2015-04-02 13:25:06 -04:00

656 lines
22 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Generalized type relating mechanism. A type relation R relates a
//! pair of values (A, B). A and B are usually types or regions but
//! can be other things. Examples of type relations are subtyping,
//! type equality, etc.
use middle::subst::{ErasedRegions, NonerasedRegions, ParamSpace, Substs};
use middle::ty::{self, Ty};
use middle::ty_fold::TypeFoldable;
use std::rc::Rc;
use syntax::abi;
use syntax::ast;
use util::ppaux::Repr;
pub type RelateResult<'tcx, T> = Result<T, ty::type_err<'tcx>>;
pub trait TypeRelation<'a,'tcx> : Sized {
fn tcx(&self) -> &'a ty::ctxt<'tcx>;
/// Returns a static string we can use for printouts.
fn tag(&self) -> &'static str;
/// Returns true if the value `a` is the "expected" type in the
/// relation. Just affects error messages.
fn a_is_expected(&self) -> bool;
/// Generic relation routine suitable for most anything.
fn relate<T:Relate<'a,'tcx>>(&mut self, a: &T, b: &T) -> RelateResult<'tcx, T> {
Relate::relate(self, a, b)
}
/// Switch variance for the purpose of relating `a` and `b`.
fn relate_with_variance<T:Relate<'a,'tcx>>(&mut self,
variance: ty::Variance,
a: &T,
b: &T)
-> RelateResult<'tcx, T>;
// Overrideable relations. You shouldn't typically call these
// directly, instead call `relate()`, which in turn calls
// these. This is both more uniform but also allows us to add
// additional hooks for other types in the future if needed
// without making older code, which called `relate`, obsolete.
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>)
-> RelateResult<'tcx, Ty<'tcx>>;
fn regions(&mut self, a: ty::Region, b: ty::Region)
-> RelateResult<'tcx, ty::Region>;
fn binders<T>(&mut self, a: &ty::Binder<T>, b: &ty::Binder<T>)
-> RelateResult<'tcx, ty::Binder<T>>
where T: Relate<'a,'tcx>;
}
pub trait Relate<'a,'tcx>: TypeFoldable<'tcx> {
fn relate<R:TypeRelation<'a,'tcx>>(relation: &mut R,
a: &Self,
b: &Self)
-> RelateResult<'tcx, Self>;
}
///////////////////////////////////////////////////////////////////////////
// Relate impls
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::mt<'tcx> {
fn relate<R>(relation: &mut R,
a: &ty::mt<'tcx>,
b: &ty::mt<'tcx>)
-> RelateResult<'tcx, ty::mt<'tcx>>
where R: TypeRelation<'a,'tcx>
{
debug!("{}.mts({}, {})",
relation.tag(),
a.repr(relation.tcx()),
b.repr(relation.tcx()));
if a.mutbl != b.mutbl {
Err(ty::terr_mutability)
} else {
let mutbl = a.mutbl;
let variance = match mutbl {
ast::MutImmutable => ty::Covariant,
ast::MutMutable => ty::Invariant,
};
let ty = try!(relation.relate_with_variance(variance, &a.ty, &b.ty));
Ok(ty::mt {ty: ty, mutbl: mutbl})
}
}
}
// substitutions are not themselves relatable without more context,
// but they is an important subroutine for things that ARE relatable,
// like traits etc.
fn relate_item_substs<'a,'tcx:'a,R>(relation: &mut R,
item_def_id: ast::DefId,
a_subst: &Substs<'tcx>,
b_subst: &Substs<'tcx>)
-> RelateResult<'tcx, Substs<'tcx>>
where R: TypeRelation<'a,'tcx>
{
debug!("substs: item_def_id={} a_subst={} b_subst={}",
item_def_id.repr(relation.tcx()),
a_subst.repr(relation.tcx()),
b_subst.repr(relation.tcx()));
let variances;
let opt_variances = if relation.tcx().variance_computed.get() {
variances = ty::item_variances(relation.tcx(), item_def_id);
Some(&*variances)
} else {
None
};
relate_substs(relation, opt_variances, a_subst, b_subst)
}
fn relate_substs<'a,'tcx:'a,R>(relation: &mut R,
variances: Option<&ty::ItemVariances>,
a_subst: &Substs<'tcx>,
b_subst: &Substs<'tcx>)
-> RelateResult<'tcx, Substs<'tcx>>
where R: TypeRelation<'a,'tcx>
{
let mut substs = Substs::empty();
for &space in &ParamSpace::all() {
let a_tps = a_subst.types.get_slice(space);
let b_tps = b_subst.types.get_slice(space);
let t_variances = variances.map(|v| v.types.get_slice(space));
let tps = try!(relate_type_params(relation, t_variances, a_tps, b_tps));
substs.types.replace(space, tps);
}
match (&a_subst.regions, &b_subst.regions) {
(&ErasedRegions, _) | (_, &ErasedRegions) => {
substs.regions = ErasedRegions;
}
(&NonerasedRegions(ref a), &NonerasedRegions(ref b)) => {
for &space in &ParamSpace::all() {
let a_regions = a.get_slice(space);
let b_regions = b.get_slice(space);
let r_variances = variances.map(|v| v.regions.get_slice(space));
let regions = try!(relate_region_params(relation,
r_variances,
a_regions,
b_regions));
substs.mut_regions().replace(space, regions);
}
}
}
Ok(substs)
}
fn relate_type_params<'a,'tcx:'a,R>(relation: &mut R,
variances: Option<&[ty::Variance]>,
a_tys: &[Ty<'tcx>],
b_tys: &[Ty<'tcx>])
-> RelateResult<'tcx, Vec<Ty<'tcx>>>
where R: TypeRelation<'a,'tcx>
{
if a_tys.len() != b_tys.len() {
return Err(ty::terr_ty_param_size(expected_found(relation,
&a_tys.len(),
&b_tys.len())));
}
(0 .. a_tys.len())
.map(|i| {
let a_ty = a_tys[i];
let b_ty = b_tys[i];
let v = variances.map_or(ty::Invariant, |v| v[i]);
relation.relate_with_variance(v, &a_ty, &b_ty)
})
.collect()
}
fn relate_region_params<'a,'tcx:'a,R>(relation: &mut R,
variances: Option<&[ty::Variance]>,
a_rs: &[ty::Region],
b_rs: &[ty::Region])
-> RelateResult<'tcx, Vec<ty::Region>>
where R: TypeRelation<'a,'tcx>
{
let tcx = relation.tcx();
let num_region_params = a_rs.len();
debug!("relate_region_params(a_rs={}, \
b_rs={}, variances={})",
a_rs.repr(tcx),
b_rs.repr(tcx),
variances.repr(tcx));
assert_eq!(num_region_params,
variances.map_or(num_region_params,
|v| v.len()));
assert_eq!(num_region_params, b_rs.len());
(0..a_rs.len())
.map(|i| {
let a_r = a_rs[i];
let b_r = b_rs[i];
let variance = variances.map_or(ty::Invariant, |v| v[i]);
relation.relate_with_variance(variance, &a_r, &b_r)
})
.collect()
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::BareFnTy<'tcx> {
fn relate<R>(relation: &mut R,
a: &ty::BareFnTy<'tcx>,
b: &ty::BareFnTy<'tcx>)
-> RelateResult<'tcx, ty::BareFnTy<'tcx>>
where R: TypeRelation<'a,'tcx>
{
let unsafety = try!(relation.relate(&a.unsafety, &b.unsafety));
let abi = try!(relation.relate(&a.abi, &b.abi));
let sig = try!(relation.relate(&a.sig, &b.sig));
Ok(ty::BareFnTy {unsafety: unsafety,
abi: abi,
sig: sig})
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::FnSig<'tcx> {
fn relate<R>(relation: &mut R,
a: &ty::FnSig<'tcx>,
b: &ty::FnSig<'tcx>)
-> RelateResult<'tcx, ty::FnSig<'tcx>>
where R: TypeRelation<'a,'tcx>
{
if a.variadic != b.variadic {
return Err(ty::terr_variadic_mismatch(
expected_found(relation, &a.variadic, &b.variadic)));
}
let inputs = try!(relate_arg_vecs(relation,
&a.inputs,
&b.inputs));
let output = try!(match (a.output, b.output) {
(ty::FnConverging(a_ty), ty::FnConverging(b_ty)) =>
Ok(ty::FnConverging(try!(relation.relate(&a_ty, &b_ty)))),
(ty::FnDiverging, ty::FnDiverging) =>
Ok(ty::FnDiverging),
(a, b) =>
Err(ty::terr_convergence_mismatch(
expected_found(relation, &(a != ty::FnDiverging), &(b != ty::FnDiverging)))),
});
return Ok(ty::FnSig {inputs: inputs,
output: output,
variadic: a.variadic});
}
}
fn relate_arg_vecs<'a,'tcx:'a,R>(relation: &mut R,
a_args: &[Ty<'tcx>],
b_args: &[Ty<'tcx>])
-> RelateResult<'tcx, Vec<Ty<'tcx>>>
where R: TypeRelation<'a,'tcx>
{
if a_args.len() != b_args.len() {
return Err(ty::terr_arg_count);
}
a_args.iter()
.zip(b_args.iter())
.map(|(a, b)| relation.relate_with_variance(ty::Contravariant, a, b))
.collect()
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ast::Unsafety {
fn relate<R>(relation: &mut R,
a: &ast::Unsafety,
b: &ast::Unsafety)
-> RelateResult<'tcx, ast::Unsafety>
where R: TypeRelation<'a,'tcx>
{
if a != b {
Err(ty::terr_unsafety_mismatch(expected_found(relation, a, b)))
} else {
Ok(*a)
}
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for abi::Abi {
fn relate<R>(relation: &mut R,
a: &abi::Abi,
b: &abi::Abi)
-> RelateResult<'tcx, abi::Abi>
where R: TypeRelation<'a,'tcx>
{
if a == b {
Ok(*a)
} else {
Err(ty::terr_abi_mismatch(expected_found(relation, a, b)))
}
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::ProjectionTy<'tcx> {
fn relate<R>(relation: &mut R,
a: &ty::ProjectionTy<'tcx>,
b: &ty::ProjectionTy<'tcx>)
-> RelateResult<'tcx, ty::ProjectionTy<'tcx>>
where R: TypeRelation<'a,'tcx>
{
if a.item_name != b.item_name {
Err(ty::terr_projection_name_mismatched(
expected_found(relation, &a.item_name, &b.item_name)))
} else {
let trait_ref = try!(relation.relate(&*a.trait_ref, &*b.trait_ref));
Ok(ty::ProjectionTy { trait_ref: Rc::new(trait_ref), item_name: a.item_name })
}
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::ProjectionPredicate<'tcx> {
fn relate<R>(relation: &mut R,
a: &ty::ProjectionPredicate<'tcx>,
b: &ty::ProjectionPredicate<'tcx>)
-> RelateResult<'tcx, ty::ProjectionPredicate<'tcx>>
where R: TypeRelation<'a,'tcx>
{
let projection_ty = try!(relation.relate(&a.projection_ty, &b.projection_ty));
let ty = try!(relation.relate(&a.ty, &b.ty));
Ok(ty::ProjectionPredicate { projection_ty: projection_ty, ty: ty })
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for Vec<ty::PolyProjectionPredicate<'tcx>> {
fn relate<R>(relation: &mut R,
a: &Vec<ty::PolyProjectionPredicate<'tcx>>,
b: &Vec<ty::PolyProjectionPredicate<'tcx>>)
-> RelateResult<'tcx, Vec<ty::PolyProjectionPredicate<'tcx>>>
where R: TypeRelation<'a,'tcx>
{
// To be compatible, `a` and `b` must be for precisely the
// same set of traits and item names. We always require that
// projection bounds lists are sorted by trait-def-id and item-name,
// so we can just iterate through the lists pairwise, so long as they are the
// same length.
if a.len() != b.len() {
Err(ty::terr_projection_bounds_length(expected_found(relation, &a.len(), &b.len())))
} else {
a.iter()
.zip(b.iter())
.map(|(a, b)| relation.relate(a, b))
.collect()
}
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::ExistentialBounds<'tcx> {
fn relate<R>(relation: &mut R,
a: &ty::ExistentialBounds<'tcx>,
b: &ty::ExistentialBounds<'tcx>)
-> RelateResult<'tcx, ty::ExistentialBounds<'tcx>>
where R: TypeRelation<'a,'tcx>
{
let r = try!(relation.relate_with_variance(ty::Contravariant,
&a.region_bound,
&b.region_bound));
let nb = try!(relation.relate(&a.builtin_bounds, &b.builtin_bounds));
let pb = try!(relation.relate(&a.projection_bounds, &b.projection_bounds));
Ok(ty::ExistentialBounds { region_bound: r,
builtin_bounds: nb,
projection_bounds: pb })
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::BuiltinBounds {
fn relate<R>(relation: &mut R,
a: &ty::BuiltinBounds,
b: &ty::BuiltinBounds)
-> RelateResult<'tcx, ty::BuiltinBounds>
where R: TypeRelation<'a,'tcx>
{
// Two sets of builtin bounds are only relatable if they are
// precisely the same (but see the coercion code).
if a != b {
Err(ty::terr_builtin_bounds(expected_found(relation, a, b)))
} else {
Ok(*a)
}
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::TraitRef<'tcx> {
fn relate<R>(relation: &mut R,
a: &ty::TraitRef<'tcx>,
b: &ty::TraitRef<'tcx>)
-> RelateResult<'tcx, ty::TraitRef<'tcx>>
where R: TypeRelation<'a,'tcx>
{
// Different traits cannot be related
if a.def_id != b.def_id {
Err(ty::terr_traits(expected_found(relation, &a.def_id, &b.def_id)))
} else {
let substs = try!(relate_item_substs(relation, a.def_id, a.substs, b.substs));
Ok(ty::TraitRef { def_id: a.def_id, substs: relation.tcx().mk_substs(substs) })
}
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for Ty<'tcx> {
fn relate<R>(relation: &mut R,
a: &Ty<'tcx>,
b: &Ty<'tcx>)
-> RelateResult<'tcx, Ty<'tcx>>
where R: TypeRelation<'a,'tcx>
{
relation.tys(a, b)
}
}
/// The main "type relation" routine. Note that this does not handle
/// inference artifacts, so you should filter those out before calling
/// it.
pub fn super_relate_tys<'a,'tcx:'a,R>(relation: &mut R,
a: Ty<'tcx>,
b: Ty<'tcx>)
-> RelateResult<'tcx, Ty<'tcx>>
where R: TypeRelation<'a,'tcx>
{
let tcx = relation.tcx();
let a_sty = &a.sty;
let b_sty = &b.sty;
debug!("super_tys: a_sty={:?} b_sty={:?}", a_sty, b_sty);
match (a_sty, b_sty) {
(&ty::ty_infer(_), _) |
(_, &ty::ty_infer(_)) =>
{
// The caller should handle these cases!
tcx.sess.bug("var types encountered in super_relate_tys")
}
(&ty::ty_err, _) | (_, &ty::ty_err) =>
{
Ok(tcx.types.err)
}
(&ty::ty_char, _) |
(&ty::ty_bool, _) |
(&ty::ty_int(_), _) |
(&ty::ty_uint(_), _) |
(&ty::ty_float(_), _) |
(&ty::ty_str, _)
if a == b =>
{
Ok(a)
}
(&ty::ty_param(ref a_p), &ty::ty_param(ref b_p))
if a_p.idx == b_p.idx && a_p.space == b_p.space =>
{
Ok(a)
}
(&ty::ty_enum(a_id, a_substs), &ty::ty_enum(b_id, b_substs))
if a_id == b_id =>
{
let substs = try!(relate_item_substs(relation, a_id, a_substs, b_substs));
Ok(ty::mk_enum(tcx, a_id, tcx.mk_substs(substs)))
}
(&ty::ty_trait(ref a_), &ty::ty_trait(ref b_)) =>
{
let principal = try!(relation.relate(&a_.principal, &b_.principal));
let bounds = try!(relation.relate(&a_.bounds, &b_.bounds));
Ok(ty::mk_trait(tcx, principal, bounds))
}
(&ty::ty_struct(a_id, a_substs), &ty::ty_struct(b_id, b_substs))
if a_id == b_id =>
{
let substs = try!(relate_item_substs(relation, a_id, a_substs, b_substs));
Ok(ty::mk_struct(tcx, a_id, tcx.mk_substs(substs)))
}
(&ty::ty_closure(a_id, a_substs),
&ty::ty_closure(b_id, b_substs))
if a_id == b_id =>
{
// All ty_closure types with the same id represent
// the (anonymous) type of the same closure expression. So
// all of their regions should be equated.
let substs = try!(relate_substs(relation, None, a_substs, b_substs));
Ok(ty::mk_closure(tcx, a_id, tcx.mk_substs(substs)))
}
(&ty::ty_uniq(a_inner), &ty::ty_uniq(b_inner)) =>
{
let typ = try!(relation.relate(&a_inner, &b_inner));
Ok(ty::mk_uniq(tcx, typ))
}
(&ty::ty_ptr(ref a_mt), &ty::ty_ptr(ref b_mt)) =>
{
let mt = try!(relation.relate(a_mt, b_mt));
Ok(ty::mk_ptr(tcx, mt))
}
(&ty::ty_rptr(a_r, ref a_mt), &ty::ty_rptr(b_r, ref b_mt)) =>
{
let r = try!(relation.relate_with_variance(ty::Contravariant, a_r, b_r));
let mt = try!(relation.relate(a_mt, b_mt));
Ok(ty::mk_rptr(tcx, tcx.mk_region(r), mt))
}
(&ty::ty_vec(a_t, Some(sz_a)), &ty::ty_vec(b_t, Some(sz_b))) =>
{
let t = try!(relation.relate(&a_t, &b_t));
if sz_a == sz_b {
Ok(ty::mk_vec(tcx, t, Some(sz_a)))
} else {
Err(ty::terr_fixed_array_size(expected_found(relation, &sz_a, &sz_b)))
}
}
(&ty::ty_vec(a_t, None), &ty::ty_vec(b_t, None)) =>
{
let t = try!(relation.relate(&a_t, &b_t));
Ok(ty::mk_vec(tcx, t, None))
}
(&ty::ty_tup(ref as_), &ty::ty_tup(ref bs)) =>
{
if as_.len() == bs.len() {
let ts = try!(as_.iter()
.zip(bs.iter())
.map(|(a, b)| relation.relate(a, b))
.collect::<Result<_, _>>());
Ok(ty::mk_tup(tcx, ts))
} else if as_.len() != 0 && bs.len() != 0 {
Err(ty::terr_tuple_size(
expected_found(relation, &as_.len(), &bs.len())))
} else {
Err(ty::terr_sorts(expected_found(relation, &a, &b)))
}
}
(&ty::ty_bare_fn(a_opt_def_id, a_fty), &ty::ty_bare_fn(b_opt_def_id, b_fty))
if a_opt_def_id == b_opt_def_id =>
{
let fty = try!(relation.relate(a_fty, b_fty));
Ok(ty::mk_bare_fn(tcx, a_opt_def_id, tcx.mk_bare_fn(fty)))
}
(&ty::ty_projection(ref a_data), &ty::ty_projection(ref b_data)) =>
{
let projection_ty = try!(relation.relate(a_data, b_data));
Ok(ty::mk_projection(tcx, projection_ty.trait_ref, projection_ty.item_name))
}
_ =>
{
Err(ty::terr_sorts(expected_found(relation, &a, &b)))
}
}
}
impl<'a,'tcx:'a> Relate<'a,'tcx> for ty::Region {
fn relate<R>(relation: &mut R,
a: &ty::Region,
b: &ty::Region)
-> RelateResult<'tcx, ty::Region>
where R: TypeRelation<'a,'tcx>
{
relation.regions(*a, *b)
}
}
impl<'a,'tcx:'a,T> Relate<'a,'tcx> for ty::Binder<T>
where T: Relate<'a,'tcx>
{
fn relate<R>(relation: &mut R,
a: &ty::Binder<T>,
b: &ty::Binder<T>)
-> RelateResult<'tcx, ty::Binder<T>>
where R: TypeRelation<'a,'tcx>
{
relation.binders(a, b)
}
}
impl<'a,'tcx:'a,T> Relate<'a,'tcx> for Rc<T>
where T: Relate<'a,'tcx>
{
fn relate<R>(relation: &mut R,
a: &Rc<T>,
b: &Rc<T>)
-> RelateResult<'tcx, Rc<T>>
where R: TypeRelation<'a,'tcx>
{
let a: &T = a;
let b: &T = b;
Ok(Rc::new(try!(relation.relate(a, b))))
}
}
impl<'a,'tcx:'a,T> Relate<'a,'tcx> for Box<T>
where T: Relate<'a,'tcx>
{
fn relate<R>(relation: &mut R,
a: &Box<T>,
b: &Box<T>)
-> RelateResult<'tcx, Box<T>>
where R: TypeRelation<'a,'tcx>
{
let a: &T = a;
let b: &T = b;
Ok(Box::new(try!(relation.relate(a, b))))
}
}
///////////////////////////////////////////////////////////////////////////
// Error handling
pub fn expected_found<'a,'tcx:'a,R,T>(relation: &mut R,
a: &T,
b: &T)
-> ty::expected_found<T>
where R: TypeRelation<'a,'tcx>, T: Clone
{
expected_found_bool(relation.a_is_expected(), a, b)
}
pub fn expected_found_bool<T>(a_is_expected: bool,
a: &T,
b: &T)
-> ty::expected_found<T>
where T: Clone
{
let a = a.clone();
let b = b.clone();
if a_is_expected {
ty::expected_found {expected: a, found: b}
} else {
ty::expected_found {expected: b, found: a}
}
}