rust/src/librustc_metadata/astencode.rs

1397 lines
53 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(non_camel_case_types)]
// FIXME: remove this after snapshot, and Results are handled
#![allow(unused_must_use)]
use rustc::hir::map as ast_map;
use rustc::session::Session;
use rustc::hir;
use rustc::hir::fold;
use rustc::hir::fold::Folder;
use rustc::hir::intravisit::{IdRange, IdRangeComputingVisitor, IdVisitingOperation};
use common as c;
use cstore;
use decoder;
use encoder as e;
use tydecode;
use tyencode;
use middle::cstore::{InlinedItem, InlinedItemRef};
use rustc::ty::adjustment;
use rustc::ty::cast;
use middle::const_qualif::ConstQualif;
use rustc::hir::def::{self, Def};
use rustc::hir::def_id::DefId;
use middle::region;
use rustc::ty::subst;
use rustc::ty::{self, Ty, TyCtxt};
use syntax::{ast, codemap};
use syntax::ast::NodeIdAssigner;
use syntax::ptr::P;
use std::cell::Cell;
use std::io::SeekFrom;
use std::io::prelude::*;
use std::fmt::Debug;
use rbml::reader;
use rbml::writer::Encoder;
use rbml;
use rustc_serialize as serialize;
use rustc_serialize::{Decodable, Decoder, DecoderHelpers};
use rustc_serialize::{Encodable, EncoderHelpers};
#[cfg(test)] use std::io::Cursor;
#[cfg(test)] use syntax::parse;
#[cfg(test)] use syntax::ast::NodeId;
#[cfg(test)] use rustc::hir::print as pprust;
#[cfg(test)] use rustc::hir::lowering::{LoweringContext, DummyResolver};
struct DecodeContext<'a, 'b, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
cdata: &'b cstore::crate_metadata,
from_id_range: IdRange,
to_id_range: IdRange,
// Cache the last used filemap for translating spans as an optimization.
last_filemap_index: Cell<usize>,
}
trait tr {
fn tr(&self, dcx: &DecodeContext) -> Self;
}
// ______________________________________________________________________
// Top-level methods.
pub fn encode_inlined_item(ecx: &e::EncodeContext,
rbml_w: &mut Encoder,
ii: InlinedItemRef) {
let id = match ii {
InlinedItemRef::Item(i) => i.id,
InlinedItemRef::Foreign(i) => i.id,
InlinedItemRef::TraitItem(_, ti) => ti.id,
InlinedItemRef::ImplItem(_, ii) => ii.id,
};
debug!("> Encoding inlined item: {} ({:?})",
ecx.tcx.node_path_str(id),
rbml_w.writer.seek(SeekFrom::Current(0)));
// Folding could be avoided with a smarter encoder.
let ii = simplify_ast(ii);
let id_range = inlined_item_id_range(&ii);
rbml_w.start_tag(c::tag_ast as usize);
id_range.encode(rbml_w);
encode_ast(rbml_w, &ii);
encode_side_tables_for_ii(ecx, rbml_w, &ii);
rbml_w.end_tag();
debug!("< Encoded inlined fn: {} ({:?})",
ecx.tcx.node_path_str(id),
rbml_w.writer.seek(SeekFrom::Current(0)));
}
impl<'a, 'b, 'c, 'tcx> ast_map::FoldOps for &'a DecodeContext<'b, 'c, 'tcx> {
fn new_id(&self, id: ast::NodeId) -> ast::NodeId {
if id == ast::DUMMY_NODE_ID {
// Used by ast_map to map the NodeInlinedParent.
self.tcx.sess.next_node_id()
} else {
self.tr_id(id)
}
}
fn new_def_id(&self, def_id: DefId) -> DefId {
self.tr_def_id(def_id)
}
fn new_span(&self, span: codemap::Span) -> codemap::Span {
self.tr_span(span)
}
}
/// Decodes an item from its AST in the cdata's metadata and adds it to the
/// ast-map.
pub fn decode_inlined_item<'a, 'tcx>(cdata: &cstore::crate_metadata,
tcx: TyCtxt<'a, 'tcx, 'tcx>,
parent_def_path: ast_map::DefPath,
parent_did: DefId,
ast_doc: rbml::Doc,
orig_did: DefId)
-> &'tcx InlinedItem {
debug!("> Decoding inlined fn: {:?}", tcx.item_path_str(orig_did));
let mut ast_dsr = reader::Decoder::new(ast_doc);
let from_id_range = Decodable::decode(&mut ast_dsr).unwrap();
let to_id_range = reserve_id_range(&tcx.sess, from_id_range);
let dcx = &DecodeContext {
cdata: cdata,
tcx: tcx,
from_id_range: from_id_range,
to_id_range: to_id_range,
last_filemap_index: Cell::new(0)
};
let ii = ast_map::map_decoded_item(&dcx.tcx.map,
parent_def_path,
parent_did,
decode_ast(ast_doc),
dcx);
let name = match *ii {
InlinedItem::Item(ref i) => i.name,
InlinedItem::Foreign(ref i) => i.name,
InlinedItem::TraitItem(_, ref ti) => ti.name,
InlinedItem::ImplItem(_, ref ii) => ii.name
};
debug!("Fn named: {}", name);
debug!("< Decoded inlined fn: {}::{}",
tcx.item_path_str(parent_did),
name);
region::resolve_inlined_item(&tcx.sess, &tcx.region_maps, ii);
decode_side_tables(dcx, ast_doc);
copy_item_types(dcx, ii, orig_did);
if let InlinedItem::Item(ref i) = *ii {
debug!(">>> DECODED ITEM >>>\n{}\n<<< DECODED ITEM <<<",
::rustc::hir::print::item_to_string(&i));
}
ii
}
// ______________________________________________________________________
// Enumerating the IDs which appear in an AST
fn reserve_id_range(sess: &Session,
from_id_range: IdRange) -> IdRange {
// Handle the case of an empty range:
if from_id_range.empty() { return from_id_range; }
let cnt = from_id_range.max - from_id_range.min;
let to_id_min = sess.reserve_node_ids(cnt);
let to_id_max = to_id_min + cnt;
IdRange { min: to_id_min, max: to_id_max }
}
impl<'a, 'b, 'tcx> DecodeContext<'a, 'b, 'tcx> {
/// Translates an internal id, meaning a node id that is known to refer to some part of the
/// item currently being inlined, such as a local variable or argument. All naked node-ids
/// that appear in types have this property, since if something might refer to an external item
/// we would use a def-id to allow for the possibility that the item resides in another crate.
pub fn tr_id(&self, id: ast::NodeId) -> ast::NodeId {
// from_id_range should be non-empty
assert!(!self.from_id_range.empty());
// Use wrapping arithmetic because otherwise it introduces control flow.
// Maybe we should just have the control flow? -- aatch
(id.wrapping_sub(self.from_id_range.min).wrapping_add(self.to_id_range.min))
}
/// Translates an EXTERNAL def-id, converting the crate number from the one used in the encoded
/// data to the current crate numbers.. By external, I mean that it be translated to a
/// reference to the item in its original crate, as opposed to being translated to a reference
/// to the inlined version of the item. This is typically, but not always, what you want,
/// because most def-ids refer to external things like types or other fns that may or may not
/// be inlined. Note that even when the inlined function is referencing itself recursively, we
/// would want `tr_def_id` for that reference--- conceptually the function calls the original,
/// non-inlined version, and trans deals with linking that recursive call to the inlined copy.
pub fn tr_def_id(&self, did: DefId) -> DefId {
decoder::translate_def_id(self.cdata, did)
}
/// Translates a `Span` from an extern crate to the corresponding `Span`
/// within the local crate's codemap.
pub fn tr_span(&self, span: codemap::Span) -> codemap::Span {
decoder::translate_span(self.cdata,
self.tcx.sess.codemap(),
&self.last_filemap_index,
span)
}
}
impl tr for DefId {
fn tr(&self, dcx: &DecodeContext) -> DefId {
dcx.tr_def_id(*self)
}
}
impl tr for Option<DefId> {
fn tr(&self, dcx: &DecodeContext) -> Option<DefId> {
self.map(|d| dcx.tr_def_id(d))
}
}
impl tr for codemap::Span {
fn tr(&self, dcx: &DecodeContext) -> codemap::Span {
dcx.tr_span(*self)
}
}
trait def_id_encoder_helpers {
fn emit_def_id(&mut self, did: DefId);
}
impl<S:serialize::Encoder> def_id_encoder_helpers for S
where <S as serialize::Encoder>::Error: Debug
{
fn emit_def_id(&mut self, did: DefId) {
did.encode(self).unwrap()
}
}
trait def_id_decoder_helpers {
fn read_def_id(&mut self, dcx: &DecodeContext) -> DefId;
fn read_def_id_nodcx(&mut self,
cdata: &cstore::crate_metadata) -> DefId;
}
impl<D:serialize::Decoder> def_id_decoder_helpers for D
where <D as serialize::Decoder>::Error: Debug
{
fn read_def_id(&mut self, dcx: &DecodeContext) -> DefId {
let did: DefId = Decodable::decode(self).unwrap();
did.tr(dcx)
}
fn read_def_id_nodcx(&mut self,
cdata: &cstore::crate_metadata)
-> DefId {
let did: DefId = Decodable::decode(self).unwrap();
decoder::translate_def_id(cdata, did)
}
}
// ______________________________________________________________________
// Encoding and decoding the AST itself
//
// When decoding, we have to renumber the AST so that the node ids that
// appear within are disjoint from the node ids in our existing ASTs.
// We also have to adjust the spans: for now we just insert a dummy span,
// but eventually we should add entries to the local codemap as required.
fn encode_ast(rbml_w: &mut Encoder, item: &InlinedItem) {
rbml_w.start_tag(c::tag_tree as usize);
rbml_w.emit_opaque(|this| item.encode(this));
rbml_w.end_tag();
}
struct NestedItemsDropper;
impl Folder for NestedItemsDropper {
fn fold_block(&mut self, blk: P<hir::Block>) -> P<hir::Block> {
blk.and_then(|hir::Block {id, stmts, expr, rules, span, ..}| {
let stmts_sans_items = stmts.into_iter().filter_map(|stmt| {
let use_stmt = match stmt.node {
hir::StmtExpr(_, _) | hir::StmtSemi(_, _) => true,
hir::StmtDecl(ref decl, _) => {
match decl.node {
hir::DeclLocal(_) => true,
hir::DeclItem(_) => false,
}
}
};
if use_stmt {
Some(stmt)
} else {
None
}
}).collect();
let blk_sans_items = P(hir::Block {
stmts: stmts_sans_items,
expr: expr,
id: id,
rules: rules,
span: span,
});
fold::noop_fold_block(blk_sans_items, self)
})
}
}
// Produces a simplified copy of the AST which does not include things
// that we do not need to or do not want to export. For example, we
// do not include any nested items: if these nested items are to be
// inlined, their AST will be exported separately (this only makes
// sense because, in Rust, nested items are independent except for
// their visibility).
//
// As it happens, trans relies on the fact that we do not export
// nested items, as otherwise it would get confused when translating
// inlined items.
fn simplify_ast(ii: InlinedItemRef) -> InlinedItem {
let mut fld = NestedItemsDropper;
match ii {
// HACK we're not dropping items.
InlinedItemRef::Item(i) => {
InlinedItem::Item(P(fold::noop_fold_item(i.clone(), &mut fld)))
}
InlinedItemRef::TraitItem(d, ti) => {
InlinedItem::TraitItem(d, P(fold::noop_fold_trait_item(ti.clone(), &mut fld)))
}
InlinedItemRef::ImplItem(d, ii) => {
InlinedItem::ImplItem(d, P(fold::noop_fold_impl_item(ii.clone(), &mut fld)))
}
InlinedItemRef::Foreign(i) => {
InlinedItem::Foreign(P(fold::noop_fold_foreign_item(i.clone(), &mut fld)))
}
}
}
fn decode_ast(item_doc: rbml::Doc) -> InlinedItem {
let chi_doc = item_doc.get(c::tag_tree as usize);
let mut rbml_r = reader::Decoder::new(chi_doc);
rbml_r.read_opaque(|decoder, _| Decodable::decode(decoder)).unwrap()
}
// ______________________________________________________________________
// Encoding and decoding of ast::def
fn decode_def(dcx: &DecodeContext, dsr: &mut reader::Decoder) -> Def {
let def: Def = Decodable::decode(dsr).unwrap();
def.tr(dcx)
}
impl tr for Def {
fn tr(&self, dcx: &DecodeContext) -> Def {
match *self {
Def::Fn(did) => Def::Fn(did.tr(dcx)),
Def::Method(did) => Def::Method(did.tr(dcx)),
Def::SelfTy(opt_did, impl_id) => { Def::SelfTy(opt_did.map(|did| did.tr(dcx)),
impl_id.map(|id| dcx.tr_id(id))) }
Def::Mod(did) => { Def::Mod(did.tr(dcx)) }
Def::ForeignMod(did) => { Def::ForeignMod(did.tr(dcx)) }
Def::Static(did, m) => { Def::Static(did.tr(dcx), m) }
Def::Const(did) => { Def::Const(did.tr(dcx)) }
Def::AssociatedConst(did) => Def::AssociatedConst(did.tr(dcx)),
Def::Local(_, nid) => {
let nid = dcx.tr_id(nid);
let did = dcx.tcx.map.local_def_id(nid);
Def::Local(did, nid)
}
Def::Variant(e_did, v_did) => Def::Variant(e_did.tr(dcx), v_did.tr(dcx)),
Def::Trait(did) => Def::Trait(did.tr(dcx)),
Def::Enum(did) => Def::Enum(did.tr(dcx)),
Def::TyAlias(did) => Def::TyAlias(did.tr(dcx)),
Def::AssociatedTy(trait_did, did) =>
Def::AssociatedTy(trait_did.tr(dcx), did.tr(dcx)),
Def::PrimTy(p) => Def::PrimTy(p),
Def::TyParam(s, index, def_id, n) => Def::TyParam(s, index, def_id.tr(dcx), n),
Def::Upvar(_, nid1, index, nid2) => {
let nid1 = dcx.tr_id(nid1);
let nid2 = dcx.tr_id(nid2);
let did1 = dcx.tcx.map.local_def_id(nid1);
Def::Upvar(did1, nid1, index, nid2)
}
Def::Struct(did) => Def::Struct(did.tr(dcx)),
Def::Label(nid) => Def::Label(dcx.tr_id(nid)),
Def::Err => Def::Err,
}
}
}
// ______________________________________________________________________
// Encoding and decoding of freevar information
fn encode_freevar_entry(rbml_w: &mut Encoder, fv: &hir::Freevar) {
(*fv).encode(rbml_w).unwrap();
}
trait rbml_decoder_helper {
fn read_freevar_entry(&mut self, dcx: &DecodeContext)
-> hir::Freevar;
fn read_capture_mode(&mut self) -> hir::CaptureClause;
}
impl<'a> rbml_decoder_helper for reader::Decoder<'a> {
fn read_freevar_entry(&mut self, dcx: &DecodeContext)
-> hir::Freevar {
let fv: hir::Freevar = Decodable::decode(self).unwrap();
fv.tr(dcx)
}
fn read_capture_mode(&mut self) -> hir::CaptureClause {
let cm: hir::CaptureClause = Decodable::decode(self).unwrap();
cm
}
}
impl tr for hir::Freevar {
fn tr(&self, dcx: &DecodeContext) -> hir::Freevar {
hir::Freevar {
def: self.def.tr(dcx),
span: self.span.tr(dcx),
}
}
}
// ______________________________________________________________________
// Encoding and decoding of MethodCallee
trait read_method_callee_helper<'tcx> {
fn read_method_callee<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> (u32, ty::MethodCallee<'tcx>);
}
fn encode_method_callee<'a, 'tcx>(ecx: &e::EncodeContext<'a, 'tcx>,
rbml_w: &mut Encoder,
autoderef: u32,
method: &ty::MethodCallee<'tcx>) {
use rustc_serialize::Encoder;
rbml_w.emit_struct("MethodCallee", 4, |rbml_w| {
rbml_w.emit_struct_field("autoderef", 0, |rbml_w| {
autoderef.encode(rbml_w)
});
rbml_w.emit_struct_field("def_id", 1, |rbml_w| {
Ok(rbml_w.emit_def_id(method.def_id))
});
rbml_w.emit_struct_field("ty", 2, |rbml_w| {
Ok(rbml_w.emit_ty(ecx, method.ty))
});
rbml_w.emit_struct_field("substs", 3, |rbml_w| {
Ok(rbml_w.emit_substs(ecx, &method.substs))
})
}).unwrap();
}
impl<'a, 'tcx> read_method_callee_helper<'tcx> for reader::Decoder<'a> {
fn read_method_callee<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> (u32, ty::MethodCallee<'tcx>) {
self.read_struct("MethodCallee", 4, |this| {
let autoderef = this.read_struct_field("autoderef", 0,
Decodable::decode).unwrap();
Ok((autoderef, ty::MethodCallee {
def_id: this.read_struct_field("def_id", 1, |this| {
Ok(this.read_def_id(dcx))
}).unwrap(),
ty: this.read_struct_field("ty", 2, |this| {
Ok(this.read_ty(dcx))
}).unwrap(),
substs: this.read_struct_field("substs", 3, |this| {
Ok(dcx.tcx.mk_substs(this.read_substs(dcx)))
}).unwrap()
}))
}).unwrap()
}
}
pub fn encode_cast_kind(ebml_w: &mut Encoder, kind: cast::CastKind) {
kind.encode(ebml_w).unwrap();
}
// ______________________________________________________________________
// Encoding and decoding the side tables
trait rbml_writer_helpers<'tcx> {
fn emit_region(&mut self, ecx: &e::EncodeContext, r: ty::Region);
fn emit_ty<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, ty: Ty<'tcx>);
fn emit_tys<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>, tys: &[Ty<'tcx>]);
fn emit_predicate<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
predicate: &ty::Predicate<'tcx>);
fn emit_trait_ref<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
ty: &ty::TraitRef<'tcx>);
fn emit_substs<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
substs: &subst::Substs<'tcx>);
fn emit_existential_bounds<'b>(&mut self, ecx: &e::EncodeContext<'b,'tcx>,
bounds: &ty::ExistentialBounds<'tcx>);
fn emit_builtin_bounds(&mut self, ecx: &e::EncodeContext, bounds: &ty::BuiltinBounds);
fn emit_upvar_capture(&mut self, ecx: &e::EncodeContext, capture: &ty::UpvarCapture);
fn emit_auto_adjustment<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
adj: &adjustment::AutoAdjustment<'tcx>);
fn emit_autoref<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
autoref: &adjustment::AutoRef<'tcx>);
fn emit_auto_deref_ref<'a>(&mut self, ecx: &e::EncodeContext<'a, 'tcx>,
auto_deref_ref: &adjustment::AutoDerefRef<'tcx>);
}
impl<'a, 'tcx> rbml_writer_helpers<'tcx> for Encoder<'a> {
fn emit_region(&mut self, ecx: &e::EncodeContext, r: ty::Region) {
self.emit_opaque(|this| Ok(tyencode::enc_region(&mut this.cursor,
&ecx.ty_str_ctxt(),
r)));
}
fn emit_ty<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, ty: Ty<'tcx>) {
self.emit_opaque(|this| Ok(tyencode::enc_ty(&mut this.cursor,
&ecx.ty_str_ctxt(),
ty)));
}
fn emit_tys<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>, tys: &[Ty<'tcx>]) {
self.emit_from_vec(tys, |this, ty| Ok(this.emit_ty(ecx, *ty)));
}
fn emit_trait_ref<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
trait_ref: &ty::TraitRef<'tcx>) {
self.emit_opaque(|this| Ok(tyencode::enc_trait_ref(&mut this.cursor,
&ecx.ty_str_ctxt(),
*trait_ref)));
}
fn emit_predicate<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
predicate: &ty::Predicate<'tcx>) {
self.emit_opaque(|this| {
Ok(tyencode::enc_predicate(&mut this.cursor,
&ecx.ty_str_ctxt(),
predicate))
});
}
fn emit_existential_bounds<'b>(&mut self, ecx: &e::EncodeContext<'b,'tcx>,
bounds: &ty::ExistentialBounds<'tcx>) {
self.emit_opaque(|this| Ok(tyencode::enc_existential_bounds(&mut this.cursor,
&ecx.ty_str_ctxt(),
bounds)));
}
fn emit_builtin_bounds(&mut self, ecx: &e::EncodeContext, bounds: &ty::BuiltinBounds) {
self.emit_opaque(|this| Ok(tyencode::enc_builtin_bounds(&mut this.cursor,
&ecx.ty_str_ctxt(),
bounds)));
}
fn emit_upvar_capture(&mut self, ecx: &e::EncodeContext, capture: &ty::UpvarCapture) {
use rustc_serialize::Encoder;
self.emit_enum("UpvarCapture", |this| {
match *capture {
ty::UpvarCapture::ByValue => {
this.emit_enum_variant("ByValue", 1, 0, |_| Ok(()))
}
ty::UpvarCapture::ByRef(ty::UpvarBorrow { kind, region }) => {
this.emit_enum_variant("ByRef", 2, 0, |this| {
this.emit_enum_variant_arg(0,
|this| kind.encode(this));
this.emit_enum_variant_arg(1,
|this| Ok(this.emit_region(ecx, region)))
})
}
}
}).unwrap()
}
fn emit_substs<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
substs: &subst::Substs<'tcx>) {
self.emit_opaque(|this| Ok(tyencode::enc_substs(&mut this.cursor,
&ecx.ty_str_ctxt(),
substs)));
}
fn emit_auto_adjustment<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
adj: &adjustment::AutoAdjustment<'tcx>) {
use rustc_serialize::Encoder;
self.emit_enum("AutoAdjustment", |this| {
match *adj {
adjustment::AdjustReifyFnPointer => {
this.emit_enum_variant("AdjustReifyFnPointer", 1, 0, |_| Ok(()))
}
adjustment::AdjustUnsafeFnPointer => {
this.emit_enum_variant("AdjustUnsafeFnPointer", 2, 0, |_| {
Ok(())
})
}
adjustment::AdjustMutToConstPointer => {
this.emit_enum_variant("AdjustMutToConstPointer", 3, 0, |_| {
Ok(())
})
}
adjustment::AdjustDerefRef(ref auto_deref_ref) => {
this.emit_enum_variant("AdjustDerefRef", 4, 2, |this| {
this.emit_enum_variant_arg(0,
|this| Ok(this.emit_auto_deref_ref(ecx, auto_deref_ref)))
})
}
}
});
}
fn emit_autoref<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
autoref: &adjustment::AutoRef<'tcx>) {
use rustc_serialize::Encoder;
self.emit_enum("AutoRef", |this| {
match autoref {
&adjustment::AutoPtr(r, m) => {
this.emit_enum_variant("AutoPtr", 0, 2, |this| {
this.emit_enum_variant_arg(0,
|this| Ok(this.emit_region(ecx, *r)));
this.emit_enum_variant_arg(1, |this| m.encode(this))
})
}
&adjustment::AutoUnsafe(m) => {
this.emit_enum_variant("AutoUnsafe", 1, 1, |this| {
this.emit_enum_variant_arg(0, |this| m.encode(this))
})
}
}
});
}
fn emit_auto_deref_ref<'b>(&mut self, ecx: &e::EncodeContext<'b, 'tcx>,
auto_deref_ref: &adjustment::AutoDerefRef<'tcx>) {
use rustc_serialize::Encoder;
self.emit_struct("AutoDerefRef", 2, |this| {
this.emit_struct_field("autoderefs", 0, |this| auto_deref_ref.autoderefs.encode(this));
this.emit_struct_field("autoref", 1, |this| {
this.emit_option(|this| {
match auto_deref_ref.autoref {
None => this.emit_option_none(),
Some(ref a) => this.emit_option_some(|this| Ok(this.emit_autoref(ecx, a))),
}
})
});
this.emit_struct_field("unsize", 2, |this| {
this.emit_option(|this| {
match auto_deref_ref.unsize {
None => this.emit_option_none(),
Some(target) => this.emit_option_some(|this| {
Ok(this.emit_ty(ecx, target))
})
}
})
})
});
}
}
trait write_tag_and_id {
fn tag<F>(&mut self, tag_id: c::astencode_tag, f: F) where F: FnOnce(&mut Self);
fn id(&mut self, id: ast::NodeId);
}
impl<'a> write_tag_and_id for Encoder<'a> {
fn tag<F>(&mut self,
tag_id: c::astencode_tag,
f: F) where
F: FnOnce(&mut Encoder<'a>),
{
self.start_tag(tag_id as usize);
f(self);
self.end_tag();
}
fn id(&mut self, id: ast::NodeId) {
id.encode(self).unwrap();
}
}
struct SideTableEncodingIdVisitor<'a, 'b:'a, 'c:'a, 'tcx:'c> {
ecx: &'a e::EncodeContext<'c, 'tcx>,
rbml_w: &'a mut Encoder<'b>,
}
impl<'a, 'b, 'c, 'tcx> IdVisitingOperation for
SideTableEncodingIdVisitor<'a, 'b, 'c, 'tcx> {
fn visit_id(&mut self, id: ast::NodeId) {
encode_side_tables_for_id(self.ecx, self.rbml_w, id)
}
}
fn encode_side_tables_for_ii(ecx: &e::EncodeContext,
rbml_w: &mut Encoder,
ii: &InlinedItem) {
rbml_w.start_tag(c::tag_table as usize);
ii.visit_ids(&mut SideTableEncodingIdVisitor {
ecx: ecx,
rbml_w: rbml_w
});
rbml_w.end_tag();
}
fn encode_side_tables_for_id(ecx: &e::EncodeContext,
rbml_w: &mut Encoder,
id: ast::NodeId) {
let tcx = ecx.tcx;
debug!("Encoding side tables for id {}", id);
if let Some(def) = tcx.expect_def_or_none(id) {
rbml_w.tag(c::tag_table_def, |rbml_w| {
rbml_w.id(id);
def.encode(rbml_w).unwrap();
})
}
if let Some(ty) = tcx.node_types().get(&id) {
rbml_w.tag(c::tag_table_node_type, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_ty(ecx, *ty);
})
}
if let Some(item_substs) = tcx.tables.borrow().item_substs.get(&id) {
rbml_w.tag(c::tag_table_item_subst, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_substs(ecx, &item_substs.substs);
})
}
if let Some(fv) = tcx.freevars.borrow().get(&id) {
rbml_w.tag(c::tag_table_freevars, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_from_vec(fv, |rbml_w, fv_entry| {
Ok(encode_freevar_entry(rbml_w, fv_entry))
});
});
for freevar in fv {
rbml_w.tag(c::tag_table_upvar_capture_map, |rbml_w| {
rbml_w.id(id);
let var_id = freevar.def.var_id();
let upvar_id = ty::UpvarId {
var_id: var_id,
closure_expr_id: id
};
let upvar_capture = tcx.tables
.borrow()
.upvar_capture_map
.get(&upvar_id)
.unwrap()
.clone();
var_id.encode(rbml_w);
rbml_w.emit_upvar_capture(ecx, &upvar_capture);
})
}
}
let method_call = ty::MethodCall::expr(id);
if let Some(method) = tcx.tables.borrow().method_map.get(&method_call) {
rbml_w.tag(c::tag_table_method_map, |rbml_w| {
rbml_w.id(id);
encode_method_callee(ecx, rbml_w, method_call.autoderef, method)
})
}
if let Some(adjustment) = tcx.tables.borrow().adjustments.get(&id) {
match *adjustment {
adjustment::AdjustDerefRef(ref adj) => {
for autoderef in 0..adj.autoderefs {
let method_call = ty::MethodCall::autoderef(id, autoderef as u32);
if let Some(method) = tcx.tables.borrow().method_map.get(&method_call) {
rbml_w.tag(c::tag_table_method_map, |rbml_w| {
rbml_w.id(id);
encode_method_callee(ecx, rbml_w,
method_call.autoderef, method)
})
}
}
}
_ => {}
}
rbml_w.tag(c::tag_table_adjustments, |rbml_w| {
rbml_w.id(id);
rbml_w.emit_auto_adjustment(ecx, adjustment);
})
}
if let Some(cast_kind) = tcx.cast_kinds.borrow().get(&id) {
rbml_w.tag(c::tag_table_cast_kinds, |rbml_w| {
rbml_w.id(id);
encode_cast_kind(rbml_w, *cast_kind)
})
}
if let Some(qualif) = tcx.const_qualif_map.borrow().get(&id) {
rbml_w.tag(c::tag_table_const_qualif, |rbml_w| {
rbml_w.id(id);
qualif.encode(rbml_w).unwrap()
})
}
}
trait doc_decoder_helpers: Sized {
fn as_int(&self) -> isize;
fn opt_child(&self, tag: c::astencode_tag) -> Option<Self>;
}
impl<'a> doc_decoder_helpers for rbml::Doc<'a> {
fn as_int(&self) -> isize { reader::doc_as_u64(*self) as isize }
fn opt_child(&self, tag: c::astencode_tag) -> Option<rbml::Doc<'a>> {
reader::maybe_get_doc(*self, tag as usize)
}
}
trait rbml_decoder_decoder_helpers<'tcx> {
fn read_ty_encoded<'a, 'b, F, R>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>,
f: F) -> R
where F: for<'x> FnOnce(&mut tydecode::TyDecoder<'x, 'tcx>) -> R;
fn read_region(&mut self, dcx: &DecodeContext) -> ty::Region;
fn read_ty<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> Ty<'tcx>;
fn read_tys<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>) -> Vec<Ty<'tcx>>;
fn read_trait_ref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::TraitRef<'tcx>;
fn read_poly_trait_ref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::PolyTraitRef<'tcx>;
fn read_predicate<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::Predicate<'tcx>;
fn read_existential_bounds<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> ty::ExistentialBounds<'tcx>;
fn read_substs<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> subst::Substs<'tcx>;
fn read_upvar_capture(&mut self, dcx: &DecodeContext)
-> ty::UpvarCapture;
fn read_auto_adjustment<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> adjustment::AutoAdjustment<'tcx>;
fn read_cast_kind<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> cast::CastKind;
fn read_auto_deref_ref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> adjustment::AutoDerefRef<'tcx>;
fn read_autoref<'a, 'b>(&mut self, dcx: &DecodeContext<'a, 'b, 'tcx>)
-> adjustment::AutoRef<'tcx>;
// Versions of the type reading functions that don't need the full
// DecodeContext.
fn read_ty_nodcx<'a>(&mut self, tcx: TyCtxt<'a, 'tcx, 'tcx>,
cdata: &cstore::crate_metadata) -> Ty<'tcx>;
fn read_tys_nodcx<'a>(&mut self, tcx: TyCtxt<'a, 'tcx, 'tcx>,
cdata: &cstore::crate_metadata) -> Vec<Ty<'tcx>>;
fn read_substs_nodcx<'a>(&mut self, tcx: TyCtxt<'a, 'tcx, 'tcx>,
cdata: &cstore::crate_metadata)
-> subst::Substs<'tcx>;
}
impl<'a, 'tcx> rbml_decoder_decoder_helpers<'tcx> for reader::Decoder<'a> {
fn read_ty_nodcx<'b>(&mut self, tcx: TyCtxt<'b, 'tcx, 'tcx>,
cdata: &cstore::crate_metadata)
-> Ty<'tcx> {
self.read_opaque(|_, doc| {
Ok(
tydecode::TyDecoder::with_doc(tcx, cdata.cnum, doc,
&mut |id| decoder::translate_def_id(cdata, id))
.parse_ty())
}).unwrap()
}
fn read_tys_nodcx<'b>(&mut self, tcx: TyCtxt<'b, 'tcx, 'tcx>,
cdata: &cstore::crate_metadata) -> Vec<Ty<'tcx>> {
self.read_to_vec(|this| Ok(this.read_ty_nodcx(tcx, cdata)) )
.unwrap()
.into_iter()
.collect()
}
fn read_substs_nodcx<'b>(&mut self, tcx: TyCtxt<'b, 'tcx, 'tcx>,
cdata: &cstore::crate_metadata)
-> subst::Substs<'tcx>
{
self.read_opaque(|_, doc| {
Ok(
tydecode::TyDecoder::with_doc(tcx, cdata.cnum, doc,
&mut |id| decoder::translate_def_id(cdata, id))
.parse_substs())
}).unwrap()
}
fn read_ty_encoded<'b, 'c, F, R>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>, op: F) -> R
where F: for<'x> FnOnce(&mut tydecode::TyDecoder<'x,'tcx>) -> R
{
return self.read_opaque(|_, doc| {
debug!("read_ty_encoded({})", type_string(doc));
Ok(op(
&mut tydecode::TyDecoder::with_doc(
dcx.tcx, dcx.cdata.cnum, doc,
&mut |d| convert_def_id(dcx, d))))
}).unwrap();
fn type_string(doc: rbml::Doc) -> String {
let mut str = String::new();
for i in doc.start..doc.end {
str.push(doc.data[i] as char);
}
str
}
}
fn read_region(&mut self, dcx: &DecodeContext) -> ty::Region {
// Note: regions types embed local node ids. In principle, we
// should translate these node ids into the new decode
// context. However, we do not bother, because region types
// are not used during trans. This also applies to read_ty.
return self.read_ty_encoded(dcx, |decoder| decoder.parse_region());
}
fn read_ty<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>) -> Ty<'tcx> {
return self.read_ty_encoded(dcx, |decoder| decoder.parse_ty());
}
fn read_tys<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> Vec<Ty<'tcx>> {
self.read_to_vec(|this| Ok(this.read_ty(dcx))).unwrap().into_iter().collect()
}
fn read_trait_ref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::TraitRef<'tcx> {
self.read_ty_encoded(dcx, |decoder| decoder.parse_trait_ref())
}
fn read_poly_trait_ref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::PolyTraitRef<'tcx> {
ty::Binder(self.read_ty_encoded(dcx, |decoder| decoder.parse_trait_ref()))
}
fn read_predicate<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::Predicate<'tcx>
{
self.read_ty_encoded(dcx, |decoder| decoder.parse_predicate())
}
fn read_existential_bounds<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> ty::ExistentialBounds<'tcx>
{
self.read_ty_encoded(dcx, |decoder| decoder.parse_existential_bounds())
}
fn read_substs<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> subst::Substs<'tcx> {
self.read_opaque(|_, doc| {
Ok(tydecode::TyDecoder::with_doc(dcx.tcx, dcx.cdata.cnum, doc,
&mut |d| convert_def_id(dcx, d))
.parse_substs())
}).unwrap()
}
fn read_upvar_capture(&mut self, dcx: &DecodeContext) -> ty::UpvarCapture {
self.read_enum("UpvarCapture", |this| {
let variants = ["ByValue", "ByRef"];
this.read_enum_variant(&variants, |this, i| {
Ok(match i {
1 => ty::UpvarCapture::ByValue,
2 => ty::UpvarCapture::ByRef(ty::UpvarBorrow {
kind: this.read_enum_variant_arg(0,
|this| Decodable::decode(this)).unwrap(),
region: this.read_enum_variant_arg(1,
|this| Ok(this.read_region(dcx))).unwrap()
}),
_ => bug!("bad enum variant for ty::UpvarCapture")
})
})
}).unwrap()
}
fn read_auto_adjustment<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> adjustment::AutoAdjustment<'tcx> {
self.read_enum("AutoAdjustment", |this| {
let variants = ["AdjustReifyFnPointer", "AdjustUnsafeFnPointer",
"AdjustMutToConstPointer", "AdjustDerefRef"];
this.read_enum_variant(&variants, |this, i| {
Ok(match i {
1 => adjustment::AdjustReifyFnPointer,
2 => adjustment::AdjustUnsafeFnPointer,
3 => adjustment::AdjustMutToConstPointer,
4 => {
let auto_deref_ref: adjustment::AutoDerefRef =
this.read_enum_variant_arg(0,
|this| Ok(this.read_auto_deref_ref(dcx))).unwrap();
adjustment::AdjustDerefRef(auto_deref_ref)
}
_ => bug!("bad enum variant for adjustment::AutoAdjustment")
})
})
}).unwrap()
}
fn read_auto_deref_ref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> adjustment::AutoDerefRef<'tcx> {
self.read_struct("AutoDerefRef", 2, |this| {
Ok(adjustment::AutoDerefRef {
autoderefs: this.read_struct_field("autoderefs", 0, |this| {
Decodable::decode(this)
}).unwrap(),
autoref: this.read_struct_field("autoref", 1, |this| {
this.read_option(|this, b| {
if b {
Ok(Some(this.read_autoref(dcx)))
} else {
Ok(None)
}
})
}).unwrap(),
unsize: this.read_struct_field("unsize", 2, |this| {
this.read_option(|this, b| {
if b {
Ok(Some(this.read_ty(dcx)))
} else {
Ok(None)
}
})
}).unwrap(),
})
}).unwrap()
}
fn read_autoref<'b, 'c>(&mut self, dcx: &DecodeContext<'b, 'c, 'tcx>)
-> adjustment::AutoRef<'tcx> {
self.read_enum("AutoRef", |this| {
let variants = ["AutoPtr", "AutoUnsafe"];
this.read_enum_variant(&variants, |this, i| {
Ok(match i {
0 => {
let r: ty::Region =
this.read_enum_variant_arg(0, |this| {
Ok(this.read_region(dcx))
}).unwrap();
let m: hir::Mutability =
this.read_enum_variant_arg(1, |this| {
Decodable::decode(this)
}).unwrap();
adjustment::AutoPtr(dcx.tcx.mk_region(r), m)
}
1 => {
let m: hir::Mutability =
this.read_enum_variant_arg(0, |this| Decodable::decode(this)).unwrap();
adjustment::AutoUnsafe(m)
}
_ => bug!("bad enum variant for adjustment::AutoRef")
})
})
}).unwrap()
}
fn read_cast_kind<'b, 'c>(&mut self, _dcx: &DecodeContext<'b, 'c, 'tcx>)
-> cast::CastKind
{
Decodable::decode(self).unwrap()
}
}
// Converts a def-id that appears in a type. The correct
// translation will depend on what kind of def-id this is.
// This is a subtle point: type definitions are not
// inlined into the current crate, so if the def-id names
// a nominal type or type alias, then it should be
// translated to refer to the source crate.
//
// However, *type parameters* are cloned along with the function
// they are attached to. So we should translate those def-ids
// to refer to the new, cloned copy of the type parameter.
// We only see references to free type parameters in the body of
// an inlined function. In such cases, we need the def-id to
// be a local id so that the TypeContents code is able to lookup
// the relevant info in the ty_param_defs table.
//
// *Region parameters*, unfortunately, are another kettle of fish.
// In such cases, def_id's can appear in types to distinguish
// shadowed bound regions and so forth. It doesn't actually
// matter so much what we do to these, since regions are erased
// at trans time, but it's good to keep them consistent just in
// case. We translate them with `tr_def_id()` which will map
// the crate numbers back to the original source crate.
//
// Scopes will end up as being totally bogus. This can actually
// be fixed though.
//
// Unboxed closures are cloned along with the function being
// inlined, and all side tables use interned node IDs, so we
// translate their def IDs accordingly.
//
// It'd be really nice to refactor the type repr to not include
// def-ids so that all these distinctions were unnecessary.
fn convert_def_id(dcx: &DecodeContext,
did: DefId)
-> DefId {
let r = dcx.tr_def_id(did);
debug!("convert_def_id(did={:?})={:?}", did, r);
return r;
}
fn decode_side_tables(dcx: &DecodeContext,
ast_doc: rbml::Doc) {
let tbl_doc = ast_doc.get(c::tag_table as usize);
for (tag, entry_doc) in reader::docs(tbl_doc) {
let mut entry_dsr = reader::Decoder::new(entry_doc);
let id0: ast::NodeId = Decodable::decode(&mut entry_dsr).unwrap();
let id = dcx.tr_id(id0);
debug!(">> Side table document with tag 0x{:x} \
found for id {} (orig {})",
tag, id, id0);
let tag = tag as u32;
let decoded_tag: Option<c::astencode_tag> = c::astencode_tag::from_u32(tag);
match decoded_tag {
None => {
bug!("unknown tag found in side tables: {:x}", tag);
}
Some(value) => {
let val_dsr = &mut entry_dsr;
match value {
c::tag_table_def => {
let def = decode_def(dcx, val_dsr);
dcx.tcx.def_map.borrow_mut().insert(id, def::PathResolution::new(def));
}
c::tag_table_node_type => {
let ty = val_dsr.read_ty(dcx);
debug!("inserting ty for node {}: {:?}",
id, ty);
dcx.tcx.node_type_insert(id, ty);
}
c::tag_table_item_subst => {
let item_substs = ty::ItemSubsts {
substs: dcx.tcx.mk_substs(val_dsr.read_substs(dcx))
};
dcx.tcx.tables.borrow_mut().item_substs.insert(
id, item_substs);
}
c::tag_table_freevars => {
let fv_info = val_dsr.read_to_vec(|val_dsr| {
Ok(val_dsr.read_freevar_entry(dcx))
}).unwrap().into_iter().collect();
dcx.tcx.freevars.borrow_mut().insert(id, fv_info);
}
c::tag_table_upvar_capture_map => {
let var_id: ast::NodeId = Decodable::decode(val_dsr).unwrap();
let upvar_id = ty::UpvarId {
var_id: dcx.tr_id(var_id),
closure_expr_id: id
};
let ub = val_dsr.read_upvar_capture(dcx);
dcx.tcx.tables.borrow_mut().upvar_capture_map.insert(upvar_id, ub);
}
c::tag_table_method_map => {
let (autoderef, method) = val_dsr.read_method_callee(dcx);
let method_call = ty::MethodCall {
expr_id: id,
autoderef: autoderef
};
dcx.tcx.tables.borrow_mut().method_map.insert(method_call, method);
}
c::tag_table_adjustments => {
let adj =
val_dsr.read_auto_adjustment(dcx);
dcx.tcx.tables.borrow_mut().adjustments.insert(id, adj);
}
c::tag_table_cast_kinds => {
let cast_kind =
val_dsr.read_cast_kind(dcx);
dcx.tcx.cast_kinds.borrow_mut().insert(id, cast_kind);
}
c::tag_table_const_qualif => {
let qualif: ConstQualif = Decodable::decode(val_dsr).unwrap();
dcx.tcx.const_qualif_map.borrow_mut().insert(id, qualif);
}
_ => {
bug!("unknown tag found in side tables: {:x}", tag);
}
}
}
}
debug!(">< Side table doc loaded");
}
}
// copy the tcache entries from the original item to the new
// inlined item
fn copy_item_types(dcx: &DecodeContext, ii: &InlinedItem, orig_did: DefId) {
fn copy_item_type(dcx: &DecodeContext,
inlined_id: ast::NodeId,
remote_did: DefId) {
let inlined_did = dcx.tcx.map.local_def_id(inlined_id);
dcx.tcx.register_item_type(inlined_did,
dcx.tcx.lookup_item_type(remote_did));
}
// copy the entry for the item itself
let item_node_id = match ii {
&InlinedItem::Item(ref i) => i.id,
&InlinedItem::TraitItem(_, ref ti) => ti.id,
&InlinedItem::ImplItem(_, ref ii) => ii.id,
&InlinedItem::Foreign(ref fi) => fi.id
};
copy_item_type(dcx, item_node_id, orig_did);
// copy the entries of inner items
if let &InlinedItem::Item(ref item) = ii {
match item.node {
hir::ItemEnum(ref def, _) => {
let orig_def = dcx.tcx.lookup_adt_def(orig_did);
for (i_variant, orig_variant) in
def.variants.iter().zip(orig_def.variants.iter())
{
debug!("astencode: copying variant {:?} => {:?}",
orig_variant.did, i_variant.node.data.id());
copy_item_type(dcx, i_variant.node.data.id(), orig_variant.did);
}
}
hir::ItemStruct(ref def, _) => {
if !def.is_struct() {
let ctor_did = dcx.tcx.lookup_adt_def(orig_did)
.struct_variant().did;
debug!("astencode: copying ctor {:?} => {:?}", ctor_did,
def.id());
copy_item_type(dcx, def.id(), ctor_did);
}
}
_ => {}
}
}
}
fn inlined_item_id_range(v: &InlinedItem) -> IdRange {
let mut visitor = IdRangeComputingVisitor::new();
v.visit_ids(&mut visitor);
visitor.result()
}
// ______________________________________________________________________
// Testing of astencode_gen
#[cfg(test)]
fn encode_item_ast(rbml_w: &mut Encoder, item: &hir::Item) {
rbml_w.start_tag(c::tag_tree as usize);
(*item).encode(rbml_w);
rbml_w.end_tag();
}
#[cfg(test)]
fn decode_item_ast(item_doc: rbml::Doc) -> hir::Item {
let chi_doc = item_doc.get(c::tag_tree as usize);
let mut d = reader::Decoder::new(chi_doc);
Decodable::decode(&mut d).unwrap()
}
#[cfg(test)]
trait FakeExtCtxt {
fn call_site(&self) -> codemap::Span;
fn cfg(&self) -> ast::CrateConfig;
fn ident_of(&self, st: &str) -> ast::Ident;
fn name_of(&self, st: &str) -> ast::Name;
fn parse_sess(&self) -> &parse::ParseSess;
}
#[cfg(test)]
impl FakeExtCtxt for parse::ParseSess {
fn call_site(&self) -> codemap::Span {
codemap::Span {
lo: codemap::BytePos(0),
hi: codemap::BytePos(0),
expn_id: codemap::NO_EXPANSION,
}
}
fn cfg(&self) -> ast::CrateConfig { Vec::new() }
fn ident_of(&self, st: &str) -> ast::Ident {
parse::token::str_to_ident(st)
}
fn name_of(&self, st: &str) -> ast::Name {
parse::token::intern(st)
}
fn parse_sess(&self) -> &parse::ParseSess { self }
}
#[cfg(test)]
struct FakeNodeIdAssigner;
#[cfg(test)]
// It should go without saying that this may give unexpected results. Avoid
// lowering anything which needs new nodes.
impl NodeIdAssigner for FakeNodeIdAssigner {
fn next_node_id(&self) -> NodeId {
0
}
fn peek_node_id(&self) -> NodeId {
0
}
}
#[cfg(test)]
fn mk_ctxt() -> parse::ParseSess {
parse::ParseSess::new()
}
#[cfg(test)]
fn with_testing_context<T, F: FnOnce(&mut LoweringContext) -> T>(f: F) -> T {
let assigner = FakeNodeIdAssigner;
let mut resolver = DummyResolver;
let mut lcx = LoweringContext::testing_context(&assigner, &mut resolver);
f(&mut lcx)
}
#[cfg(test)]
fn roundtrip(in_item: hir::Item) {
let mut wr = Cursor::new(Vec::new());
encode_item_ast(&mut Encoder::new(&mut wr), &in_item);
let rbml_doc = rbml::Doc::new(wr.get_ref());
let out_item = decode_item_ast(rbml_doc);
assert!(in_item == out_item);
}
#[test]
fn test_basic() {
let cx = mk_ctxt();
with_testing_context(|lcx| {
roundtrip(lcx.lower_item(&quote_item!(&cx,
fn foo() {}
).unwrap()));
});
}
#[test]
fn test_smalltalk() {
let cx = mk_ctxt();
with_testing_context(|lcx| {
roundtrip(lcx.lower_item(&quote_item!(&cx,
fn foo() -> isize { 3 + 4 } // first smalltalk program ever executed.
).unwrap()));
});
}
#[test]
fn test_more() {
let cx = mk_ctxt();
with_testing_context(|lcx| {
roundtrip(lcx.lower_item(&quote_item!(&cx,
fn foo(x: usize, y: usize) -> usize {
let z = x + y;
return z;
}
).unwrap()));
});
}
#[test]
fn test_simplification() {
let cx = mk_ctxt();
let item = quote_item!(&cx,
fn new_int_alist<B>() -> alist<isize, B> {
fn eq_int(a: isize, b: isize) -> bool { a == b }
return alist {eq_fn: eq_int, data: Vec::new()};
}
).unwrap();
let cx = mk_ctxt();
with_testing_context(|lcx| {
let hir_item = lcx.lower_item(&item);
let item_in = InlinedItemRef::Item(&hir_item);
let item_out = simplify_ast(item_in);
let item_exp = InlinedItem::Item(P(lcx.lower_item(&quote_item!(&cx,
fn new_int_alist<B>() -> alist<isize, B> {
return alist {eq_fn: eq_int, data: Vec::new()};
}
).unwrap())));
match (item_out, item_exp) {
(InlinedItem::Item(item_out), InlinedItem::Item(item_exp)) => {
assert!(pprust::item_to_string(&item_out) ==
pprust::item_to_string(&item_exp));
}
_ => bug!()
}
});
}