rust/src/librustc/middle/graph.rs
Chris Wong 988e4f0a1c Uppercase numeric constants
The following are renamed:

* `min_value` => `MIN`
* `max_value` => `MAX`
* `bits` => `BITS`
* `bytes` => `BYTES`

Fixes #10010.
2014-01-25 21:38:25 +13:00

423 lines
13 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
A graph module for use in dataflow, region resolution, and elsewhere.
# Interface details
You customize the graph by specifying a "node data" type `N` and an
"edge data" type `E`. You can then later gain access (mutable or
immutable) to these "user-data" bits. Currently, you can only add
nodes or edges to the graph. You cannot remove or modify them once
added. This could be changed if we have a need.
# Implementation details
The main tricky thing about this code is the way that edges are
stored. The edges are stored in a central array, but they are also
threaded onto two linked lists for each node, one for incoming edges
and one for outgoing edges. Note that every edge is a member of some
incoming list and some outgoing list. Basically you can load the
first index of the linked list from the node data structures (the
field `first_edge`) and then, for each edge, load the next index from
the field `next_edge`). Each of those fields is an array that should
be indexed by the direction (see the type `Direction`).
*/
use std::uint;
use std::vec;
pub struct Graph<N,E> {
priv nodes: ~[Node<N>],
priv edges: ~[Edge<E>],
}
pub struct Node<N> {
priv first_edge: [EdgeIndex, ..2], // see module comment
data: N,
}
pub struct Edge<E> {
priv next_edge: [EdgeIndex, ..2], // see module comment
priv source: NodeIndex,
priv target: NodeIndex,
data: E,
}
#[deriving(Eq)]
pub struct NodeIndex(uint);
pub static InvalidNodeIndex: NodeIndex = NodeIndex(uint::MAX);
#[deriving(Eq)]
pub struct EdgeIndex(uint);
pub static InvalidEdgeIndex: EdgeIndex = EdgeIndex(uint::MAX);
// Use a private field here to guarantee no more instances are created:
pub struct Direction { priv repr: uint }
pub static Outgoing: Direction = Direction { repr: 0 };
pub static Incoming: Direction = Direction { repr: 1 };
impl NodeIndex {
fn get(&self) -> uint { let NodeIndex(v) = *self; v }
}
impl EdgeIndex {
fn get(&self) -> uint { let EdgeIndex(v) = *self; v }
}
impl<N,E> Graph<N,E> {
pub fn new() -> Graph<N,E> {
Graph {nodes: ~[], edges: ~[]}
}
pub fn with_capacity(num_nodes: uint,
num_edges: uint) -> Graph<N,E> {
Graph {nodes: vec::with_capacity(num_nodes),
edges: vec::with_capacity(num_edges)}
}
///////////////////////////////////////////////////////////////////////////
// Simple accessors
#[inline]
pub fn all_nodes<'a>(&'a self) -> &'a [Node<N>] {
let nodes: &'a [Node<N>] = self.nodes;
nodes
}
#[inline]
pub fn all_edges<'a>(&'a self) -> &'a [Edge<E>] {
let edges: &'a [Edge<E>] = self.edges;
edges
}
///////////////////////////////////////////////////////////////////////////
// Node construction
pub fn next_node_index(&self) -> NodeIndex {
NodeIndex(self.nodes.len())
}
pub fn add_node(&mut self, data: N) -> NodeIndex {
let idx = self.next_node_index();
self.nodes.push(Node {
first_edge: [InvalidEdgeIndex, InvalidEdgeIndex],
data: data
});
idx
}
pub fn mut_node_data<'a>(&'a mut self, idx: NodeIndex) -> &'a mut N {
&mut self.nodes[idx.get()].data
}
pub fn node_data<'a>(&'a self, idx: NodeIndex) -> &'a N {
&self.nodes[idx.get()].data
}
pub fn node<'a>(&'a self, idx: NodeIndex) -> &'a Node<N> {
&self.nodes[idx.get()]
}
///////////////////////////////////////////////////////////////////////////
// Edge construction and queries
pub fn next_edge_index(&self) -> EdgeIndex {
EdgeIndex(self.edges.len())
}
pub fn add_edge(&mut self,
source: NodeIndex,
target: NodeIndex,
data: E) -> EdgeIndex {
let idx = self.next_edge_index();
// read current first of the list of edges from each node
let source_first = self.nodes[source.get()].first_edge[Outgoing.repr];
let target_first = self.nodes[target.get()].first_edge[Incoming.repr];
// create the new edge, with the previous firsts from each node
// as the next pointers
self.edges.push(Edge {
next_edge: [source_first, target_first],
source: source,
target: target,
data: data
});
// adjust the firsts for each node target be the next object.
self.nodes[source.get()].first_edge[Outgoing.repr] = idx;
self.nodes[target.get()].first_edge[Incoming.repr] = idx;
return idx;
}
pub fn mut_edge_data<'a>(&'a mut self, idx: EdgeIndex) -> &'a mut E {
&mut self.edges[idx.get()].data
}
pub fn edge_data<'a>(&'a self, idx: EdgeIndex) -> &'a E {
&self.edges[idx.get()].data
}
pub fn edge<'a>(&'a self, idx: EdgeIndex) -> &'a Edge<E> {
&self.edges[idx.get()]
}
pub fn first_adjacent(&self, node: NodeIndex, dir: Direction) -> EdgeIndex {
//! Accesses the index of the first edge adjacent to `node`.
//! This is useful if you wish to modify the graph while walking
//! the linked list of edges.
self.nodes[node.get()].first_edge[dir.repr]
}
pub fn next_adjacent(&self, edge: EdgeIndex, dir: Direction) -> EdgeIndex {
//! Accesses the next edge in a given direction.
//! This is useful if you wish to modify the graph while walking
//! the linked list of edges.
self.edges[edge.get()].next_edge[dir.repr]
}
///////////////////////////////////////////////////////////////////////////
// Iterating over nodes, edges
pub fn each_node(&self, f: |NodeIndex, &Node<N>| -> bool) -> bool {
//! Iterates over all edges defined in the graph.
self.nodes.iter().enumerate().advance(|(i, node)| f(NodeIndex(i), node))
}
pub fn each_edge(&self, f: |EdgeIndex, &Edge<E>| -> bool) -> bool {
//! Iterates over all edges defined in the graph
self.edges.iter().enumerate().advance(|(i, edge)| f(EdgeIndex(i), edge))
}
pub fn each_outgoing_edge(&self,
source: NodeIndex,
f: |EdgeIndex, &Edge<E>| -> bool)
-> bool {
//! Iterates over all outgoing edges from the node `from`
self.each_adjacent_edge(source, Outgoing, f)
}
pub fn each_incoming_edge(&self,
target: NodeIndex,
f: |EdgeIndex, &Edge<E>| -> bool)
-> bool {
//! Iterates over all incoming edges to the node `target`
self.each_adjacent_edge(target, Incoming, f)
}
pub fn each_adjacent_edge(&self,
node: NodeIndex,
dir: Direction,
f: |EdgeIndex, &Edge<E>| -> bool)
-> bool {
//! Iterates over all edges adjacent to the node `node`
//! in the direction `dir` (either `Outgoing` or `Incoming)
let mut edge_idx = self.first_adjacent(node, dir);
while edge_idx != InvalidEdgeIndex {
let edge = &self.edges[edge_idx.get()];
if !f(edge_idx, edge) {
return false;
}
edge_idx = edge.next_edge[dir.repr];
}
return true;
}
///////////////////////////////////////////////////////////////////////////
// Fixed-point iteration
//
// A common use for graphs in our compiler is to perform
// fixed-point iteration. In this case, each edge represents a
// constaint, and the nodes themselves are associated with
// variables or other bitsets. This method facilitates such a
// computation.
pub fn iterate_until_fixed_point(&self,
op: |iter_index: uint,
edge_index: EdgeIndex,
edge: &Edge<E>|
-> bool) {
let mut iteration = 0;
let mut changed = true;
while changed {
changed = false;
iteration += 1;
for (i, edge) in self.edges.iter().enumerate() {
changed |= op(iteration, EdgeIndex(i), edge);
}
}
}
}
pub fn each_edge_index(max_edge_index: EdgeIndex, f: |EdgeIndex| -> bool) {
let mut i = 0;
let n = max_edge_index.get();
while i < n {
if !f(EdgeIndex(i)) {
return;
}
i += 1;
}
}
impl<E> Edge<E> {
pub fn source(&self) -> NodeIndex {
self.source
}
pub fn target(&self) -> NodeIndex {
self.target
}
}
#[cfg(test)]
mod test {
use middle::graph::*;
type TestNode = Node<&'static str>;
type TestEdge = Edge<&'static str>;
type TestGraph = Graph<&'static str, &'static str>;
fn create_graph() -> TestGraph {
let mut graph = Graph::new();
// Create a simple graph
//
// A -+> B --> C
// | | ^
// | v |
// F D --> E
let a = graph.add_node("A");
let b = graph.add_node("B");
let c = graph.add_node("C");
let d = graph.add_node("D");
let e = graph.add_node("E");
let f = graph.add_node("F");
graph.add_edge(a, b, "AB");
graph.add_edge(b, c, "BC");
graph.add_edge(b, d, "BD");
graph.add_edge(d, e, "DE");
graph.add_edge(e, c, "EC");
graph.add_edge(f, b, "FB");
return graph;
}
#[test]
fn each_node() {
let graph = create_graph();
let expected = ["A", "B", "C", "D", "E", "F"];
graph.each_node(|idx, node| {
assert_eq!(&expected[idx.get()], graph.node_data(idx));
assert_eq!(expected[idx.get()], node.data);
true
});
}
#[test]
fn each_edge() {
let graph = create_graph();
let expected = ["AB", "BC", "BD", "DE", "EC", "FB"];
graph.each_edge(|idx, edge| {
assert_eq!(&expected[idx.get()], graph.edge_data(idx));
assert_eq!(expected[idx.get()], edge.data);
true
});
}
fn test_adjacent_edges<N:Eq,E:Eq>(graph: &Graph<N,E>,
start_index: NodeIndex,
start_data: N,
expected_incoming: &[(E,N)],
expected_outgoing: &[(E,N)]) {
assert_eq!(graph.node_data(start_index), &start_data);
let mut counter = 0;
graph.each_incoming_edge(start_index, |edge_index, edge| {
assert_eq!(graph.edge_data(edge_index), &edge.data);
assert!(counter < expected_incoming.len());
debug!("counter={:?} expected={:?} edge_index={:?} edge={:?}",
counter, expected_incoming[counter], edge_index, edge);
match expected_incoming[counter] {
(ref e, ref n) => {
assert_eq!(e, &edge.data);
assert_eq!(n, graph.node_data(edge.source));
assert_eq!(start_index, edge.target);
}
}
counter += 1;
true
});
assert_eq!(counter, expected_incoming.len());
let mut counter = 0;
graph.each_outgoing_edge(start_index, |edge_index, edge| {
assert_eq!(graph.edge_data(edge_index), &edge.data);
assert!(counter < expected_outgoing.len());
debug!("counter={:?} expected={:?} edge_index={:?} edge={:?}",
counter, expected_outgoing[counter], edge_index, edge);
match expected_outgoing[counter] {
(ref e, ref n) => {
assert_eq!(e, &edge.data);
assert_eq!(start_index, edge.source);
assert_eq!(n, graph.node_data(edge.target));
}
}
counter += 1;
true
});
assert_eq!(counter, expected_outgoing.len());
}
#[test]
fn each_adjacent_from_a() {
let graph = create_graph();
test_adjacent_edges(&graph, NodeIndex(0), "A",
[],
[("AB", "B")]);
}
#[test]
fn each_adjacent_from_b() {
let graph = create_graph();
test_adjacent_edges(&graph, NodeIndex(1), "B",
[("FB", "F"), ("AB", "A"),],
[("BD", "D"), ("BC", "C"),]);
}
#[test]
fn each_adjacent_from_c() {
let graph = create_graph();
test_adjacent_edges(&graph, NodeIndex(2), "C",
[("EC", "E"), ("BC", "B")],
[]);
}
#[test]
fn each_adjacent_from_d() {
let graph = create_graph();
test_adjacent_edges(&graph, NodeIndex(3), "D",
[("BD", "B")],
[("DE", "E")]);
}
}