self.end.offset(-1)
|
|
};
|
|
Some(transmute(self.end))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, T> RandomAccessIterator<&'a T> for Items<'a, T> {
|
|
#[inline]
|
|
fn indexable(&self) -> uint {
|
|
let (exact, _) = self.size_hint();
|
|
exact
|
|
}
|
|
|
|
#[inline]
|
|
fn idx(&mut self, index: uint) -> Option<&'a T> {
|
|
unsafe {
|
|
if index < self.indexable() {
|
|
transmute(self.ptr.offset(index as int))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
iterator!{struct Items -> *T, &'a T}
|
|
#[deprecated = "replaced by Rev<Items<'a, T>>"]
|
|
pub type RevItems<'a, T> = Rev<Items<'a, T>>;
|
|
|
|
impl<'a, T> ExactSize<&'a T> for Items<'a, T> {}
|
|
impl<'a, T> ExactSize<&'a mut T> for MutItems<'a, T> {}
|
|
|
|
impl<'a, T> Clone for Items<'a, T> {
|
|
fn clone(&self) -> Items<'a, T> { *self }
|
|
}
|
|
|
|
iterator!{struct MutItems -> *mut T, &'a mut T}
|
|
#[deprecated = "replaced by Rev<MutItems<'a, T>>"]
|
|
pub type RevMutItems<'a, T> = Rev<MutItems<'a, T>>;
|
|
|
|
/// An iterator over the subslices of the vector which are separated
|
|
/// by elements that match `pred`.
|
|
pub struct MutSplits<'a, T> {
|
|
v: &'a mut [T],
|
|
pred: |t: &T|: 'a -> bool,
|
|
finished: bool
|
|
}
|
|
|
|
impl<'a, T> Iterator<&'a mut [T]> for MutSplits<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a mut [T]> {
|
|
if self.finished { return None; }
|
|
|
|
let pred = &mut self.pred;
|
|
match self.v.iter().position(|x| (*pred)(x)) {
|
|
None => {
|
|
self.finished = true;
|
|
let tmp = mem::replace(&mut self.v, &mut []);
|
|
let len = tmp.len();
|
|
let (head, tail) = tmp.mut_split_at(len);
|
|
self.v = tail;
|
|
Some(head)
|
|
}
|
|
Some(idx) => {
|
|
let tmp = mem::replace(&mut self.v, &mut []);
|
|
let (head, tail) = tmp.mut_split_at(idx);
|
|
self.v = tail.mut_slice_from(1);
|
|
Some(head)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
if self.finished {
|
|
(0, Some(0))
|
|
} else {
|
|
// if the predicate doesn't match anything, we yield one slice
|
|
// if it matches every element, we yield len+1 empty slices.
|
|
(1, Some(self.v.len() + 1))
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, T> DoubleEndedIterator<&'a mut [T]> for MutSplits<'a, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<&'a mut [T]> {
|
|
if self.finished { return None; }
|
|
|
|
let pred = &mut self.pred;
|
|
match self.v.iter().rposition(|x| (*pred)(x)) {
|
|
None => {
|
|
self.finished = true;
|
|
let tmp = mem::replace(&mut self.v, &mut []);
|
|
Some(tmp)
|
|
}
|
|
Some(idx) => {
|
|
let tmp = mem::replace(&mut self.v, &mut []);
|
|
let (head, tail) = tmp.mut_split_at(idx);
|
|
self.v = head;
|
|
Some(tail.mut_slice_from(1))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator over a vector in (non-overlapping) mutable chunks (`size` elements at a time). When
|
|
/// the vector len is not evenly divided by the chunk size, the last slice of the iteration will be
|
|
/// the remainder.
|
|
pub struct MutChunks<'a, T> {
|
|
v: &'a mut [T],
|
|
chunk_size: uint
|
|
}
|
|
|
|
impl<'a, T> Iterator<&'a mut [T]> for MutChunks<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a mut [T]> {
|
|
if self.v.len() == 0 {
|
|
None
|
|
} else {
|
|
let sz = cmp::min(self.v.len(), self.chunk_size);
|
|
let tmp = mem::replace(&mut self.v, &mut []);
|
|
let (head, tail) = tmp.mut_split_at(sz);
|
|
self.v = tail;
|
|
Some(head)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
if self.v.len() == 0 {
|
|
(0, Some(0))
|
|
} else {
|
|
let (n, rem) = div_rem(self.v.len(), self.chunk_size);
|
|
let n = if rem > 0 { n + 1 } else { n };
|
|
(n, Some(n))
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, T> DoubleEndedIterator<&'a mut [T]> for MutChunks<'a, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<&'a mut [T]> {
|
|
if self.v.len() == 0 {
|
|
None
|
|
} else {
|
|
let remainder = self.v.len() % self.chunk_size;
|
|
let sz = if remainder != 0 { remainder } else { self.chunk_size };
|
|
let tmp = mem::replace(&mut self.v, &mut []);
|
|
let tmp_len = tmp.len();
|
|
let (head, tail) = tmp.mut_split_at(tmp_len - sz);
|
|
self.v = head;
|
|
Some(tail)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, T> Default for &'a [T] {
|
|
fn default() -> &'a [T] { &[] }
|
|
}
|
|
|
|
impl<T> Default for ~[T] {
|
|
fn default() -> ~[T] { ~[] }
|
|
}
|