168 lines
7.3 KiB
Rust
168 lines
7.3 KiB
Rust
//! Provider for the `implied_outlives_bounds` query.
|
|
//! Do not call this query directory. See
|
|
//! [`rustc_trait_selection::traits::query::type_op::implied_outlives_bounds`].
|
|
|
|
use rustc_hir as hir;
|
|
use rustc_infer::infer::canonical::{self, Canonical};
|
|
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
|
|
use rustc_infer::traits::TraitEngineExt as _;
|
|
use rustc_middle::ty::outlives::Component;
|
|
use rustc_middle::ty::query::Providers;
|
|
use rustc_middle::ty::{self, Ty, TyCtxt, TypeFoldable};
|
|
use rustc_span::source_map::DUMMY_SP;
|
|
use rustc_trait_selection::infer::InferCtxtBuilderExt;
|
|
use rustc_trait_selection::traits::query::outlives_bounds::OutlivesBound;
|
|
use rustc_trait_selection::traits::query::{CanonicalTyGoal, Fallible, NoSolution};
|
|
use rustc_trait_selection::traits::wf;
|
|
use rustc_trait_selection::traits::FulfillmentContext;
|
|
use rustc_trait_selection::traits::TraitEngine;
|
|
use smallvec::{smallvec, SmallVec};
|
|
|
|
crate fn provide(p: &mut Providers) {
|
|
*p = Providers { implied_outlives_bounds, ..*p };
|
|
}
|
|
|
|
fn implied_outlives_bounds<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
goal: CanonicalTyGoal<'tcx>,
|
|
) -> Result<
|
|
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Vec<OutlivesBound<'tcx>>>>,
|
|
NoSolution,
|
|
> {
|
|
tcx.infer_ctxt().enter_canonical_trait_query(&goal, |infcx, _fulfill_cx, key| {
|
|
let (param_env, ty) = key.into_parts();
|
|
compute_implied_outlives_bounds(&infcx, param_env, ty)
|
|
})
|
|
}
|
|
|
|
fn compute_implied_outlives_bounds<'tcx>(
|
|
infcx: &InferCtxt<'_, 'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
) -> Fallible<Vec<OutlivesBound<'tcx>>> {
|
|
let tcx = infcx.tcx;
|
|
|
|
// Sometimes when we ask what it takes for T: WF, we get back that
|
|
// U: WF is required; in that case, we push U onto this stack and
|
|
// process it next. Currently (at least) these resulting
|
|
// predicates are always guaranteed to be a subset of the original
|
|
// type, so we need not fear non-termination.
|
|
let mut wf_args = vec![ty.into()];
|
|
|
|
let mut implied_bounds = vec![];
|
|
|
|
let mut fulfill_cx = FulfillmentContext::new();
|
|
|
|
while let Some(arg) = wf_args.pop() {
|
|
// Compute the obligations for `arg` to be well-formed. If `arg` is
|
|
// an unresolved inference variable, just substituted an empty set
|
|
// -- because the return type here is going to be things we *add*
|
|
// to the environment, it's always ok for this set to be smaller
|
|
// than the ultimate set. (Note: normally there won't be
|
|
// unresolved inference variables here anyway, but there might be
|
|
// during typeck under some circumstances.)
|
|
let obligations = wf::obligations(infcx, param_env, hir::CRATE_HIR_ID, 0, arg, DUMMY_SP)
|
|
.unwrap_or_default();
|
|
|
|
// N.B., all of these predicates *ought* to be easily proven
|
|
// true. In fact, their correctness is (mostly) implied by
|
|
// other parts of the program. However, in #42552, we had
|
|
// an annoying scenario where:
|
|
//
|
|
// - Some `T::Foo` gets normalized, resulting in a
|
|
// variable `_1` and a `T: Trait<Foo=_1>` constraint
|
|
// (not sure why it couldn't immediately get
|
|
// solved). This result of `_1` got cached.
|
|
// - These obligations were dropped on the floor here,
|
|
// rather than being registered.
|
|
// - Then later we would get a request to normalize
|
|
// `T::Foo` which would result in `_1` being used from
|
|
// the cache, but hence without the `T: Trait<Foo=_1>`
|
|
// constraint. As a result, `_1` never gets resolved,
|
|
// and we get an ICE (in dropck).
|
|
//
|
|
// Therefore, we register any predicates involving
|
|
// inference variables. We restrict ourselves to those
|
|
// involving inference variables both for efficiency and
|
|
// to avoids duplicate errors that otherwise show up.
|
|
fulfill_cx.register_predicate_obligations(
|
|
infcx,
|
|
obligations.iter().filter(|o| o.predicate.has_infer_types_or_consts()).cloned(),
|
|
);
|
|
|
|
// From the full set of obligations, just filter down to the
|
|
// region relationships.
|
|
implied_bounds.extend(obligations.into_iter().flat_map(|obligation| {
|
|
assert!(!obligation.has_escaping_bound_vars());
|
|
match obligation.predicate.kind().no_bound_vars() {
|
|
None => vec![],
|
|
Some(pred) => match pred {
|
|
ty::PredicateKind::Trait(..)
|
|
| ty::PredicateKind::Subtype(..)
|
|
| ty::PredicateKind::Projection(..)
|
|
| ty::PredicateKind::ClosureKind(..)
|
|
| ty::PredicateKind::ObjectSafe(..)
|
|
| ty::PredicateKind::ConstEvaluatable(..)
|
|
| ty::PredicateKind::ConstEquate(..)
|
|
| ty::PredicateKind::TypeWellFormedFromEnv(..) => vec![],
|
|
ty::PredicateKind::WellFormed(arg) => {
|
|
wf_args.push(arg);
|
|
vec![]
|
|
}
|
|
|
|
ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(r_a, r_b)) => {
|
|
vec![OutlivesBound::RegionSubRegion(r_b, r_a)]
|
|
}
|
|
|
|
ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty_a, r_b)) => {
|
|
let ty_a = infcx.resolve_vars_if_possible(ty_a);
|
|
let mut components = smallvec![];
|
|
tcx.push_outlives_components(ty_a, &mut components);
|
|
implied_bounds_from_components(r_b, components)
|
|
}
|
|
},
|
|
}
|
|
}));
|
|
}
|
|
|
|
// Ensure that those obligations that we had to solve
|
|
// get solved *here*.
|
|
match fulfill_cx.select_all_or_error(infcx) {
|
|
Ok(()) => Ok(implied_bounds),
|
|
Err(_) => Err(NoSolution),
|
|
}
|
|
}
|
|
|
|
/// When we have an implied bound that `T: 'a`, we can further break
|
|
/// this down to determine what relationships would have to hold for
|
|
/// `T: 'a` to hold. We get to assume that the caller has validated
|
|
/// those relationships.
|
|
fn implied_bounds_from_components(
|
|
sub_region: ty::Region<'tcx>,
|
|
sup_components: SmallVec<[Component<'tcx>; 4]>,
|
|
) -> Vec<OutlivesBound<'tcx>> {
|
|
sup_components
|
|
.into_iter()
|
|
.filter_map(|component| {
|
|
match component {
|
|
Component::Region(r) => Some(OutlivesBound::RegionSubRegion(sub_region, r)),
|
|
Component::Param(p) => Some(OutlivesBound::RegionSubParam(sub_region, p)),
|
|
Component::Projection(p) => Some(OutlivesBound::RegionSubProjection(sub_region, p)),
|
|
Component::EscapingProjection(_) =>
|
|
// If the projection has escaping regions, don't
|
|
// try to infer any implied bounds even for its
|
|
// free components. This is conservative, because
|
|
// the caller will still have to prove that those
|
|
// free components outlive `sub_region`. But the
|
|
// idea is that the WAY that the caller proves
|
|
// that may change in the future and we want to
|
|
// give ourselves room to get smarter here.
|
|
{
|
|
None
|
|
}
|
|
Component::UnresolvedInferenceVariable(..) => None,
|
|
}
|
|
})
|
|
.collect()
|
|
}
|