364 lines
12 KiB
Rust
364 lines
12 KiB
Rust
use reexport::*;
|
|
use rustc::lint::*;
|
|
use rustc::middle::def::Def;
|
|
use rustc_front::hir::*;
|
|
use rustc_front::intravisit::{Visitor, walk_ty, walk_ty_param_bound, walk_fn_decl, walk_generics};
|
|
use std::collections::{HashSet, HashMap};
|
|
use syntax::codemap::Span;
|
|
use utils::{in_external_macro, span_lint};
|
|
|
|
/// **What it does:** This lint checks for lifetime annotations which can be removed by relying on lifetime elision.
|
|
///
|
|
/// **Why is this bad?** The additional lifetimes make the code look more complicated, while there is nothing out of the ordinary going on. Removing them leads to more readable code.
|
|
///
|
|
/// **Known problems:** Potential false negatives: we bail out if the function has a `where` clause where lifetimes are mentioned.
|
|
///
|
|
/// **Example:** `fn in_and_out<'a>(x: &'a u8, y: u8) -> &'a u8 { x }`
|
|
declare_lint! {
|
|
pub NEEDLESS_LIFETIMES,
|
|
Warn,
|
|
"using explicit lifetimes for references in function arguments when elision rules \
|
|
would allow omitting them"
|
|
}
|
|
|
|
/// **What it does:** This lint checks for lifetimes in generics that are never used anywhere else.
|
|
///
|
|
/// **Why is this bad?** The additional lifetimes make the code look more complicated, while there is nothing out of the ordinary going on. Removing them leads to more readable code.
|
|
///
|
|
/// **Known problems:** None
|
|
///
|
|
/// **Example:** `fn unused_lifetime<'a>(x: u8) { .. }`
|
|
declare_lint! {
|
|
pub UNUSED_LIFETIMES,
|
|
Warn,
|
|
"unused lifetimes in function definitions"
|
|
}
|
|
|
|
#[derive(Copy,Clone)]
|
|
pub struct LifetimePass;
|
|
|
|
impl LintPass for LifetimePass {
|
|
fn get_lints(&self) -> LintArray {
|
|
lint_array!(NEEDLESS_LIFETIMES, UNUSED_LIFETIMES)
|
|
}
|
|
}
|
|
|
|
impl LateLintPass for LifetimePass {
|
|
fn check_item(&mut self, cx: &LateContext, item: &Item) {
|
|
if let ItemFn(ref decl, _, _, _, ref generics, _) = item.node {
|
|
check_fn_inner(cx, decl, None, &generics, item.span);
|
|
}
|
|
}
|
|
|
|
fn check_impl_item(&mut self, cx: &LateContext, item: &ImplItem) {
|
|
if let ImplItemKind::Method(ref sig, _) = item.node {
|
|
check_fn_inner(cx, &sig.decl, Some(&sig.explicit_self), &sig.generics, item.span);
|
|
}
|
|
}
|
|
|
|
fn check_trait_item(&mut self, cx: &LateContext, item: &TraitItem) {
|
|
if let MethodTraitItem(ref sig, _) = item.node {
|
|
check_fn_inner(cx, &sig.decl, Some(&sig.explicit_self), &sig.generics, item.span);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The lifetime of a &-reference.
|
|
#[derive(PartialEq, Eq, Hash, Debug)]
|
|
enum RefLt {
|
|
Unnamed,
|
|
Static,
|
|
Named(Name),
|
|
}
|
|
|
|
fn bound_lifetimes(bound: &TyParamBound) -> Option<HirVec<&Lifetime>> {
|
|
if let TraitTyParamBound(ref trait_ref, _) = *bound {
|
|
let lt = trait_ref.trait_ref
|
|
.path
|
|
.segments
|
|
.last()
|
|
.expect("a path must have at least one segment")
|
|
.parameters
|
|
.lifetimes();
|
|
|
|
Some(lt)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
fn check_fn_inner(cx: &LateContext, decl: &FnDecl, slf: Option<&ExplicitSelf>, generics: &Generics, span: Span) {
|
|
if in_external_macro(cx, span) || has_where_lifetimes(cx, &generics.where_clause) {
|
|
return;
|
|
}
|
|
|
|
let bounds_lts = generics.ty_params
|
|
.iter()
|
|
.flat_map(|ref typ| typ.bounds.iter().filter_map(bound_lifetimes).flat_map(|lts| lts));
|
|
|
|
if could_use_elision(cx, decl, slf, &generics.lifetimes, bounds_lts) {
|
|
span_lint(cx,
|
|
NEEDLESS_LIFETIMES,
|
|
span,
|
|
"explicit lifetimes given in parameter types where they could be elided");
|
|
}
|
|
report_extra_lifetimes(cx, decl, &generics, slf);
|
|
}
|
|
|
|
fn could_use_elision<'a, T: Iterator<Item = &'a Lifetime>>(cx: &LateContext, func: &FnDecl, slf: Option<&ExplicitSelf>,
|
|
named_lts: &[LifetimeDef], bounds_lts: T)
|
|
-> bool {
|
|
// There are two scenarios where elision works:
|
|
// * no output references, all input references have different LT
|
|
// * output references, exactly one input reference with same LT
|
|
// All lifetimes must be unnamed, 'static or defined without bounds on the
|
|
// level of the current item.
|
|
|
|
// check named LTs
|
|
let allowed_lts = allowed_lts_from(named_lts);
|
|
|
|
// these will collect all the lifetimes for references in arg/return types
|
|
let mut input_visitor = RefVisitor::new(cx);
|
|
let mut output_visitor = RefVisitor::new(cx);
|
|
|
|
// extract lifetime in "self" argument for methods (there is a "self" argument
|
|
// in func.inputs, but its type is TyInfer)
|
|
if let Some(slf) = slf {
|
|
match slf.node {
|
|
SelfRegion(ref opt_lt, _, _) => input_visitor.record(opt_lt),
|
|
SelfExplicit(ref ty, _) => walk_ty(&mut input_visitor, ty),
|
|
_ => {}
|
|
}
|
|
}
|
|
// extract lifetimes in input argument types
|
|
for arg in &func.inputs {
|
|
input_visitor.visit_ty(&arg.ty);
|
|
}
|
|
// extract lifetimes in output type
|
|
if let Return(ref ty) = func.output {
|
|
output_visitor.visit_ty(ty);
|
|
}
|
|
|
|
let input_lts = lts_from_bounds(input_visitor.into_vec(), bounds_lts);
|
|
let output_lts = output_visitor.into_vec();
|
|
|
|
// check for lifetimes from higher scopes
|
|
for lt in input_lts.iter().chain(output_lts.iter()) {
|
|
if !allowed_lts.contains(lt) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// no input lifetimes? easy case!
|
|
if input_lts.is_empty() {
|
|
false
|
|
} else if output_lts.is_empty() {
|
|
// no output lifetimes, check distinctness of input lifetimes
|
|
|
|
// only unnamed and static, ok
|
|
if input_lts.iter().all(|lt| *lt == RefLt::Unnamed || *lt == RefLt::Static) {
|
|
return false;
|
|
}
|
|
// we have no output reference, so we only need all distinct lifetimes
|
|
input_lts.len() == unique_lifetimes(&input_lts)
|
|
} else {
|
|
// we have output references, so we need one input reference,
|
|
// and all output lifetimes must be the same
|
|
if unique_lifetimes(&output_lts) > 1 {
|
|
return false;
|
|
}
|
|
if input_lts.len() == 1 {
|
|
match (&input_lts[0], &output_lts[0]) {
|
|
(&RefLt::Named(n1), &RefLt::Named(n2)) if n1 == n2 => true,
|
|
(&RefLt::Named(_), &RefLt::Unnamed) => true,
|
|
_ => false, // already elided, different named lifetimes
|
|
// or something static going on
|
|
}
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
}
|
|
|
|
fn allowed_lts_from(named_lts: &[LifetimeDef]) -> HashSet<RefLt> {
|
|
let mut allowed_lts = HashSet::new();
|
|
for lt in named_lts {
|
|
if lt.bounds.is_empty() {
|
|
allowed_lts.insert(RefLt::Named(lt.lifetime.name));
|
|
}
|
|
}
|
|
allowed_lts.insert(RefLt::Unnamed);
|
|
allowed_lts.insert(RefLt::Static);
|
|
allowed_lts
|
|
}
|
|
|
|
fn lts_from_bounds<'a, T: Iterator<Item = &'a Lifetime>>(mut vec: Vec<RefLt>, bounds_lts: T) -> Vec<RefLt> {
|
|
for lt in bounds_lts {
|
|
if lt.name.as_str() != "'static" {
|
|
vec.push(RefLt::Named(lt.name));
|
|
}
|
|
}
|
|
|
|
vec
|
|
}
|
|
|
|
/// Number of unique lifetimes in the given vector.
|
|
fn unique_lifetimes(lts: &[RefLt]) -> usize {
|
|
lts.iter().collect::<HashSet<_>>().len()
|
|
}
|
|
|
|
/// A visitor usable for `rustc_front::visit::walk_ty()`.
|
|
struct RefVisitor<'v, 't: 'v> {
|
|
cx: &'v LateContext<'v, 't>,
|
|
lts: Vec<RefLt>,
|
|
}
|
|
|
|
impl<'v, 't> RefVisitor<'v, 't> {
|
|
fn new(cx: &'v LateContext<'v, 't>) -> RefVisitor<'v, 't> {
|
|
RefVisitor {
|
|
cx: cx,
|
|
lts: Vec::new(),
|
|
}
|
|
}
|
|
|
|
fn record(&mut self, lifetime: &Option<Lifetime>) {
|
|
if let Some(ref lt) = *lifetime {
|
|
if lt.name.as_str() == "'static" {
|
|
self.lts.push(RefLt::Static);
|
|
} else {
|
|
self.lts.push(RefLt::Named(lt.name));
|
|
}
|
|
} else {
|
|
self.lts.push(RefLt::Unnamed);
|
|
}
|
|
}
|
|
|
|
fn into_vec(self) -> Vec<RefLt> {
|
|
self.lts
|
|
}
|
|
|
|
fn collect_anonymous_lifetimes(&mut self, path: &Path, ty: &Ty) {
|
|
let last_path_segment = path.segments.last().map(|s| &s.parameters);
|
|
if let Some(&AngleBracketedParameters(ref params)) = last_path_segment {
|
|
if params.lifetimes.is_empty() {
|
|
if let Some(def) = self.cx.tcx.def_map.borrow().get(&ty.id).map(|r| r.full_def()) {
|
|
match def {
|
|
Def::TyAlias(def_id) | Def::Struct(def_id) => {
|
|
let type_scheme = self.cx.tcx.lookup_item_type(def_id);
|
|
for _ in type_scheme.generics.regions.as_slice() {
|
|
self.record(&None);
|
|
}
|
|
}
|
|
Def::Trait(def_id) => {
|
|
let trait_def = self.cx.tcx.trait_defs.borrow()[&def_id];
|
|
for _ in &trait_def.generics.regions {
|
|
self.record(&None);
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'v, 't> Visitor<'v> for RefVisitor<'v, 't> {
|
|
// for lifetimes as parameters of generics
|
|
fn visit_lifetime(&mut self, lifetime: &'v Lifetime) {
|
|
self.record(&Some(*lifetime));
|
|
}
|
|
|
|
fn visit_ty(&mut self, ty: &'v Ty) {
|
|
match ty.node {
|
|
TyRptr(None, _) => {
|
|
self.record(&None);
|
|
}
|
|
TyPath(_, ref path) => {
|
|
self.collect_anonymous_lifetimes(path, ty);
|
|
}
|
|
_ => {}
|
|
}
|
|
walk_ty(self, ty);
|
|
}
|
|
}
|
|
|
|
/// Are any lifetimes mentioned in the `where` clause? If yes, we don't try to
|
|
/// reason about elision.
|
|
fn has_where_lifetimes(cx: &LateContext, where_clause: &WhereClause) -> bool {
|
|
for predicate in &where_clause.predicates {
|
|
match *predicate {
|
|
WherePredicate::RegionPredicate(..) => return true,
|
|
WherePredicate::BoundPredicate(ref pred) => {
|
|
// a predicate like F: Trait or F: for<'a> Trait<'a>
|
|
let mut visitor = RefVisitor::new(cx);
|
|
// walk the type F, it may not contain LT refs
|
|
walk_ty(&mut visitor, &pred.bounded_ty);
|
|
if !visitor.lts.is_empty() {
|
|
return true;
|
|
}
|
|
// if the bounds define new lifetimes, they are fine to occur
|
|
let allowed_lts = allowed_lts_from(&pred.bound_lifetimes);
|
|
// now walk the bounds
|
|
for bound in pred.bounds.iter() {
|
|
walk_ty_param_bound(&mut visitor, bound);
|
|
}
|
|
// and check that all lifetimes are allowed
|
|
for lt in visitor.into_vec() {
|
|
if !allowed_lts.contains(<) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
WherePredicate::EqPredicate(ref pred) => {
|
|
let mut visitor = RefVisitor::new(cx);
|
|
walk_ty(&mut visitor, &pred.ty);
|
|
if !visitor.lts.is_empty() {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
false
|
|
}
|
|
|
|
struct LifetimeChecker(HashMap<Name, Span>);
|
|
|
|
impl<'v> Visitor<'v> for LifetimeChecker {
|
|
// for lifetimes as parameters of generics
|
|
fn visit_lifetime(&mut self, lifetime: &'v Lifetime) {
|
|
self.0.remove(&lifetime.name);
|
|
}
|
|
|
|
fn visit_lifetime_def(&mut self, _: &'v LifetimeDef) {
|
|
// don't actually visit `<'a>` or `<'a: 'b>`
|
|
// we've already visited the `'a` declarations and
|
|
// don't want to spuriously remove them
|
|
// `'b` in `'a: 'b` is useless unless used elsewhere in
|
|
// a non-lifetime bound
|
|
}
|
|
}
|
|
|
|
fn report_extra_lifetimes(cx: &LateContext, func: &FnDecl, generics: &Generics, slf: Option<&ExplicitSelf>) {
|
|
let hs = generics.lifetimes
|
|
.iter()
|
|
.map(|lt| (lt.lifetime.name, lt.lifetime.span))
|
|
.collect();
|
|
let mut checker = LifetimeChecker(hs);
|
|
|
|
walk_generics(&mut checker, generics);
|
|
walk_fn_decl(&mut checker, func);
|
|
|
|
if let Some(slf) = slf {
|
|
match slf.node {
|
|
SelfRegion(Some(ref lt), _, _) => checker.visit_lifetime(lt),
|
|
SelfExplicit(ref t, _) => walk_ty(&mut checker, t),
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
for &v in checker.0.values() {
|
|
span_lint(cx, UNUSED_LIFETIMES, v, "this lifetime isn't used in the function definition");
|
|
}
|
|
}
|