These `into_iter()` calls will change from iterating references to values if we ever get `IntoIterator` for arrays, which may break the code using that iterator. Calling `iter()` is future proof.
385 lines
9.9 KiB
Rust
385 lines
9.9 KiB
Rust
use std::collections::BTreeSet;
|
|
use std::iter::FromIterator;
|
|
|
|
use super::DeterministicRng;
|
|
|
|
#[test]
|
|
fn test_clone_eq() {
|
|
let mut m = BTreeSet::new();
|
|
|
|
m.insert(1);
|
|
m.insert(2);
|
|
|
|
assert!(m.clone() == m);
|
|
}
|
|
|
|
#[test]
|
|
fn test_hash() {
|
|
use crate::hash;
|
|
|
|
let mut x = BTreeSet::new();
|
|
let mut y = BTreeSet::new();
|
|
|
|
x.insert(1);
|
|
x.insert(2);
|
|
x.insert(3);
|
|
|
|
y.insert(3);
|
|
y.insert(2);
|
|
y.insert(1);
|
|
|
|
assert!(hash(&x) == hash(&y));
|
|
}
|
|
|
|
fn check<F>(a: &[i32], b: &[i32], expected: &[i32], f: F)
|
|
where F: FnOnce(&BTreeSet<i32>, &BTreeSet<i32>, &mut dyn FnMut(&i32) -> bool) -> bool
|
|
{
|
|
let mut set_a = BTreeSet::new();
|
|
let mut set_b = BTreeSet::new();
|
|
|
|
for x in a {
|
|
assert!(set_a.insert(*x))
|
|
}
|
|
for y in b {
|
|
assert!(set_b.insert(*y))
|
|
}
|
|
|
|
let mut i = 0;
|
|
f(&set_a,
|
|
&set_b,
|
|
&mut |&x| {
|
|
assert_eq!(x, expected[i]);
|
|
i += 1;
|
|
true
|
|
});
|
|
assert_eq!(i, expected.len());
|
|
}
|
|
|
|
#[test]
|
|
fn test_intersection() {
|
|
fn check_intersection(a: &[i32], b: &[i32], expected: &[i32]) {
|
|
check(a, b, expected, |x, y, f| x.intersection(y).all(f))
|
|
}
|
|
|
|
check_intersection(&[], &[], &[]);
|
|
check_intersection(&[1, 2, 3], &[], &[]);
|
|
check_intersection(&[], &[1, 2, 3], &[]);
|
|
check_intersection(&[2], &[1, 2, 3], &[2]);
|
|
check_intersection(&[1, 2, 3], &[2], &[2]);
|
|
check_intersection(&[11, 1, 3, 77, 103, 5, -5],
|
|
&[2, 11, 77, -9, -42, 5, 3],
|
|
&[3, 5, 11, 77]);
|
|
let large = (0..1000).collect::<Vec<_>>();
|
|
check_intersection(&[], &large, &[]);
|
|
check_intersection(&large, &[], &[]);
|
|
check_intersection(&[-1], &large, &[]);
|
|
check_intersection(&large, &[-1], &[]);
|
|
check_intersection(&[0], &large, &[0]);
|
|
check_intersection(&large, &[0], &[0]);
|
|
check_intersection(&[999], &large, &[999]);
|
|
check_intersection(&large, &[999], &[999]);
|
|
check_intersection(&[1000], &large, &[]);
|
|
check_intersection(&large, &[1000], &[]);
|
|
check_intersection(&[11, 5000, 1, 3, 77, 8924, 103],
|
|
&large,
|
|
&[1, 3, 11, 77, 103]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_difference() {
|
|
fn check_difference(a: &[i32], b: &[i32], expected: &[i32]) {
|
|
check(a, b, expected, |x, y, f| x.difference(y).all(f))
|
|
}
|
|
|
|
check_difference(&[], &[], &[]);
|
|
check_difference(&[1, 12], &[], &[1, 12]);
|
|
check_difference(&[], &[1, 2, 3, 9], &[]);
|
|
check_difference(&[1, 3, 5, 9, 11], &[3, 9], &[1, 5, 11]);
|
|
check_difference(&[-5, 11, 22, 33, 40, 42],
|
|
&[-12, -5, 14, 23, 34, 38, 39, 50],
|
|
&[11, 22, 33, 40, 42]);
|
|
let large = (0..1000).collect::<Vec<_>>();
|
|
check_difference(&[], &large, &[]);
|
|
check_difference(&[-1], &large, &[-1]);
|
|
check_difference(&[0], &large, &[]);
|
|
check_difference(&[999], &large, &[]);
|
|
check_difference(&[1000], &large, &[1000]);
|
|
check_difference(&[11, 5000, 1, 3, 77, 8924, 103],
|
|
&large,
|
|
&[5000, 8924]);
|
|
check_difference(&large, &[], &large);
|
|
check_difference(&large, &[-1], &large);
|
|
check_difference(&large, &[1000], &large);
|
|
}
|
|
|
|
#[test]
|
|
fn test_symmetric_difference() {
|
|
fn check_symmetric_difference(a: &[i32], b: &[i32], expected: &[i32]) {
|
|
check(a, b, expected, |x, y, f| x.symmetric_difference(y).all(f))
|
|
}
|
|
|
|
check_symmetric_difference(&[], &[], &[]);
|
|
check_symmetric_difference(&[1, 2, 3], &[2], &[1, 3]);
|
|
check_symmetric_difference(&[2], &[1, 2, 3], &[1, 3]);
|
|
check_symmetric_difference(&[1, 3, 5, 9, 11],
|
|
&[-2, 3, 9, 14, 22],
|
|
&[-2, 1, 5, 11, 14, 22]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_union() {
|
|
fn check_union(a: &[i32], b: &[i32], expected: &[i32]) {
|
|
check(a, b, expected, |x, y, f| x.union(y).all(f))
|
|
}
|
|
|
|
check_union(&[], &[], &[]);
|
|
check_union(&[1, 2, 3], &[2], &[1, 2, 3]);
|
|
check_union(&[2], &[1, 2, 3], &[1, 2, 3]);
|
|
check_union(&[1, 3, 5, 9, 11, 16, 19, 24],
|
|
&[-2, 1, 5, 9, 13, 19],
|
|
&[-2, 1, 3, 5, 9, 11, 13, 16, 19, 24]);
|
|
}
|
|
|
|
#[test]
|
|
// Only tests the simple function definition with respect to intersection
|
|
fn test_is_disjoint() {
|
|
let one = [1].iter().collect::<BTreeSet<_>>();
|
|
let two = [2].iter().collect::<BTreeSet<_>>();
|
|
assert!(one.is_disjoint(&two));
|
|
}
|
|
|
|
#[test]
|
|
// Also tests the trivial function definition of is_superset
|
|
fn test_is_subset() {
|
|
fn is_subset(a: &[i32], b: &[i32]) -> bool {
|
|
let set_a = a.iter().collect::<BTreeSet<_>>();
|
|
let set_b = b.iter().collect::<BTreeSet<_>>();
|
|
set_a.is_subset(&set_b)
|
|
}
|
|
|
|
assert_eq!(is_subset(&[], &[]), true);
|
|
assert_eq!(is_subset(&[], &[1, 2]), true);
|
|
assert_eq!(is_subset(&[0], &[1, 2]), false);
|
|
assert_eq!(is_subset(&[1], &[1, 2]), true);
|
|
assert_eq!(is_subset(&[2], &[1, 2]), true);
|
|
assert_eq!(is_subset(&[3], &[1, 2]), false);
|
|
assert_eq!(is_subset(&[1, 2], &[1]), false);
|
|
assert_eq!(is_subset(&[1, 2], &[1, 2]), true);
|
|
assert_eq!(is_subset(&[1, 2], &[2, 3]), false);
|
|
let large = (0..1000).collect::<Vec<_>>();
|
|
assert_eq!(is_subset(&[], &large), true);
|
|
assert_eq!(is_subset(&large, &[]), false);
|
|
assert_eq!(is_subset(&[-1], &large), false);
|
|
assert_eq!(is_subset(&[0], &large), true);
|
|
assert_eq!(is_subset(&[1, 2], &large), true);
|
|
assert_eq!(is_subset(&[999, 1000], &large), false);
|
|
}
|
|
|
|
#[test]
|
|
fn test_zip() {
|
|
let mut x = BTreeSet::new();
|
|
x.insert(5);
|
|
x.insert(12);
|
|
x.insert(11);
|
|
|
|
let mut y = BTreeSet::new();
|
|
y.insert("foo");
|
|
y.insert("bar");
|
|
|
|
let x = x;
|
|
let y = y;
|
|
let mut z = x.iter().zip(&y);
|
|
|
|
assert_eq!(z.next().unwrap(), (&5, &("bar")));
|
|
assert_eq!(z.next().unwrap(), (&11, &("foo")));
|
|
assert!(z.next().is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_from_iter() {
|
|
let xs = [1, 2, 3, 4, 5, 6, 7, 8, 9];
|
|
|
|
let set: BTreeSet<_> = xs.iter().cloned().collect();
|
|
|
|
for x in &xs {
|
|
assert!(set.contains(x));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_show() {
|
|
let mut set = BTreeSet::new();
|
|
let empty = BTreeSet::<i32>::new();
|
|
|
|
set.insert(1);
|
|
set.insert(2);
|
|
|
|
let set_str = format!("{:?}", set);
|
|
|
|
assert_eq!(set_str, "{1, 2}");
|
|
assert_eq!(format!("{:?}", empty), "{}");
|
|
}
|
|
|
|
#[test]
|
|
fn test_extend_ref() {
|
|
let mut a = BTreeSet::new();
|
|
a.insert(1);
|
|
|
|
a.extend(&[2, 3, 4]);
|
|
|
|
assert_eq!(a.len(), 4);
|
|
assert!(a.contains(&1));
|
|
assert!(a.contains(&2));
|
|
assert!(a.contains(&3));
|
|
assert!(a.contains(&4));
|
|
|
|
let mut b = BTreeSet::new();
|
|
b.insert(5);
|
|
b.insert(6);
|
|
|
|
a.extend(&b);
|
|
|
|
assert_eq!(a.len(), 6);
|
|
assert!(a.contains(&1));
|
|
assert!(a.contains(&2));
|
|
assert!(a.contains(&3));
|
|
assert!(a.contains(&4));
|
|
assert!(a.contains(&5));
|
|
assert!(a.contains(&6));
|
|
}
|
|
|
|
#[test]
|
|
fn test_recovery() {
|
|
use std::cmp::Ordering;
|
|
|
|
#[derive(Debug)]
|
|
struct Foo(&'static str, i32);
|
|
|
|
impl PartialEq for Foo {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
self.0 == other.0
|
|
}
|
|
}
|
|
|
|
impl Eq for Foo {}
|
|
|
|
impl PartialOrd for Foo {
|
|
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
|
self.0.partial_cmp(&other.0)
|
|
}
|
|
}
|
|
|
|
impl Ord for Foo {
|
|
fn cmp(&self, other: &Self) -> Ordering {
|
|
self.0.cmp(&other.0)
|
|
}
|
|
}
|
|
|
|
let mut s = BTreeSet::new();
|
|
assert_eq!(s.replace(Foo("a", 1)), None);
|
|
assert_eq!(s.len(), 1);
|
|
assert_eq!(s.replace(Foo("a", 2)), Some(Foo("a", 1)));
|
|
assert_eq!(s.len(), 1);
|
|
|
|
{
|
|
let mut it = s.iter();
|
|
assert_eq!(it.next(), Some(&Foo("a", 2)));
|
|
assert_eq!(it.next(), None);
|
|
}
|
|
|
|
assert_eq!(s.get(&Foo("a", 1)), Some(&Foo("a", 2)));
|
|
assert_eq!(s.take(&Foo("a", 1)), Some(Foo("a", 2)));
|
|
assert_eq!(s.len(), 0);
|
|
|
|
assert_eq!(s.get(&Foo("a", 1)), None);
|
|
assert_eq!(s.take(&Foo("a", 1)), None);
|
|
|
|
assert_eq!(s.iter().next(), None);
|
|
}
|
|
|
|
#[test]
|
|
#[allow(dead_code)]
|
|
fn test_variance() {
|
|
use std::collections::btree_set::{IntoIter, Iter, Range};
|
|
|
|
fn set<'new>(v: BTreeSet<&'static str>) -> BTreeSet<&'new str> {
|
|
v
|
|
}
|
|
fn iter<'a, 'new>(v: Iter<'a, &'static str>) -> Iter<'a, &'new str> {
|
|
v
|
|
}
|
|
fn into_iter<'new>(v: IntoIter<&'static str>) -> IntoIter<&'new str> {
|
|
v
|
|
}
|
|
fn range<'a, 'new>(v: Range<'a, &'static str>) -> Range<'a, &'new str> {
|
|
v
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_append() {
|
|
let mut a = BTreeSet::new();
|
|
a.insert(1);
|
|
a.insert(2);
|
|
a.insert(3);
|
|
|
|
let mut b = BTreeSet::new();
|
|
b.insert(3);
|
|
b.insert(4);
|
|
b.insert(5);
|
|
|
|
a.append(&mut b);
|
|
|
|
assert_eq!(a.len(), 5);
|
|
assert_eq!(b.len(), 0);
|
|
|
|
assert_eq!(a.contains(&1), true);
|
|
assert_eq!(a.contains(&2), true);
|
|
assert_eq!(a.contains(&3), true);
|
|
assert_eq!(a.contains(&4), true);
|
|
assert_eq!(a.contains(&5), true);
|
|
}
|
|
|
|
fn rand_data(len: usize) -> Vec<u32> {
|
|
let mut rng = DeterministicRng::new();
|
|
Vec::from_iter((0..len).map(|_| rng.next()))
|
|
}
|
|
|
|
#[test]
|
|
fn test_split_off_empty_right() {
|
|
let mut data = rand_data(173);
|
|
|
|
let mut set = BTreeSet::from_iter(data.clone());
|
|
let right = set.split_off(&(data.iter().max().unwrap() + 1));
|
|
|
|
data.sort();
|
|
assert!(set.into_iter().eq(data));
|
|
assert!(right.into_iter().eq(None));
|
|
}
|
|
|
|
#[test]
|
|
fn test_split_off_empty_left() {
|
|
let mut data = rand_data(314);
|
|
|
|
let mut set = BTreeSet::from_iter(data.clone());
|
|
let right = set.split_off(data.iter().min().unwrap());
|
|
|
|
data.sort();
|
|
assert!(set.into_iter().eq(None));
|
|
assert!(right.into_iter().eq(data));
|
|
}
|
|
|
|
#[test]
|
|
fn test_split_off_large_random_sorted() {
|
|
let mut data = rand_data(1529);
|
|
// special case with maximum height.
|
|
data.sort();
|
|
|
|
let mut set = BTreeSet::from_iter(data.clone());
|
|
let key = data[data.len() / 2];
|
|
let right = set.split_off(&key);
|
|
|
|
assert!(set.into_iter().eq(data.clone().into_iter().filter(|x| *x < key)));
|
|
assert!(right.into_iter().eq(data.into_iter().filter(|x| *x >= key)));
|
|
}
|