659 lines
18 KiB
Rust
659 lines
18 KiB
Rust
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
use T = self::inst::T;
|
|
use T_SIGNED = self::inst::T_SIGNED;
|
|
|
|
use num::{ToStrRadix, FromStrRadix};
|
|
use num::{Zero, One, strconv};
|
|
use prelude::*;
|
|
|
|
pub use cmp::{min, max};
|
|
|
|
pub static bits : uint = inst::bits;
|
|
pub static bytes : uint = (inst::bits / 8);
|
|
|
|
pub static min_value: T = 0 as T;
|
|
pub static max_value: T = 0 as T - 1 as T;
|
|
|
|
#[inline(always)]
|
|
pub fn add(x: T, y: T) -> T { x + y }
|
|
#[inline(always)]
|
|
pub fn sub(x: T, y: T) -> T { x - y }
|
|
#[inline(always)]
|
|
pub fn mul(x: T, y: T) -> T { x * y }
|
|
#[inline(always)]
|
|
pub fn div(x: T, y: T) -> T { x / y }
|
|
#[inline(always)]
|
|
pub fn rem(x: T, y: T) -> T { x % y }
|
|
|
|
#[inline(always)]
|
|
pub fn lt(x: T, y: T) -> bool { x < y }
|
|
#[inline(always)]
|
|
pub fn le(x: T, y: T) -> bool { x <= y }
|
|
#[inline(always)]
|
|
pub fn eq(x: T, y: T) -> bool { x == y }
|
|
#[inline(always)]
|
|
pub fn ne(x: T, y: T) -> bool { x != y }
|
|
#[inline(always)]
|
|
pub fn ge(x: T, y: T) -> bool { x >= y }
|
|
#[inline(always)]
|
|
pub fn gt(x: T, y: T) -> bool { x > y }
|
|
|
|
#[inline(always)]
|
|
///
|
|
/// Iterate over the range [`start`,`start`+`step`..`stop`)
|
|
///
|
|
pub fn _range_step(start: T,
|
|
stop: T,
|
|
step: T_SIGNED,
|
|
it: &fn(T) -> bool) -> bool {
|
|
let mut i = start;
|
|
if step == 0 {
|
|
fail!(~"range_step called with step == 0");
|
|
}
|
|
if step >= 0 {
|
|
while i < stop {
|
|
if !it(i) { return false; }
|
|
// avoiding overflow. break if i + step > max_value
|
|
if i > max_value - (step as T) { return true; }
|
|
i += step as T;
|
|
}
|
|
} else {
|
|
while i > stop {
|
|
if !it(i) { return false; }
|
|
// avoiding underflow. break if i + step < min_value
|
|
if i < min_value + ((-step) as T) { return true; }
|
|
i -= -step as T;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#[cfg(stage0)]
|
|
pub fn range_step(start: T, stop: T, step: T_SIGNED, it: &fn(T) -> bool) {
|
|
_range_step(start, stop, step, it);
|
|
}
|
|
#[cfg(not(stage0))]
|
|
pub fn range_step(start: T, stop: T, step: T_SIGNED, it: &fn(T) -> bool) -> bool {
|
|
_range_step(start, stop, step, it)
|
|
}
|
|
|
|
#[inline(always)]
|
|
#[cfg(stage0)]
|
|
/// Iterate over the range [`lo`..`hi`)
|
|
pub fn range(lo: T, hi: T, it: &fn(T) -> bool) {
|
|
range_step(lo, hi, 1 as T_SIGNED, it);
|
|
}
|
|
|
|
#[inline(always)]
|
|
#[cfg(not(stage0))]
|
|
/// Iterate over the range [`lo`..`hi`)
|
|
pub fn range(lo: T, hi: T, it: &fn(T) -> bool) -> bool {
|
|
range_step(lo, hi, 1 as T_SIGNED, it)
|
|
}
|
|
|
|
#[inline(always)]
|
|
#[cfg(stage0)]
|
|
/// Iterate over the range [`hi`..`lo`)
|
|
pub fn range_rev(hi: T, lo: T, it: &fn(T) -> bool) {
|
|
range_step(hi, lo, -1 as T_SIGNED, it);
|
|
}
|
|
|
|
#[inline(always)]
|
|
#[cfg(not(stage0))]
|
|
/// Iterate over the range [`hi`..`lo`)
|
|
pub fn range_rev(hi: T, lo: T, it: &fn(T) -> bool) -> bool {
|
|
range_step(hi, lo, -1 as T_SIGNED, it)
|
|
}
|
|
|
|
/// Computes the bitwise complement
|
|
#[inline(always)]
|
|
pub fn compl(i: T) -> T {
|
|
max_value ^ i
|
|
}
|
|
|
|
impl Num for T {}
|
|
|
|
#[cfg(not(test))]
|
|
impl Ord for T {
|
|
#[inline(always)]
|
|
fn lt(&self, other: &T) -> bool { (*self) < (*other) }
|
|
#[inline(always)]
|
|
fn le(&self, other: &T) -> bool { (*self) <= (*other) }
|
|
#[inline(always)]
|
|
fn ge(&self, other: &T) -> bool { (*self) >= (*other) }
|
|
#[inline(always)]
|
|
fn gt(&self, other: &T) -> bool { (*self) > (*other) }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Eq for T {
|
|
#[inline(always)]
|
|
fn eq(&self, other: &T) -> bool { return (*self) == (*other); }
|
|
#[inline(always)]
|
|
fn ne(&self, other: &T) -> bool { return (*self) != (*other); }
|
|
}
|
|
|
|
impl Orderable for T {
|
|
#[inline(always)]
|
|
fn min(&self, other: &T) -> T {
|
|
if *self < *other { *self } else { *other }
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn max(&self, other: &T) -> T {
|
|
if *self > *other { *self } else { *other }
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn clamp(&self, mn: &T, mx: &T) -> T {
|
|
if *self > *mx { *mx } else
|
|
if *self < *mn { *mn } else { *self }
|
|
}
|
|
}
|
|
|
|
impl Zero for T {
|
|
#[inline(always)]
|
|
fn zero() -> T { 0 }
|
|
|
|
#[inline(always)]
|
|
fn is_zero(&self) -> bool { *self == 0 }
|
|
}
|
|
|
|
impl One for T {
|
|
#[inline(always)]
|
|
fn one() -> T { 1 }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Add<T,T> for T {
|
|
#[inline(always)]
|
|
fn add(&self, other: &T) -> T { *self + *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Sub<T,T> for T {
|
|
#[inline(always)]
|
|
fn sub(&self, other: &T) -> T { *self - *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Mul<T,T> for T {
|
|
#[inline(always)]
|
|
fn mul(&self, other: &T) -> T { *self * *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Div<T,T> for T {
|
|
#[inline(always)]
|
|
fn div(&self, other: &T) -> T { *self / *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Rem<T,T> for T {
|
|
#[inline(always)]
|
|
fn rem(&self, other: &T) -> T { *self % *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Neg<T> for T {
|
|
#[inline(always)]
|
|
fn neg(&self) -> T { -*self }
|
|
}
|
|
|
|
impl Unsigned for T {}
|
|
|
|
impl Integer for T {
|
|
/// Calculates `div` (`\`) and `rem` (`%`) simultaneously
|
|
#[inline(always)]
|
|
fn div_rem(&self, other: &T) -> (T,T) {
|
|
(*self / *other, *self % *other)
|
|
}
|
|
|
|
/// Unsigned integer division. Returns the same result as `div` (`/`).
|
|
#[inline(always)]
|
|
fn div_floor(&self, other: &T) -> T { *self / *other }
|
|
|
|
/// Unsigned integer modulo operation. Returns the same result as `rem` (`%`).
|
|
#[inline(always)]
|
|
fn mod_floor(&self, other: &T) -> T { *self / *other }
|
|
|
|
/// Calculates `div_floor` and `modulo_floor` simultaneously
|
|
#[inline(always)]
|
|
fn div_mod_floor(&self, other: &T) -> (T,T) {
|
|
(*self / *other, *self % *other)
|
|
}
|
|
|
|
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`
|
|
#[inline(always)]
|
|
fn gcd(&self, other: &T) -> T {
|
|
// Use Euclid's algorithm
|
|
let mut m = *self, n = *other;
|
|
while m != 0 {
|
|
let temp = m;
|
|
m = n % temp;
|
|
n = temp;
|
|
}
|
|
n
|
|
}
|
|
|
|
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`
|
|
#[inline(always)]
|
|
fn lcm(&self, other: &T) -> T {
|
|
(*self * *other) / self.gcd(other)
|
|
}
|
|
|
|
/// Returns `true` if the number can be divided by `other` without leaving a remainder
|
|
#[inline(always)]
|
|
fn is_multiple_of(&self, other: &T) -> bool { *self % *other == 0 }
|
|
|
|
/// Returns `true` if the number is divisible by `2`
|
|
#[inline(always)]
|
|
fn is_even(&self) -> bool { self.is_multiple_of(&2) }
|
|
|
|
/// Returns `true` if the number is not divisible by `2`
|
|
#[inline(always)]
|
|
fn is_odd(&self) -> bool { !self.is_even() }
|
|
}
|
|
|
|
impl Bitwise for T {}
|
|
|
|
#[cfg(not(test))]
|
|
impl BitOr<T,T> for T {
|
|
#[inline(always)]
|
|
fn bitor(&self, other: &T) -> T { *self | *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl BitAnd<T,T> for T {
|
|
#[inline(always)]
|
|
fn bitand(&self, other: &T) -> T { *self & *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl BitXor<T,T> for T {
|
|
#[inline(always)]
|
|
fn bitxor(&self, other: &T) -> T { *self ^ *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Shl<T,T> for T {
|
|
#[inline(always)]
|
|
fn shl(&self, other: &T) -> T { *self << *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Shr<T,T> for T {
|
|
#[inline(always)]
|
|
fn shr(&self, other: &T) -> T { *self >> *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Not<T> for T {
|
|
#[inline(always)]
|
|
fn not(&self) -> T { !*self }
|
|
}
|
|
|
|
impl Bounded for T {
|
|
#[inline(always)]
|
|
fn min_value() -> T { min_value }
|
|
|
|
#[inline(always)]
|
|
fn max_value() -> T { max_value }
|
|
}
|
|
|
|
impl Int for T {}
|
|
|
|
// String conversion functions and impl str -> num
|
|
|
|
/// Parse a string as a number in base 10.
|
|
#[inline(always)]
|
|
pub fn from_str(s: &str) -> Option<T> {
|
|
strconv::from_str_common(s, 10u, false, false, false,
|
|
strconv::ExpNone, false, false)
|
|
}
|
|
|
|
/// Parse a string as a number in the given base.
|
|
#[inline(always)]
|
|
pub fn from_str_radix(s: &str, radix: uint) -> Option<T> {
|
|
strconv::from_str_common(s, radix, false, false, false,
|
|
strconv::ExpNone, false, false)
|
|
}
|
|
|
|
/// Parse a byte slice as a number in the given base.
|
|
#[inline(always)]
|
|
pub fn parse_bytes(buf: &[u8], radix: uint) -> Option<T> {
|
|
strconv::from_str_bytes_common(buf, radix, false, false, false,
|
|
strconv::ExpNone, false, false)
|
|
}
|
|
|
|
impl FromStr for T {
|
|
#[inline(always)]
|
|
fn from_str(s: &str) -> Option<T> {
|
|
from_str(s)
|
|
}
|
|
}
|
|
|
|
impl FromStrRadix for T {
|
|
#[inline(always)]
|
|
fn from_str_radix(s: &str, radix: uint) -> Option<T> {
|
|
from_str_radix(s, radix)
|
|
}
|
|
}
|
|
|
|
// String conversion functions and impl num -> str
|
|
|
|
/// Convert to a string as a byte slice in a given base.
|
|
#[inline(always)]
|
|
pub fn to_str_bytes<U>(n: T, radix: uint, f: &fn(v: &[u8]) -> U) -> U {
|
|
let (buf, _) = strconv::to_str_bytes_common(&n, radix, false,
|
|
strconv::SignNeg, strconv::DigAll);
|
|
f(buf)
|
|
}
|
|
|
|
/// Convert to a string in base 10.
|
|
#[inline(always)]
|
|
pub fn to_str(num: T) -> ~str {
|
|
let (buf, _) = strconv::to_str_common(&num, 10u, false,
|
|
strconv::SignNeg, strconv::DigAll);
|
|
buf
|
|
}
|
|
|
|
/// Convert to a string in a given base.
|
|
#[inline(always)]
|
|
pub fn to_str_radix(num: T, radix: uint) -> ~str {
|
|
let (buf, _) = strconv::to_str_common(&num, radix, false,
|
|
strconv::SignNeg, strconv::DigAll);
|
|
buf
|
|
}
|
|
|
|
impl ToStr for T {
|
|
#[inline(always)]
|
|
fn to_str(&self) -> ~str {
|
|
to_str(*self)
|
|
}
|
|
}
|
|
|
|
impl ToStrRadix for T {
|
|
#[inline(always)]
|
|
fn to_str_radix(&self, radix: uint) -> ~str {
|
|
to_str_radix(*self, radix)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use super::inst::T;
|
|
use prelude::*;
|
|
|
|
#[test]
|
|
fn test_num() {
|
|
num::test_num(10 as T, 2 as T);
|
|
}
|
|
|
|
#[test]
|
|
fn test_orderable() {
|
|
assert_eq!((1 as T).min(&(2 as T)), 1 as T);
|
|
assert_eq!((2 as T).min(&(1 as T)), 1 as T);
|
|
assert_eq!((1 as T).max(&(2 as T)), 2 as T);
|
|
assert_eq!((2 as T).max(&(1 as T)), 2 as T);
|
|
assert_eq!((1 as T).clamp(&(2 as T), &(4 as T)), 2 as T);
|
|
assert_eq!((8 as T).clamp(&(2 as T), &(4 as T)), 4 as T);
|
|
assert_eq!((3 as T).clamp(&(2 as T), &(4 as T)), 3 as T);
|
|
}
|
|
|
|
#[test]
|
|
fn test_gcd() {
|
|
assert_eq!((10 as T).gcd(&2), 2 as T);
|
|
assert_eq!((10 as T).gcd(&3), 1 as T);
|
|
assert_eq!((0 as T).gcd(&3), 3 as T);
|
|
assert_eq!((3 as T).gcd(&3), 3 as T);
|
|
assert_eq!((56 as T).gcd(&42), 14 as T);
|
|
}
|
|
|
|
#[test]
|
|
fn test_lcm() {
|
|
assert_eq!((1 as T).lcm(&0), 0 as T);
|
|
assert_eq!((0 as T).lcm(&1), 0 as T);
|
|
assert_eq!((1 as T).lcm(&1), 1 as T);
|
|
assert_eq!((8 as T).lcm(&9), 72 as T);
|
|
assert_eq!((11 as T).lcm(&5), 55 as T);
|
|
assert_eq!((99 as T).lcm(&17), 1683 as T);
|
|
}
|
|
|
|
#[test]
|
|
fn test_multiple_of() {
|
|
assert!((6 as T).is_multiple_of(&(6 as T)));
|
|
assert!((6 as T).is_multiple_of(&(3 as T)));
|
|
assert!((6 as T).is_multiple_of(&(1 as T)));
|
|
}
|
|
|
|
#[test]
|
|
fn test_even() {
|
|
assert_eq!((0 as T).is_even(), true);
|
|
assert_eq!((1 as T).is_even(), false);
|
|
assert_eq!((2 as T).is_even(), true);
|
|
assert_eq!((3 as T).is_even(), false);
|
|
assert_eq!((4 as T).is_even(), true);
|
|
}
|
|
|
|
#[test]
|
|
fn test_odd() {
|
|
assert_eq!((0 as T).is_odd(), false);
|
|
assert_eq!((1 as T).is_odd(), true);
|
|
assert_eq!((2 as T).is_odd(), false);
|
|
assert_eq!((3 as T).is_odd(), true);
|
|
assert_eq!((4 as T).is_odd(), false);
|
|
}
|
|
|
|
#[test]
|
|
fn test_bitwise() {
|
|
assert_eq!(0b1110 as T, (0b1100 as T).bitor(&(0b1010 as T)));
|
|
assert_eq!(0b1000 as T, (0b1100 as T).bitand(&(0b1010 as T)));
|
|
assert_eq!(0b0110 as T, (0b1100 as T).bitxor(&(0b1010 as T)));
|
|
assert_eq!(0b1110 as T, (0b0111 as T).shl(&(1 as T)));
|
|
assert_eq!(0b0111 as T, (0b1110 as T).shr(&(1 as T)));
|
|
assert_eq!(max_value - (0b1011 as T), (0b1011 as T).not());
|
|
}
|
|
|
|
#[test]
|
|
fn test_bitcount() {
|
|
assert_eq!((0b010101 as T).population_count(), 3);
|
|
}
|
|
|
|
#[test]
|
|
fn test_primitive() {
|
|
assert_eq!(Primitive::bits::<T>(), sys::size_of::<T>() * 8);
|
|
assert_eq!(Primitive::bytes::<T>(), sys::size_of::<T>());
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_to_str() {
|
|
assert_eq!(to_str_radix(0 as T, 10u), ~"0");
|
|
assert_eq!(to_str_radix(1 as T, 10u), ~"1");
|
|
assert_eq!(to_str_radix(2 as T, 10u), ~"2");
|
|
assert_eq!(to_str_radix(11 as T, 10u), ~"11");
|
|
assert_eq!(to_str_radix(11 as T, 16u), ~"b");
|
|
assert_eq!(to_str_radix(255 as T, 16u), ~"ff");
|
|
assert_eq!(to_str_radix(0xff as T, 10u), ~"255");
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_from_str() {
|
|
assert_eq!(from_str(~"0"), Some(0u as T));
|
|
assert_eq!(from_str(~"3"), Some(3u as T));
|
|
assert_eq!(from_str(~"10"), Some(10u as T));
|
|
assert_eq!(u32::from_str(~"123456789"), Some(123456789 as u32));
|
|
assert_eq!(from_str(~"00100"), Some(100u as T));
|
|
|
|
assert!(from_str(~"").is_none());
|
|
assert!(from_str(~" ").is_none());
|
|
assert!(from_str(~"x").is_none());
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_parse_bytes() {
|
|
use str::to_bytes;
|
|
assert_eq!(parse_bytes(to_bytes(~"123"), 10u), Some(123u as T));
|
|
assert_eq!(parse_bytes(to_bytes(~"1001"), 2u), Some(9u as T));
|
|
assert_eq!(parse_bytes(to_bytes(~"123"), 8u), Some(83u as T));
|
|
assert_eq!(u16::parse_bytes(to_bytes(~"123"), 16u), Some(291u as u16));
|
|
assert_eq!(u16::parse_bytes(to_bytes(~"ffff"), 16u), Some(65535u as u16));
|
|
assert_eq!(parse_bytes(to_bytes(~"z"), 36u), Some(35u as T));
|
|
|
|
assert!(parse_bytes(to_bytes(~"Z"), 10u).is_none());
|
|
assert!(parse_bytes(to_bytes(~"_"), 2u).is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_uint_to_str_overflow() {
|
|
let mut u8_val: u8 = 255_u8;
|
|
assert_eq!(u8::to_str(u8_val), ~"255");
|
|
|
|
u8_val += 1 as u8;
|
|
assert_eq!(u8::to_str(u8_val), ~"0");
|
|
|
|
let mut u16_val: u16 = 65_535_u16;
|
|
assert_eq!(u16::to_str(u16_val), ~"65535");
|
|
|
|
u16_val += 1 as u16;
|
|
assert_eq!(u16::to_str(u16_val), ~"0");
|
|
|
|
let mut u32_val: u32 = 4_294_967_295_u32;
|
|
assert_eq!(u32::to_str(u32_val), ~"4294967295");
|
|
|
|
u32_val += 1 as u32;
|
|
assert_eq!(u32::to_str(u32_val), ~"0");
|
|
|
|
let mut u64_val: u64 = 18_446_744_073_709_551_615_u64;
|
|
assert_eq!(u64::to_str(u64_val), ~"18446744073709551615");
|
|
|
|
u64_val += 1 as u64;
|
|
assert_eq!(u64::to_str(u64_val), ~"0");
|
|
}
|
|
|
|
#[test]
|
|
fn test_uint_from_str_overflow() {
|
|
let mut u8_val: u8 = 255_u8;
|
|
assert_eq!(u8::from_str(~"255"), Some(u8_val));
|
|
assert!(u8::from_str(~"256").is_none());
|
|
|
|
u8_val += 1 as u8;
|
|
assert_eq!(u8::from_str(~"0"), Some(u8_val));
|
|
assert!(u8::from_str(~"-1").is_none());
|
|
|
|
let mut u16_val: u16 = 65_535_u16;
|
|
assert_eq!(u16::from_str(~"65535"), Some(u16_val));
|
|
assert!(u16::from_str(~"65536").is_none());
|
|
|
|
u16_val += 1 as u16;
|
|
assert_eq!(u16::from_str(~"0"), Some(u16_val));
|
|
assert!(u16::from_str(~"-1").is_none());
|
|
|
|
let mut u32_val: u32 = 4_294_967_295_u32;
|
|
assert_eq!(u32::from_str(~"4294967295"), Some(u32_val));
|
|
assert!(u32::from_str(~"4294967296").is_none());
|
|
|
|
u32_val += 1 as u32;
|
|
assert_eq!(u32::from_str(~"0"), Some(u32_val));
|
|
assert!(u32::from_str(~"-1").is_none());
|
|
|
|
let mut u64_val: u64 = 18_446_744_073_709_551_615_u64;
|
|
assert_eq!(u64::from_str(~"18446744073709551615"), Some(u64_val));
|
|
assert!(u64::from_str(~"18446744073709551616").is_none());
|
|
|
|
u64_val += 1 as u64;
|
|
assert_eq!(u64::from_str(~"0"), Some(u64_val));
|
|
assert!(u64::from_str(~"-1").is_none());
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
#[ignore(cfg(windows))]
|
|
pub fn to_str_radix1() {
|
|
uint::to_str_radix(100u, 1u);
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
#[ignore(cfg(windows))]
|
|
pub fn to_str_radix37() {
|
|
uint::to_str_radix(100u, 37u);
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_ranges() {
|
|
let mut l = ~[];
|
|
|
|
for range(0,3) |i| {
|
|
l.push(i);
|
|
}
|
|
for range_rev(13,10) |i| {
|
|
l.push(i);
|
|
}
|
|
for range_step(20,26,2) |i| {
|
|
l.push(i);
|
|
}
|
|
for range_step(36,30,-2) |i| {
|
|
l.push(i);
|
|
}
|
|
for range_step(max_value - 2, max_value, 2) |i| {
|
|
l.push(i);
|
|
}
|
|
for range_step(max_value - 3, max_value, 2) |i| {
|
|
l.push(i);
|
|
}
|
|
for range_step(min_value + 2, min_value, -2) |i| {
|
|
l.push(i);
|
|
}
|
|
for range_step(min_value + 3, min_value, -2) |i| {
|
|
l.push(i);
|
|
}
|
|
|
|
assert_eq!(l, ~[0,1,2,
|
|
13,12,11,
|
|
20,22,24,
|
|
36,34,32,
|
|
max_value-2,
|
|
max_value-3,max_value-1,
|
|
min_value+2,
|
|
min_value+3,min_value+1]);
|
|
|
|
// None of the `fail`s should execute.
|
|
for range(0,0) |_i| {
|
|
fail!(~"unreachable");
|
|
}
|
|
for range_rev(0,0) |_i| {
|
|
fail!(~"unreachable");
|
|
}
|
|
for range_step(10,0,1) |_i| {
|
|
fail!(~"unreachable");
|
|
}
|
|
for range_step(0,1,-10) |_i| {
|
|
fail!(~"unreachable");
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
#[ignore(cfg(windows))]
|
|
fn test_range_step_zero_step_up() {
|
|
for range_step(0,10,0) |_i| {}
|
|
}
|
|
#[test]
|
|
#[should_fail]
|
|
#[ignore(cfg(windows))]
|
|
fn test_range_step_zero_step_down() {
|
|
for range_step(0,-10,0) |_i| {}
|
|
}
|
|
}
|