rust/src/libcore/cmp.rs
2014-12-09 10:26:04 -08:00

481 lines
16 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Defines the `PartialOrd` and `PartialEq` comparison traits.
//!
//! This module defines both `PartialOrd` and `PartialEq` traits which are used by the
//! compiler to implement comparison operators. Rust programs may implement
//!`PartialOrd` to overload the `<`, `<=`, `>`, and `>=` operators, and may implement
//! `PartialEq` to overload the `==` and `!=` operators.
//!
//! For example, to define a type with a customized definition for the PartialEq
//! operators, you could do the following:
//!
//! ```rust
//! use core::num::SignedInt;
//!
//! // Our type.
//! struct SketchyNum {
//! num : int
//! }
//!
//! // Our implementation of `PartialEq` to support `==` and `!=`.
//! impl PartialEq for SketchyNum {
//! // Our custom eq allows numbers which are near each other to be equal! :D
//! fn eq(&self, other: &SketchyNum) -> bool {
//! (self.num - other.num).abs() < 5
//! }
//! }
//!
//! // Now these binary operators will work when applied!
//! assert!(SketchyNum {num: 37} == SketchyNum {num: 34});
//! assert!(SketchyNum {num: 25} != SketchyNum {num: 57});
//! ```
#![stable]
pub use self::Ordering::*;
use kinds::{Copy, Sized};
use option::Option::{mod, Some, None};
/// Trait for values that can be compared for equality and inequality.
///
/// This trait allows for partial equality, for types that do not have an
/// equivalence relation. For example, in floating point numbers `NaN != NaN`,
/// so floating point types implement `PartialEq` but not `Eq`.
///
/// PartialEq only requires the `eq` method to be implemented; `ne` is defined
/// in terms of it by default. Any manual implementation of `ne` *must* respect
/// the rule that `eq` is a strict inverse of `ne`; that is, `!(a == b)` if and
/// only if `a != b`.
///
/// Eventually, this will be implemented by default for types that implement
/// `Eq`.
#[lang="eq"]
#[unstable = "Definition may change slightly after trait reform"]
pub trait PartialEq<Sized? Rhs = Self> for Sized? {
/// This method tests for `self` and `other` values to be equal, and is used by `==`.
fn eq(&self, other: &Rhs) -> bool;
/// This method tests for `!=`.
#[inline]
fn ne(&self, other: &Rhs) -> bool { !self.eq(other) }
}
/// Trait for equality comparisons which are [equivalence relations](
/// https://en.wikipedia.org/wiki/Equivalence_relation).
///
/// This means, that in addition to `a == b` and `a != b` being strict
/// inverses, the equality must be (for all `a`, `b` and `c`):
///
/// - reflexive: `a == a`;
/// - symmetric: `a == b` implies `b == a`; and
/// - transitive: `a == b` and `b == c` implies `a == c`.
#[unstable = "Definition may change slightly after trait reform"]
pub trait Eq<Sized? Rhs = Self> for Sized?: PartialEq<Rhs> {
// FIXME #13101: this method is used solely by #[deriving] to
// assert that every component of a type implements #[deriving]
// itself, the current deriving infrastructure means doing this
// assertion without using a method on this trait is nearly
// impossible.
//
// This should never be implemented by hand.
#[doc(hidden)]
#[inline(always)]
fn assert_receiver_is_total_eq(&self) {}
}
/// An ordering is, e.g, a result of a comparison between two values.
#[deriving(Clone, PartialEq, Show)]
#[stable]
pub enum Ordering {
/// An ordering where a compared value is less [than another].
Less = -1i,
/// An ordering where a compared value is equal [to another].
Equal = 0i,
/// An ordering where a compared value is greater [than another].
Greater = 1i,
}
impl Copy for Ordering {}
impl Ordering {
/// Reverse the `Ordering`, so that `Less` becomes `Greater` and
/// vice versa.
///
/// # Example
///
/// ```rust
/// assert_eq!(Less.reverse(), Greater);
/// assert_eq!(Equal.reverse(), Equal);
/// assert_eq!(Greater.reverse(), Less);
///
///
/// let mut data: &mut [_] = &mut [2u, 10, 5, 8];
///
/// // sort the array from largest to smallest.
/// data.sort_by(|a, b| a.cmp(b).reverse());
///
/// let b: &mut [_] = &mut [10u, 8, 5, 2];
/// assert!(data == b);
/// ```
#[inline]
#[experimental]
pub fn reverse(self) -> Ordering {
unsafe {
// this compiles really nicely (to a single instruction);
// an explicit match has a pile of branches and
// comparisons.
//
// NB. it is safe because of the explicit discriminants
// given above.
::mem::transmute::<_, Ordering>(-(self as i8))
}
}
}
/// Trait for types that form a [total order](
/// https://en.wikipedia.org/wiki/Total_order).
///
/// An order is a total order if it is (for all `a`, `b` and `c`):
///
/// - total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is
/// true; and
/// - transitive, `a < b` and `b < c` implies `a < c`. The same must hold for
/// both `==` and `>`.
#[unstable = "Definition may change slightly after trait reform"]
pub trait Ord<Sized? Rhs = Self> for Sized?: Eq<Rhs> + PartialOrd<Rhs> {
/// This method returns an ordering between `self` and `other` values.
///
/// By convention, `self.cmp(&other)` returns the ordering matching
/// the expression `self <operator> other` if true. For example:
///
/// ```
/// assert_eq!( 5u.cmp(&10), Less); // because 5 < 10
/// assert_eq!(10u.cmp(&5), Greater); // because 10 > 5
/// assert_eq!( 5u.cmp(&5), Equal); // because 5 == 5
/// ```
fn cmp(&self, other: &Rhs) -> Ordering;
}
#[unstable = "Trait is unstable."]
impl Eq for Ordering {}
#[unstable = "Trait is unstable."]
impl Ord for Ordering {
#[inline]
fn cmp(&self, other: &Ordering) -> Ordering {
(*self as int).cmp(&(*other as int))
}
}
#[unstable = "Trait is unstable."]
impl PartialOrd for Ordering {
#[inline]
fn partial_cmp(&self, other: &Ordering) -> Option<Ordering> {
(*self as int).partial_cmp(&(*other as int))
}
}
/// Trait for values that can be compared for a sort-order.
///
/// PartialOrd only requires implementation of the `partial_cmp` method,
/// with the others generated from default implementations.
///
/// However it remains possible to implement the others separately for types
/// which do not have a total order. For example, for floating point numbers,
/// `NaN < 0 == false` and `NaN >= 0 == false` (cf. IEEE 754-2008 section
/// 5.11).
#[lang="ord"]
#[unstable = "Definition may change slightly after trait reform"]
pub trait PartialOrd<Sized? Rhs = Self> for Sized?: PartialEq<Rhs> {
/// This method returns an ordering between `self` and `other` values
/// if one exists.
fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>;
/// This method tests less than (for `self` and `other`) and is used by the `<` operator.
#[inline]
fn lt(&self, other: &Rhs) -> bool {
match self.partial_cmp(other) {
Some(Less) => true,
_ => false,
}
}
/// This method tests less than or equal to (`<=`).
#[inline]
fn le(&self, other: &Rhs) -> bool {
match self.partial_cmp(other) {
Some(Less) | Some(Equal) => true,
_ => false,
}
}
/// This method tests greater than (`>`).
#[inline]
fn gt(&self, other: &Rhs) -> bool {
match self.partial_cmp(other) {
Some(Greater) => true,
_ => false,
}
}
/// This method tests greater than or equal to (`>=`).
#[inline]
fn ge(&self, other: &Rhs) -> bool {
match self.partial_cmp(other) {
Some(Greater) | Some(Equal) => true,
_ => false,
}
}
}
/// The equivalence relation. Two values may be equivalent even if they are
/// of different types. The most common use case for this relation is
/// container types; e.g. it is often desirable to be able to use `&str`
/// values to look up entries in a container with `String` keys.
#[deprecated = "Use overloaded core::cmp::PartialEq"]
pub trait Equiv<Sized? T> for Sized? {
/// Implement this function to decide equivalent values.
fn equiv(&self, other: &T) -> bool;
}
/// Compare and return the minimum of two values.
#[inline]
#[stable]
pub fn min<T: Ord>(v1: T, v2: T) -> T {
if v1 < v2 { v1 } else { v2 }
}
/// Compare and return the maximum of two values.
#[inline]
#[stable]
pub fn max<T: Ord>(v1: T, v2: T) -> T {
if v1 > v2 { v1 } else { v2 }
}
/// Compare and return the minimum of two values if there is one.
///
/// Returns the first argument if the comparison determines them to be equal.
#[inline]
#[experimental]
pub fn partial_min<T: PartialOrd>(v1: T, v2: T) -> Option<T> {
match v1.partial_cmp(&v2) {
Some(Less) | Some(Equal) => Some(v1),
Some(Greater) => Some(v2),
None => None
}
}
/// Compare and return the maximum of two values if there is one.
///
/// Returns the first argument if the comparison determines them to be equal.
#[inline]
#[experimental]
pub fn partial_max<T: PartialOrd>(v1: T, v2: T) -> Option<T> {
match v1.partial_cmp(&v2) {
Some(Less) => Some(v2),
Some(Equal) | Some(Greater) => Some(v1),
None => None
}
}
// Implementation of PartialEq, Eq, PartialOrd and Ord for primitive types
mod impls {
use cmp::{PartialOrd, Ord, PartialEq, Eq, Ordering};
use cmp::Ordering::{Less, Greater, Equal};
use kinds::Sized;
use option::Option;
use option::Option::{Some, None};
macro_rules! partial_eq_impl(
($($t:ty)*) => ($(
#[unstable = "Trait is unstable."]
impl PartialEq for $t {
#[inline]
fn eq(&self, other: &$t) -> bool { (*self) == (*other) }
#[inline]
fn ne(&self, other: &$t) -> bool { (*self) != (*other) }
}
)*)
)
#[unstable = "Trait is unstable."]
impl PartialEq for () {
#[inline]
fn eq(&self, _other: &()) -> bool { true }
#[inline]
fn ne(&self, _other: &()) -> bool { false }
}
partial_eq_impl!(bool char uint u8 u16 u32 u64 int i8 i16 i32 i64 f32 f64)
macro_rules! eq_impl(
($($t:ty)*) => ($(
#[unstable = "Trait is unstable."]
impl Eq for $t {}
)*)
)
eq_impl!(() bool char uint u8 u16 u32 u64 int i8 i16 i32 i64)
macro_rules! partial_ord_impl(
($($t:ty)*) => ($(
#[unstable = "Trait is unstable."]
impl PartialOrd for $t {
#[inline]
fn partial_cmp(&self, other: &$t) -> Option<Ordering> {
match (self <= other, self >= other) {
(false, false) => None,
(false, true) => Some(Greater),
(true, false) => Some(Less),
(true, true) => Some(Equal),
}
}
#[inline]
fn lt(&self, other: &$t) -> bool { (*self) < (*other) }
#[inline]
fn le(&self, other: &$t) -> bool { (*self) <= (*other) }
#[inline]
fn ge(&self, other: &$t) -> bool { (*self) >= (*other) }
#[inline]
fn gt(&self, other: &$t) -> bool { (*self) > (*other) }
}
)*)
)
#[unstable = "Trait is unstable."]
impl PartialOrd for () {
#[inline]
fn partial_cmp(&self, _: &()) -> Option<Ordering> {
Some(Equal)
}
}
#[unstable = "Trait is unstable."]
impl PartialOrd for bool {
#[inline]
fn partial_cmp(&self, other: &bool) -> Option<Ordering> {
(*self as u8).partial_cmp(&(*other as u8))
}
}
partial_ord_impl!(char uint u8 u16 u32 u64 int i8 i16 i32 i64 f32 f64)
macro_rules! ord_impl(
($($t:ty)*) => ($(
#[unstable = "Trait is unstable."]
impl Ord for $t {
#[inline]
fn cmp(&self, other: &$t) -> Ordering {
if *self < *other { Less }
else if *self > *other { Greater }
else { Equal }
}
}
)*)
)
#[unstable = "Trait is unstable."]
impl Ord for () {
#[inline]
fn cmp(&self, _other: &()) -> Ordering { Equal }
}
#[unstable = "Trait is unstable."]
impl Ord for bool {
#[inline]
fn cmp(&self, other: &bool) -> Ordering {
(*self as u8).cmp(&(*other as u8))
}
}
ord_impl!(char uint u8 u16 u32 u64 int i8 i16 i32 i64)
// & pointers
#[unstable = "Trait is unstable."]
impl<'a, 'b, Sized? A, Sized? B> PartialEq<&'b B> for &'a A where A: PartialEq<B> {
#[inline]
fn eq(&self, other: & &'b B) -> bool { PartialEq::eq(*self, *other) }
#[inline]
fn ne(&self, other: & &'b B) -> bool { PartialEq::ne(*self, *other) }
}
#[unstable = "Trait is unstable."]
impl<'a, Sized? T: PartialOrd> PartialOrd for &'a T {
#[inline]
fn partial_cmp(&self, other: &&'a T) -> Option<Ordering> {
PartialOrd::partial_cmp(*self, *other)
}
#[inline]
fn lt(&self, other: & &'a T) -> bool { PartialOrd::lt(*self, *other) }
#[inline]
fn le(&self, other: & &'a T) -> bool { PartialOrd::le(*self, *other) }
#[inline]
fn ge(&self, other: & &'a T) -> bool { PartialOrd::ge(*self, *other) }
#[inline]
fn gt(&self, other: & &'a T) -> bool { PartialOrd::gt(*self, *other) }
}
#[unstable = "Trait is unstable."]
impl<'a, Sized? T: Ord> Ord for &'a T {
#[inline]
fn cmp(&self, other: & &'a T) -> Ordering { Ord::cmp(*self, *other) }
}
#[unstable = "Trait is unstable."]
impl<'a, Sized? T: Eq> Eq for &'a T {}
// &mut pointers
#[unstable = "Trait is unstable."]
impl<'a, 'b, Sized? A, Sized? B> PartialEq<&'b mut B> for &'a mut A where A: PartialEq<B> {
#[inline]
fn eq(&self, other: &&'b mut B) -> bool { PartialEq::eq(*self, *other) }
#[inline]
fn ne(&self, other: &&'b mut B) -> bool { PartialEq::ne(*self, *other) }
}
#[unstable = "Trait is unstable."]
impl<'a, Sized? T: PartialOrd> PartialOrd for &'a mut T {
#[inline]
fn partial_cmp(&self, other: &&'a mut T) -> Option<Ordering> {
PartialOrd::partial_cmp(*self, *other)
}
#[inline]
fn lt(&self, other: &&'a mut T) -> bool { PartialOrd::lt(*self, *other) }
#[inline]
fn le(&self, other: &&'a mut T) -> bool { PartialOrd::le(*self, *other) }
#[inline]
fn ge(&self, other: &&'a mut T) -> bool { PartialOrd::ge(*self, *other) }
#[inline]
fn gt(&self, other: &&'a mut T) -> bool { PartialOrd::gt(*self, *other) }
}
#[unstable = "Trait is unstable."]
impl<'a, Sized? T: Ord> Ord for &'a mut T {
#[inline]
fn cmp(&self, other: &&'a mut T) -> Ordering { Ord::cmp(*self, *other) }
}
#[unstable = "Trait is unstable."]
impl<'a, Sized? T: Eq> Eq for &'a mut T {}
impl<'a, 'b, Sized? A, Sized? B> PartialEq<&'b mut B> for &'a A where A: PartialEq<B> {
#[inline]
fn eq(&self, other: &&'b mut B) -> bool { PartialEq::eq(*self, *other) }
#[inline]
fn ne(&self, other: &&'b mut B) -> bool { PartialEq::ne(*self, *other) }
}
impl<'a, 'b, Sized? A, Sized? B> PartialEq<&'b B> for &'a mut A where A: PartialEq<B> {
#[inline]
fn eq(&self, other: &&'b B) -> bool { PartialEq::eq(*self, *other) }
#[inline]
fn ne(&self, other: &&'b B) -> bool { PartialEq::ne(*self, *other) }
}
}