rust/src/comp/middle/trans_build.rs

627 lines
21 KiB
Rust

import std::{vec, str};
import std::str::sbuf;
import lib::llvm::llvm;
import llvm::{ValueRef, TypeRef, BasicBlockRef, BuilderRef, Opcode,
ModuleRef};
import trans_common::{block_ctxt, T_ptr, T_nil, T_int, T_i8, T_i1,
val_ty, val_str, bcx_ccx};
fn B(cx: @block_ctxt) -> BuilderRef {
let b = *cx.fcx.lcx.ccx.builder;
llvm::LLVMPositionBuilderAtEnd(b, cx.llbb);
ret b;
}
// The difference between a block being unreachable and being terminated is
// somewhat obscure, and has to do with error checking. When a block is
// terminated, we're saying that trying to add any further statements in the
// block is an error. On the other hand, if something is unreachable, that
// means that the block was terminated in some way that we don't want to check
// for (fail/break/ret statements, call to diverging functions, etc), and
// further instructions to the block should simply be ignored.
fn RetVoid(cx: @block_ctxt) {
if cx.unreachable { ret; }
assert (!cx.terminated);
cx.terminated = true;
llvm::LLVMBuildRetVoid(B(cx));
}
fn Ret(cx: @block_ctxt, V: ValueRef) {
if cx.unreachable { ret; }
assert (!cx.terminated);
cx.terminated = true;
llvm::LLVMBuildRet(B(cx), V);
}
fn AggregateRet(cx: @block_ctxt, RetVals: [ValueRef]) {
if cx.unreachable { ret; }
assert (!cx.terminated);
cx.terminated = true;
unsafe {
llvm::LLVMBuildAggregateRet(B(cx), vec::to_ptr(RetVals),
vec::len(RetVals));
}
}
fn Br(cx: @block_ctxt, Dest: BasicBlockRef) {
if cx.unreachable { ret; }
assert (!cx.terminated);
cx.terminated = true;
llvm::LLVMBuildBr(B(cx), Dest);
}
fn CondBr(cx: @block_ctxt, If: ValueRef, Then: BasicBlockRef,
Else: BasicBlockRef) {
if cx.unreachable { ret; }
assert (!cx.terminated);
cx.terminated = true;
llvm::LLVMBuildCondBr(B(cx), If, Then, Else);
}
fn Switch(cx: @block_ctxt, V: ValueRef, Else: BasicBlockRef, NumCases: uint)
-> ValueRef {
if cx.unreachable { ret _Undef(V); }
assert !cx.terminated;
cx.terminated = true;
ret llvm::LLVMBuildSwitch(B(cx), V, Else, NumCases);
}
fn AddCase(S: ValueRef, OnVal: ValueRef, Dest: BasicBlockRef) {
if llvm::LLVMIsUndef(S) == lib::llvm::True { ret; }
llvm::LLVMAddCase(S, OnVal, Dest);
}
fn IndirectBr(cx: @block_ctxt, Addr: ValueRef, NumDests: uint) {
if cx.unreachable { ret; }
assert (!cx.terminated);
cx.terminated = true;
llvm::LLVMBuildIndirectBr(B(cx), Addr, NumDests);
}
// This is a really awful way to get a zero-length c-string, but better (and a
// lot more efficient) than doing str::as_buf("", ...) every time.
fn noname() -> sbuf unsafe {
const cnull: uint = 0u;
ret std::unsafe::reinterpret_cast(std::ptr::addr_of(cnull));
}
fn Invoke(cx: @block_ctxt, Fn: ValueRef, Args: [ValueRef],
Then: BasicBlockRef, Catch: BasicBlockRef) {
if cx.unreachable { ret; }
assert (!cx.terminated);
cx.terminated = true;
unsafe {
llvm::LLVMBuildInvoke(B(cx), Fn, vec::to_ptr(Args),
vec::len(Args), Then, Catch, noname());
}
}
fn FastInvoke(cx: @block_ctxt, Fn: ValueRef, Args: [ValueRef],
Then: BasicBlockRef, Catch: BasicBlockRef) {
if cx.unreachable { ret; }
assert (!cx.terminated);
cx.terminated = true;
unsafe {
let v = llvm::LLVMBuildInvoke(B(cx), Fn, vec::to_ptr(Args),
vec::len(Args), Then, Catch, noname());
llvm::LLVMSetInstructionCallConv(v, lib::llvm::LLVMFastCallConv);
}
}
fn Unreachable(cx: @block_ctxt) {
if cx.unreachable { ret; }
cx.unreachable = true;
if !cx.terminated { llvm::LLVMBuildUnreachable(B(cx)); }
}
fn _Undef(val: ValueRef) -> ValueRef {
ret llvm::LLVMGetUndef(val_ty(val));
}
/* Arithmetic */
fn Add(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildAdd(B(cx), LHS, RHS, noname());
}
fn NSWAdd(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildNSWAdd(B(cx), LHS, RHS, noname());
}
fn NUWAdd(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildNUWAdd(B(cx), LHS, RHS, noname());
}
fn FAdd(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildFAdd(B(cx), LHS, RHS, noname());
}
fn Sub(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildSub(B(cx), LHS, RHS, noname());
}
fn NSWSub(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildNSWSub(B(cx), LHS, RHS, noname());
}
fn NUWSub(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildNUWSub(B(cx), LHS, RHS, noname());
}
fn FSub(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildFSub(B(cx), LHS, RHS, noname());
}
fn Mul(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildMul(B(cx), LHS, RHS, noname());
}
fn NSWMul(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildNSWMul(B(cx), LHS, RHS, noname());
}
fn NUWMul(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildNUWMul(B(cx), LHS, RHS, noname());
}
fn FMul(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildFMul(B(cx), LHS, RHS, noname());
}
fn UDiv(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildUDiv(B(cx), LHS, RHS, noname());
}
fn SDiv(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildSDiv(B(cx), LHS, RHS, noname());
}
fn ExactSDiv(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildExactSDiv(B(cx), LHS, RHS, noname());
}
fn FDiv(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildFDiv(B(cx), LHS, RHS, noname());
}
fn URem(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildURem(B(cx), LHS, RHS, noname());
}
fn SRem(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildSRem(B(cx), LHS, RHS, noname());
}
fn FRem(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildFRem(B(cx), LHS, RHS, noname());
}
fn Shl(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildShl(B(cx), LHS, RHS, noname());
}
fn LShr(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildLShr(B(cx), LHS, RHS, noname());
}
fn AShr(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildAShr(B(cx), LHS, RHS, noname());
}
fn And(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildAnd(B(cx), LHS, RHS, noname());
}
fn Or(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildOr(B(cx), LHS, RHS, noname());
}
fn Xor(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildXor(B(cx), LHS, RHS, noname());
}
fn BinOp(cx: @block_ctxt, Op: Opcode, LHS: ValueRef, RHS: ValueRef) ->
ValueRef {
if cx.unreachable { ret _Undef(LHS); }
ret llvm::LLVMBuildBinOp(B(cx), Op, LHS, RHS, noname());
}
fn Neg(cx: @block_ctxt, V: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(V); }
ret llvm::LLVMBuildNeg(B(cx), V, noname());
}
fn NSWNeg(cx: @block_ctxt, V: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(V); }
ret llvm::LLVMBuildNSWNeg(B(cx), V, noname());
}
fn NUWNeg(cx: @block_ctxt, V: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(V); }
ret llvm::LLVMBuildNUWNeg(B(cx), V, noname());
}
fn FNeg(cx: @block_ctxt, V: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(V); }
ret llvm::LLVMBuildFNeg(B(cx), V, noname());
}
fn Not(cx: @block_ctxt, V: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(V); }
ret llvm::LLVMBuildNot(B(cx), V, noname());
}
/* Memory */
fn Malloc(cx: @block_ctxt, Ty: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_i8())); }
ret llvm::LLVMBuildMalloc(B(cx), Ty, noname());
}
fn ArrayMalloc(cx: @block_ctxt, Ty: TypeRef, Val: ValueRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_i8())); }
ret llvm::LLVMBuildArrayMalloc(B(cx), Ty, Val, noname());
}
fn Alloca(cx: @block_ctxt, Ty: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(Ty)); }
ret llvm::LLVMBuildAlloca(B(cx), Ty, noname());
}
fn ArrayAlloca(cx: @block_ctxt, Ty: TypeRef, Val: ValueRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(Ty)); }
ret llvm::LLVMBuildArrayAlloca(B(cx), Ty, Val, noname());
}
fn Free(cx: @block_ctxt, PointerVal: ValueRef) {
if cx.unreachable { ret; }
llvm::LLVMBuildFree(B(cx), PointerVal);
}
fn Load(cx: @block_ctxt, PointerVal: ValueRef) -> ValueRef {
let ccx = cx.fcx.lcx.ccx;
if cx.unreachable {
let ty = val_ty(PointerVal);
let eltty = if llvm::LLVMGetTypeKind(ty) == 11 {
llvm::LLVMGetElementType(ty) } else { ccx.int_type };
ret llvm::LLVMGetUndef(eltty);
}
ret llvm::LLVMBuildLoad(B(cx), PointerVal, noname());
}
fn Store(cx: @block_ctxt, Val: ValueRef, Ptr: ValueRef) {
if cx.unreachable { ret; }
llvm::LLVMBuildStore(B(cx), Val, Ptr);
}
fn GEP(cx: @block_ctxt, Pointer: ValueRef, Indices: [ValueRef]) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_nil())); }
unsafe {
ret llvm::LLVMBuildGEP(B(cx), Pointer, vec::to_ptr(Indices),
vec::len(Indices), noname());
}
}
fn InBoundsGEP(cx: @block_ctxt, Pointer: ValueRef, Indices: [ValueRef]) ->
ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_nil())); }
unsafe {
ret llvm::LLVMBuildInBoundsGEP(B(cx), Pointer, vec::to_ptr(Indices),
vec::len(Indices), noname());
}
}
fn StructGEP(cx: @block_ctxt, Pointer: ValueRef, Idx: uint) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_nil())); }
ret llvm::LLVMBuildStructGEP(B(cx), Pointer, Idx, noname());
}
fn GlobalString(cx: @block_ctxt, _Str: sbuf) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_i8())); }
ret llvm::LLVMBuildGlobalString(B(cx), _Str, noname());
}
fn GlobalStringPtr(cx: @block_ctxt, _Str: sbuf) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_i8())); }
ret llvm::LLVMBuildGlobalStringPtr(B(cx), _Str, noname());
}
/* Casts */
fn Trunc(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildTrunc(B(cx), Val, DestTy, noname());
}
fn ZExt(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildZExt(B(cx), Val, DestTy, noname());
}
fn SExt(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildSExt(B(cx), Val, DestTy, noname());
}
fn FPToUI(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildFPToUI(B(cx), Val, DestTy, noname());
}
fn FPToSI(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildFPToSI(B(cx), Val, DestTy, noname());
}
fn UIToFP(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildUIToFP(B(cx), Val, DestTy, noname());
}
fn SIToFP(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildSIToFP(B(cx), Val, DestTy, noname());
}
fn FPTrunc(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildFPTrunc(B(cx), Val, DestTy, noname());
}
fn FPExt(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildFPExt(B(cx), Val, DestTy, noname());
}
fn PtrToInt(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildPtrToInt(B(cx), Val, DestTy, noname());
}
fn IntToPtr(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildIntToPtr(B(cx), Val, DestTy, noname());
}
fn BitCast(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildBitCast(B(cx), Val, DestTy, noname());
}
fn ZExtOrBitCast(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) ->
ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildZExtOrBitCast(B(cx), Val, DestTy, noname());
}
fn SExtOrBitCast(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) ->
ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildSExtOrBitCast(B(cx), Val, DestTy, noname());
}
fn TruncOrBitCast(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) ->
ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildTruncOrBitCast(B(cx), Val, DestTy, noname());
}
fn Cast(cx: @block_ctxt, Op: Opcode, Val: ValueRef, DestTy: TypeRef,
_Name: sbuf) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildCast(B(cx), Op, Val, DestTy, noname());
}
fn PointerCast(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildPointerCast(B(cx), Val, DestTy, noname());
}
fn IntCast(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildIntCast(B(cx), Val, DestTy, noname());
}
fn FPCast(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
ret llvm::LLVMBuildFPCast(B(cx), Val, DestTy, noname());
}
/* Comparisons */
fn ICmp(cx: @block_ctxt, Op: uint, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_i1()); }
ret llvm::LLVMBuildICmp(B(cx), Op, LHS, RHS, noname());
}
fn FCmp(cx: @block_ctxt, Op: uint, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_i1()); }
ret llvm::LLVMBuildFCmp(B(cx), Op, LHS, RHS, noname());
}
/* Miscellaneous instructions */
fn EmptyPhi(cx: @block_ctxt, Ty: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(Ty); }
ret llvm::LLVMBuildPhi(B(cx), Ty, noname());
}
fn Phi(cx: @block_ctxt, Ty: TypeRef, vals: [ValueRef], bbs: [BasicBlockRef])
-> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(Ty); }
assert (vec::len::<ValueRef>(vals) == vec::len::<BasicBlockRef>(bbs));
let phi = EmptyPhi(cx, Ty);
unsafe {
llvm::LLVMAddIncoming(phi, vec::to_ptr(vals), vec::to_ptr(bbs),
vec::len(vals));
ret phi;
}
}
fn AddIncomingToPhi(phi: ValueRef, val: ValueRef, bb: BasicBlockRef) {
if llvm::LLVMIsUndef(phi) == lib::llvm::True { ret; }
unsafe {
let valptr = std::unsafe::reinterpret_cast(std::ptr::addr_of(val));
let bbptr = std::unsafe::reinterpret_cast(std::ptr::addr_of(bb));
llvm::LLVMAddIncoming(phi, valptr, bbptr, 1u);
}
}
fn _UndefReturn(cx: @block_ctxt, Fn: ValueRef) -> ValueRef {
let ccx = cx.fcx.lcx.ccx;
let ty = val_ty(Fn);
let retty = if llvm::LLVMGetTypeKind(ty) == 8 {
llvm::LLVMGetReturnType(ty) } else { ccx.int_type };
ret llvm::LLVMGetUndef(retty);
}
fn Call(cx: @block_ctxt, Fn: ValueRef, Args: [ValueRef]) -> ValueRef {
if cx.unreachable { ret _UndefReturn(Fn); }
unsafe {
ret llvm::LLVMBuildCall(B(cx), Fn, vec::to_ptr(Args),
vec::len(Args), noname());
}
}
fn FastCall(cx: @block_ctxt, Fn: ValueRef, Args: [ValueRef]) -> ValueRef {
if cx.unreachable { ret _UndefReturn(Fn); }
unsafe {
let v = llvm::LLVMBuildCall(B(cx), Fn, vec::to_ptr(Args),
vec::len(Args), noname());
llvm::LLVMSetInstructionCallConv(v, lib::llvm::LLVMFastCallConv);
ret v;
}
}
fn CallWithConv(cx: @block_ctxt, Fn: ValueRef, Args: [ValueRef], Conv: uint)
-> ValueRef {
if cx.unreachable { ret _UndefReturn(Fn); }
unsafe {
let v = llvm::LLVMBuildCall(B(cx), Fn, vec::to_ptr(Args),
vec::len(Args), noname());
llvm::LLVMSetInstructionCallConv(v, Conv);
ret v;
}
}
fn Select(cx: @block_ctxt, If: ValueRef, Then: ValueRef, Else: ValueRef) ->
ValueRef {
if cx.unreachable { ret _Undef(Then); }
ret llvm::LLVMBuildSelect(B(cx), If, Then, Else, noname());
}
fn VAArg(cx: @block_ctxt, list: ValueRef, Ty: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(Ty); }
ret llvm::LLVMBuildVAArg(B(cx), list, Ty, noname());
}
fn ExtractElement(cx: @block_ctxt, VecVal: ValueRef, Index: ValueRef) ->
ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_nil()); }
ret llvm::LLVMBuildExtractElement(B(cx), VecVal, Index, noname());
}
fn InsertElement(cx: @block_ctxt, VecVal: ValueRef, EltVal: ValueRef,
Index: ValueRef) {
if cx.unreachable { ret; }
llvm::LLVMBuildInsertElement(B(cx), VecVal, EltVal, Index, noname());
}
fn ShuffleVector(cx: @block_ctxt, V1: ValueRef, V2: ValueRef,
Mask: ValueRef) {
if cx.unreachable { ret; }
llvm::LLVMBuildShuffleVector(B(cx), V1, V2, Mask, noname());
}
fn ExtractValue(cx: @block_ctxt, AggVal: ValueRef, Index: uint) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_nil()); }
ret llvm::LLVMBuildExtractValue(B(cx), AggVal, Index, noname());
}
fn InsertValue(cx: @block_ctxt, AggVal: ValueRef, EltVal: ValueRef,
Index: uint) {
if cx.unreachable { ret; }
llvm::LLVMBuildInsertValue(B(cx), AggVal, EltVal, Index, noname());
}
fn IsNull(cx: @block_ctxt, Val: ValueRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_i1()); }
ret llvm::LLVMBuildIsNull(B(cx), Val, noname());
}
fn IsNotNull(cx: @block_ctxt, Val: ValueRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_i1()); }
ret llvm::LLVMBuildIsNotNull(B(cx), Val, noname());
}
fn PtrDiff(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
let ccx = cx.fcx.lcx.ccx;
if cx.unreachable { ret llvm::LLVMGetUndef(ccx.int_type); }
ret llvm::LLVMBuildPtrDiff(B(cx), LHS, RHS, noname());
}
fn Trap(cx: @block_ctxt) {
if cx.unreachable { ret; }
let b = B(cx);
let BB: BasicBlockRef = llvm::LLVMGetInsertBlock(b);
let FN: ValueRef = llvm::LLVMGetBasicBlockParent(BB);
let M: ModuleRef = llvm::LLVMGetGlobalParent(FN);
let T: ValueRef = str::as_buf("llvm.trap", {|buf|
llvm::LLVMGetNamedFunction(M, buf)
});
assert (T as int != 0);
let Args: [ValueRef] = [];
unsafe {
llvm::LLVMBuildCall(b, T, vec::to_ptr(Args),
vec::len(Args), noname());
}
}
fn LandingPad(cx: @block_ctxt, Ty: TypeRef, PersFn: ValueRef,
NumClauses: uint) -> ValueRef {
assert !cx.terminated && !cx.unreachable;
ret llvm::LLVMBuildLandingPad(B(cx), Ty, PersFn, NumClauses, noname());
}
fn SetCleanup(_cx: @block_ctxt, LandingPad: ValueRef) {
llvm::LLVMSetCleanup(LandingPad, lib::llvm::True);
}
fn Resume(cx: @block_ctxt, Exn: ValueRef) -> ValueRef {
assert (!cx.terminated);
cx.terminated = true;
ret llvm::LLVMBuildResume(B(cx), Exn);
}
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'";
// End:
//