bors b285f1e6c9 auto merge of #8455 : nikomatsakis/rust/issue-5762-objects-dralston-d, r=graydon
Fix #5762 and various other aspects of object invocation.

r? @graydon
2013-08-11 14:17:09 -07:00

1215 lines
49 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use back::{link, abi};
use lib::llvm::{Pointer, ValueRef};
use lib;
use middle::trans::base::*;
use middle::trans::cabi;
use middle::trans::cabi_x86;
use middle::trans::cabi_x86_64;
use middle::trans::cabi_arm;
use middle::trans::cabi_mips;
use middle::trans::build::*;
use middle::trans::callee::*;
use middle::trans::common::*;
use middle::trans::datum::*;
use middle::trans::expr::Ignore;
use middle::trans::machine::llsize_of;
use middle::trans::glue;
use middle::trans::machine;
use middle::trans::type_of::*;
use middle::trans::type_of;
use middle::ty;
use middle::ty::FnSig;
use util::ppaux::ty_to_str;
use std::cell::Cell;
use std::vec;
use syntax::codemap::span;
use syntax::{ast, ast_util};
use syntax::{attr, ast_map};
use syntax::opt_vec;
use syntax::parse::token::special_idents;
use syntax::parse::token;
use syntax::abi::{X86, X86_64, Arm, Mips};
use syntax::abi::{RustIntrinsic, Rust, Stdcall, Fastcall,
Cdecl, Aapcs, C};
use middle::trans::type_::Type;
fn abi_info(ccx: @mut CrateContext) -> @cabi::ABIInfo {
return match ccx.sess.targ_cfg.arch {
X86 => cabi_x86::abi_info(ccx),
X86_64 => cabi_x86_64::abi_info(),
Arm => cabi_arm::abi_info(),
Mips => cabi_mips::abi_info(),
}
}
pub fn link_name(ccx: &CrateContext, i: &ast::foreign_item) -> @str {
match attr::first_attr_value_str_by_name(i.attrs, "link_name") {
None => ccx.sess.str_of(i.ident),
Some(ln) => ln,
}
}
struct ShimTypes {
fn_sig: ty::FnSig,
/// LLVM types that will appear on the foreign function
llsig: LlvmSignature,
/// True if there is a return value (not bottom, not unit)
ret_def: bool,
/// Type of the struct we will use to shuttle values back and forth.
/// This is always derived from the llsig.
bundle_ty: Type,
/// Type of the shim function itself.
shim_fn_ty: Type,
/// Adapter object for handling native ABI rules (trust me, you
/// don't want to know).
fn_ty: cabi::FnType
}
struct LlvmSignature {
llarg_tys: ~[Type],
llret_ty: Type,
sret: bool,
}
fn foreign_signature(ccx: &mut CrateContext, fn_sig: &ty::FnSig)
-> LlvmSignature {
/*!
* The ForeignSignature is the LLVM types of the arguments/return type
* of a function. Note that these LLVM types are not quite the same
* as the LLVM types would be for a native Rust function because foreign
* functions just plain ignore modes. They also don't pass aggregate
* values by pointer like we do.
*/
let llarg_tys = fn_sig.inputs.map(|arg_ty| type_of(ccx, *arg_ty));
let llret_ty = type_of::type_of(ccx, fn_sig.output);
LlvmSignature {
llarg_tys: llarg_tys,
llret_ty: llret_ty,
sret: !ty::type_is_immediate(ccx.tcx, fn_sig.output),
}
}
fn shim_types(ccx: @mut CrateContext, id: ast::NodeId) -> ShimTypes {
let fn_sig = match ty::get(ty::node_id_to_type(ccx.tcx, id)).sty {
ty::ty_bare_fn(ref fn_ty) => fn_ty.sig.clone(),
_ => ccx.sess.bug("c_arg_and_ret_lltys called on non-function type")
};
let llsig = foreign_signature(ccx, &fn_sig);
let bundle_ty = Type::struct_(llsig.llarg_tys + &[llsig.llret_ty.ptr_to()], false);
let ret_def = !ty::type_is_bot(fn_sig.output) &&
!ty::type_is_nil(fn_sig.output);
let fn_ty = abi_info(ccx).compute_info(llsig.llarg_tys, llsig.llret_ty, ret_def);
ShimTypes {
fn_sig: fn_sig,
llsig: llsig,
ret_def: ret_def,
bundle_ty: bundle_ty,
shim_fn_ty: Type::func([bundle_ty.ptr_to()], &Type::void()),
fn_ty: fn_ty
}
}
type shim_arg_builder<'self> =
&'self fn(bcx: @mut Block, tys: &ShimTypes,
llargbundle: ValueRef) -> ~[ValueRef];
type shim_ret_builder<'self> =
&'self fn(bcx: @mut Block, tys: &ShimTypes,
llargbundle: ValueRef,
llretval: ValueRef);
fn build_shim_fn_(ccx: @mut CrateContext,
shim_name: &str,
llbasefn: ValueRef,
tys: &ShimTypes,
cc: lib::llvm::CallConv,
arg_builder: shim_arg_builder,
ret_builder: shim_ret_builder)
-> ValueRef {
let llshimfn = decl_internal_cdecl_fn(
ccx.llmod, shim_name, tys.shim_fn_ty);
// Declare the body of the shim function:
let fcx = new_fn_ctxt(ccx, ~[], llshimfn, tys.fn_sig.output, None);
let bcx = fcx.entry_bcx.unwrap();
let llargbundle = get_param(llshimfn, 0u);
let llargvals = arg_builder(bcx, tys, llargbundle);
// Create the call itself and store the return value:
let llretval = CallWithConv(bcx, llbasefn, llargvals, cc);
ret_builder(bcx, tys, llargbundle, llretval);
// Don't finish up the function in the usual way, because this doesn't
// follow the normal Rust calling conventions.
let ret_cx = match fcx.llreturn {
Some(llreturn) => raw_block(fcx, false, llreturn),
None => bcx
};
RetVoid(ret_cx);
fcx.cleanup();
return llshimfn;
}
type wrap_arg_builder<'self> = &'self fn(bcx: @mut Block,
tys: &ShimTypes,
llwrapfn: ValueRef,
llargbundle: ValueRef);
type wrap_ret_builder<'self> = &'self fn(bcx: @mut Block,
tys: &ShimTypes,
llargbundle: ValueRef);
fn build_wrap_fn_(ccx: @mut CrateContext,
tys: &ShimTypes,
llshimfn: ValueRef,
llwrapfn: ValueRef,
shim_upcall: ValueRef,
needs_c_return: bool,
arg_builder: wrap_arg_builder,
ret_builder: wrap_ret_builder) {
let _icx = push_ctxt("foreign::build_wrap_fn_");
let fcx = new_fn_ctxt(ccx, ~[], llwrapfn, tys.fn_sig.output, None);
let bcx = fcx.entry_bcx.unwrap();
// Patch up the return type if it's not immediate and we're returning via
// the C ABI.
if needs_c_return && !ty::type_is_immediate(ccx.tcx, tys.fn_sig.output) {
let lloutputtype = type_of::type_of(fcx.ccx, tys.fn_sig.output);
fcx.llretptr = Some(alloca(bcx, lloutputtype, ""));
}
// Allocate the struct and write the arguments into it.
let llargbundle = alloca(bcx, tys.bundle_ty, "__llargbundle");
arg_builder(bcx, tys, llwrapfn, llargbundle);
// Create call itself.
let llshimfnptr = PointerCast(bcx, llshimfn, Type::i8p());
let llrawargbundle = PointerCast(bcx, llargbundle, Type::i8p());
Call(bcx, shim_upcall, [llrawargbundle, llshimfnptr]);
ret_builder(bcx, tys, llargbundle);
// Then return according to the C ABI.
let return_context = match fcx.llreturn {
Some(llreturn) => raw_block(fcx, false, llreturn),
None => bcx
};
let llfunctiontype = val_ty(llwrapfn);
let llfunctiontype = llfunctiontype.element_type();
let return_type = llfunctiontype.return_type();
if return_type.kind() == ::lib::llvm::Void {
// XXX: This might be wrong if there are any functions for which
// the C ABI specifies a void output pointer and the Rust ABI
// does not.
RetVoid(return_context);
} else {
// Cast if we have to...
// XXX: This is ugly.
let llretptr = BitCast(return_context, fcx.llretptr.unwrap(), return_type.ptr_to());
Ret(return_context, Load(return_context, llretptr));
}
fcx.cleanup();
}
// For each foreign function F, we generate a wrapper function W and a shim
// function S that all work together. The wrapper function W is the function
// that other rust code actually invokes. Its job is to marshall the
// arguments into a struct. It then uses a small bit of assembly to switch
// over to the C stack and invoke the shim function. The shim function S then
// unpacks the arguments from the struct and invokes the actual function F
// according to its specified calling convention.
//
// Example: Given a foreign c-stack function F(x: X, y: Y) -> Z,
// we generate a wrapper function W that looks like:
//
// void W(Z* dest, void *env, X x, Y y) {
// struct { X x; Y y; Z *z; } args = { x, y, z };
// call_on_c_stack_shim(S, &args);
// }
//
// The shim function S then looks something like:
//
// void S(struct { X x; Y y; Z *z; } *args) {
// *args->z = F(args->x, args->y);
// }
//
// However, if the return type of F is dynamically sized or of aggregate type,
// the shim function looks like:
//
// void S(struct { X x; Y y; Z *z; } *args) {
// F(args->z, args->x, args->y);
// }
//
// Note: on i386, the layout of the args struct is generally the same
// as the desired layout of the arguments on the C stack. Therefore,
// we could use upcall_alloc_c_stack() to allocate the `args`
// structure and switch the stack pointer appropriately to avoid a
// round of copies. (In fact, the shim function itself is
// unnecessary). We used to do this, in fact, and will perhaps do so
// in the future.
pub fn trans_foreign_mod(ccx: @mut CrateContext,
path: &ast_map::path,
foreign_mod: &ast::foreign_mod) {
let _icx = push_ctxt("foreign::trans_foreign_mod");
let arch = ccx.sess.targ_cfg.arch;
let abi = match foreign_mod.abis.for_arch(arch) {
None => {
ccx.sess.fatal(
fmt!("No suitable ABI for target architecture \
in module %s",
ast_map::path_to_str(*path,
ccx.sess.intr())));
}
Some(abi) => abi,
};
for &foreign_item in foreign_mod.items.iter() {
match foreign_item.node {
ast::foreign_item_fn(*) => {
let id = foreign_item.id;
match abi {
RustIntrinsic => {
// Intrinsics are emitted by monomorphic fn
}
Rust => {
// FIXME(#3678) Implement linking to foreign fns with Rust ABI
ccx.sess.unimpl(
fmt!("Foreign functions with Rust ABI"));
}
Stdcall => {
build_foreign_fn(ccx, id, foreign_item,
lib::llvm::X86StdcallCallConv);
}
Fastcall => {
build_foreign_fn(ccx, id, foreign_item,
lib::llvm::X86FastcallCallConv);
}
Cdecl => {
// FIXME(#3678) should really be more specific
build_foreign_fn(ccx, id, foreign_item,
lib::llvm::CCallConv);
}
Aapcs => {
// FIXME(#3678) should really be more specific
build_foreign_fn(ccx, id, foreign_item,
lib::llvm::CCallConv);
}
C => {
build_foreign_fn(ccx, id, foreign_item,
lib::llvm::CCallConv);
}
}
}
ast::foreign_item_static(*) => {
let ident = token::ident_to_str(&foreign_item.ident);
ccx.item_symbols.insert(foreign_item.id, /* bad */ident.to_owned());
}
}
}
fn build_foreign_fn(ccx: @mut CrateContext,
id: ast::NodeId,
foreign_item: @ast::foreign_item,
cc: lib::llvm::CallConv) {
let llwrapfn = get_item_val(ccx, id);
let tys = shim_types(ccx, id);
if attr::contains_name(foreign_item.attrs, "rust_stack") {
build_direct_fn(ccx, llwrapfn, foreign_item,
&tys, cc);
} else if attr::contains_name(foreign_item.attrs, "fast_ffi") {
build_fast_ffi_fn(ccx, llwrapfn, foreign_item, &tys, cc);
} else {
let llshimfn = build_shim_fn(ccx, foreign_item, &tys, cc);
build_wrap_fn(ccx, &tys, llshimfn, llwrapfn);
}
}
fn build_shim_fn(ccx: @mut CrateContext,
foreign_item: &ast::foreign_item,
tys: &ShimTypes,
cc: lib::llvm::CallConv)
-> ValueRef {
/*!
*
* Build S, from comment above:
*
* void S(struct { X x; Y y; Z *z; } *args) {
* F(args->z, args->x, args->y);
* }
*/
let _icx = push_ctxt("foreign::build_shim_fn");
fn build_args(bcx: @mut Block, tys: &ShimTypes, llargbundle: ValueRef)
-> ~[ValueRef] {
let _icx = push_ctxt("foreign::shim::build_args");
tys.fn_ty.build_shim_args(bcx, tys.llsig.llarg_tys, llargbundle)
}
fn build_ret(bcx: @mut Block,
tys: &ShimTypes,
llargbundle: ValueRef,
llretval: ValueRef) {
let _icx = push_ctxt("foreign::shim::build_ret");
tys.fn_ty.build_shim_ret(bcx,
tys.llsig.llarg_tys,
tys.ret_def,
llargbundle,
llretval);
}
let lname = link_name(ccx, foreign_item);
let llbasefn = base_fn(ccx, lname, tys, cc);
// Name the shim function
let shim_name = fmt!("%s__c_stack_shim", lname);
build_shim_fn_(ccx,
shim_name,
llbasefn,
tys,
cc,
build_args,
build_ret)
}
fn base_fn(ccx: &CrateContext,
lname: &str,
tys: &ShimTypes,
cc: lib::llvm::CallConv)
-> ValueRef {
// Declare the "prototype" for the base function F:
do tys.fn_ty.decl_fn |fnty| {
decl_fn(ccx.llmod, lname, cc, fnty)
}
}
// FIXME (#2535): this is very shaky and probably gets ABIs wrong all
// over the place
fn build_direct_fn(ccx: @mut CrateContext,
decl: ValueRef,
item: &ast::foreign_item,
tys: &ShimTypes,
cc: lib::llvm::CallConv) {
debug!("build_direct_fn(%s)", link_name(ccx, item));
let fcx = new_fn_ctxt(ccx, ~[], decl, tys.fn_sig.output, None);
let bcx = fcx.entry_bcx.unwrap();
let llbasefn = base_fn(ccx, link_name(ccx, item), tys, cc);
let ty = ty::lookup_item_type(ccx.tcx,
ast_util::local_def(item.id)).ty;
let ret_ty = ty::ty_fn_ret(ty);
let args = vec::from_fn(ty::ty_fn_args(ty).len(), |i| {
get_param(decl, fcx.arg_pos(i))
});
let retval = Call(bcx, llbasefn, args);
if !ty::type_is_nil(ret_ty) && !ty::type_is_bot(ret_ty) {
Store(bcx, retval, fcx.llretptr.unwrap());
}
finish_fn(fcx, bcx);
}
// FIXME (#2535): this is very shaky and probably gets ABIs wrong all
// over the place
fn build_fast_ffi_fn(ccx: @mut CrateContext,
decl: ValueRef,
item: &ast::foreign_item,
tys: &ShimTypes,
cc: lib::llvm::CallConv) {
debug!("build_fast_ffi_fn(%s)", link_name(ccx, item));
let fcx = new_fn_ctxt(ccx, ~[], decl, tys.fn_sig.output, None);
let bcx = fcx.entry_bcx.unwrap();
let llbasefn = base_fn(ccx, link_name(ccx, item), tys, cc);
set_no_inline(fcx.llfn);
set_fixed_stack_segment(fcx.llfn);
let ty = ty::lookup_item_type(ccx.tcx,
ast_util::local_def(item.id)).ty;
let ret_ty = ty::ty_fn_ret(ty);
let args = vec::from_fn(ty::ty_fn_args(ty).len(), |i| {
get_param(decl, fcx.arg_pos(i))
});
let retval = Call(bcx, llbasefn, args);
if !ty::type_is_nil(ret_ty) && !ty::type_is_bot(ret_ty) {
Store(bcx, retval, fcx.llretptr.unwrap());
}
finish_fn(fcx, bcx);
}
fn build_wrap_fn(ccx: @mut CrateContext,
tys: &ShimTypes,
llshimfn: ValueRef,
llwrapfn: ValueRef) {
/*!
*
* Build W, from comment above:
*
* void W(Z* dest, void *env, X x, Y y) {
* struct { X x; Y y; Z *z; } args = { x, y, z };
* call_on_c_stack_shim(S, &args);
* }
*
* One thing we have to be very careful of is to
* account for the Rust modes.
*/
let _icx = push_ctxt("foreign::build_wrap_fn");
build_wrap_fn_(ccx,
tys,
llshimfn,
llwrapfn,
ccx.upcalls.call_shim_on_c_stack,
false,
build_args,
build_ret);
fn build_args(bcx: @mut Block,
tys: &ShimTypes,
llwrapfn: ValueRef,
llargbundle: ValueRef) {
let _icx = push_ctxt("foreign::wrap::build_args");
let ccx = bcx.ccx();
let n = tys.llsig.llarg_tys.len();
for i in range(0u, n) {
let arg_i = bcx.fcx.arg_pos(i);
let mut llargval = get_param(llwrapfn, arg_i);
// In some cases, Rust will pass a pointer which the
// native C type doesn't have. In that case, just
// load the value from the pointer.
if type_of::arg_is_indirect(ccx, &tys.fn_sig.inputs[i]) {
llargval = Load(bcx, llargval);
}
store_inbounds(bcx, llargval, llargbundle, [0u, i]);
}
for &retptr in bcx.fcx.llretptr.iter() {
store_inbounds(bcx, retptr, llargbundle, [0u, n]);
}
}
fn build_ret(bcx: @mut Block,
shim_types: &ShimTypes,
llargbundle: ValueRef) {
let _icx = push_ctxt("foreign::wrap::build_ret");
let arg_count = shim_types.fn_sig.inputs.len();
for &retptr in bcx.fcx.llretptr.iter() {
let llretptr = load_inbounds(bcx, llargbundle, [0, arg_count]);
Store(bcx, Load(bcx, llretptr), retptr);
}
}
}
}
pub fn trans_intrinsic(ccx: @mut CrateContext,
decl: ValueRef,
item: &ast::foreign_item,
path: ast_map::path,
substs: @param_substs,
attributes: &[ast::Attribute],
ref_id: Option<ast::NodeId>) {
debug!("trans_intrinsic(item.ident=%s)", ccx.sess.str_of(item.ident));
fn simple_llvm_intrinsic(bcx: @mut Block, name: &'static str, num_args: uint) {
assert!(num_args <= 4);
let mut args = [0 as ValueRef, ..4];
let first_real_arg = bcx.fcx.arg_pos(0u);
for i in range(0u, num_args) {
args[i] = get_param(bcx.fcx.llfn, first_real_arg + i);
}
let llfn = bcx.ccx().intrinsics.get_copy(&name);
Ret(bcx, Call(bcx, llfn, args.slice(0, num_args)));
}
fn with_overflow_instrinsic(bcx: @mut Block, name: &'static str) {
let first_real_arg = bcx.fcx.arg_pos(0u);
let a = get_param(bcx.fcx.llfn, first_real_arg);
let b = get_param(bcx.fcx.llfn, first_real_arg + 1);
let llfn = bcx.ccx().intrinsics.get_copy(&name);
// convert `i1` to a `bool`, and write to the out parameter
let val = Call(bcx, llfn, [a, b]);
let result = ExtractValue(bcx, val, 0);
let overflow = ZExt(bcx, ExtractValue(bcx, val, 1), Type::bool());
let retptr = get_param(bcx.fcx.llfn, bcx.fcx.out_arg_pos());
let ret = Load(bcx, retptr);
let ret = InsertValue(bcx, ret, result, 0);
let ret = InsertValue(bcx, ret, overflow, 1);
Store(bcx, ret, retptr);
RetVoid(bcx)
}
fn memcpy_intrinsic(bcx: @mut Block, name: &'static str, tp_ty: ty::t, sizebits: u8) {
let ccx = bcx.ccx();
let lltp_ty = type_of::type_of(ccx, tp_ty);
let align = C_i32(machine::llalign_of_min(ccx, lltp_ty) as i32);
let size = match sizebits {
32 => C_i32(machine::llsize_of_real(ccx, lltp_ty) as i32),
64 => C_i64(machine::llsize_of_real(ccx, lltp_ty) as i64),
_ => ccx.sess.fatal("Invalid value for sizebits")
};
let decl = bcx.fcx.llfn;
let first_real_arg = bcx.fcx.arg_pos(0u);
let dst_ptr = PointerCast(bcx, get_param(decl, first_real_arg), Type::i8p());
let src_ptr = PointerCast(bcx, get_param(decl, first_real_arg + 1), Type::i8p());
let count = get_param(decl, first_real_arg + 2);
let volatile = C_i1(false);
let llfn = bcx.ccx().intrinsics.get_copy(&name);
Call(bcx, llfn, [dst_ptr, src_ptr, Mul(bcx, size, count), align, volatile]);
RetVoid(bcx);
}
fn memset_intrinsic(bcx: @mut Block, name: &'static str, tp_ty: ty::t, sizebits: u8) {
let ccx = bcx.ccx();
let lltp_ty = type_of::type_of(ccx, tp_ty);
let align = C_i32(machine::llalign_of_min(ccx, lltp_ty) as i32);
let size = match sizebits {
32 => C_i32(machine::llsize_of_real(ccx, lltp_ty) as i32),
64 => C_i64(machine::llsize_of_real(ccx, lltp_ty) as i64),
_ => ccx.sess.fatal("Invalid value for sizebits")
};
let decl = bcx.fcx.llfn;
let first_real_arg = bcx.fcx.arg_pos(0u);
let dst_ptr = PointerCast(bcx, get_param(decl, first_real_arg), Type::i8p());
let val = get_param(decl, first_real_arg + 1);
let count = get_param(decl, first_real_arg + 2);
let volatile = C_i1(false);
let llfn = bcx.ccx().intrinsics.get_copy(&name);
Call(bcx, llfn, [dst_ptr, val, Mul(bcx, size, count), align, volatile]);
RetVoid(bcx);
}
fn count_zeros_intrinsic(bcx: @mut Block, name: &'static str) {
let x = get_param(bcx.fcx.llfn, bcx.fcx.arg_pos(0u));
let y = C_i1(false);
let llfn = bcx.ccx().intrinsics.get_copy(&name);
Ret(bcx, Call(bcx, llfn, [x, y]));
}
let output_type = ty::ty_fn_ret(ty::node_id_to_type(ccx.tcx, item.id));
let fcx = new_fn_ctxt_w_id(ccx,
path,
decl,
item.id,
output_type,
true,
Some(substs),
None,
Some(item.span));
set_always_inline(fcx.llfn);
// Set the fixed stack segment flag if necessary.
if attr::contains_name(attributes, "fixed_stack_segment") {
set_fixed_stack_segment(fcx.llfn);
}
let mut bcx = fcx.entry_bcx.unwrap();
let first_real_arg = fcx.arg_pos(0u);
let nm = ccx.sess.str_of(item.ident);
let name = nm.as_slice();
// This requires that atomic intrinsics follow a specific naming pattern:
// "atomic_<operation>[_<ordering>], and no ordering means SeqCst
if name.starts_with("atomic_") {
let split : ~[&str] = name.split_iter('_').collect();
assert!(split.len() >= 2, "Atomic intrinsic not correct format");
let order = if split.len() == 2 {
lib::llvm::SequentiallyConsistent
} else {
match split[2] {
"relaxed" => lib::llvm::Monotonic,
"acq" => lib::llvm::Acquire,
"rel" => lib::llvm::Release,
"acqrel" => lib::llvm::AcquireRelease,
_ => ccx.sess.fatal("Unknown ordering in atomic intrinsic")
}
};
match split[1] {
"cxchg" => {
let old = AtomicCmpXchg(bcx, get_param(decl, first_real_arg),
get_param(decl, first_real_arg + 1u),
get_param(decl, first_real_arg + 2u),
order);
Ret(bcx, old);
}
"load" => {
let old = AtomicLoad(bcx, get_param(decl, first_real_arg),
order);
Ret(bcx, old);
}
"store" => {
AtomicStore(bcx, get_param(decl, first_real_arg + 1u),
get_param(decl, first_real_arg),
order);
RetVoid(bcx);
}
"fence" => {
AtomicFence(bcx, order);
RetVoid(bcx);
}
op => {
// These are all AtomicRMW ops
let atom_op = match op {
"xchg" => lib::llvm::Xchg,
"xadd" => lib::llvm::Add,
"xsub" => lib::llvm::Sub,
"and" => lib::llvm::And,
"nand" => lib::llvm::Nand,
"or" => lib::llvm::Or,
"xor" => lib::llvm::Xor,
"max" => lib::llvm::Max,
"min" => lib::llvm::Min,
"umax" => lib::llvm::UMax,
"umin" => lib::llvm::UMin,
_ => ccx.sess.fatal("Unknown atomic operation")
};
let old = AtomicRMW(bcx, atom_op, get_param(decl, first_real_arg),
get_param(decl, first_real_arg + 1u),
order);
Ret(bcx, old);
}
}
fcx.cleanup();
return;
}
match name {
"size_of" => {
let tp_ty = substs.tys[0];
let lltp_ty = type_of::type_of(ccx, tp_ty);
Ret(bcx, C_uint(ccx, machine::llsize_of_real(ccx, lltp_ty)));
}
"move_val" => {
// Create a datum reflecting the value being moved.
// Use `appropriate_mode` so that the datum is by ref
// if the value is non-immediate. Note that, with
// intrinsics, there are no argument cleanups to
// concern ourselves with.
let tp_ty = substs.tys[0];
let mode = appropriate_mode(ccx.tcx, tp_ty);
let src = Datum {val: get_param(decl, first_real_arg + 1u),
ty: tp_ty, mode: mode};
bcx = src.move_to(bcx, DROP_EXISTING,
get_param(decl, first_real_arg));
RetVoid(bcx);
}
"move_val_init" => {
// See comments for `"move_val"`.
let tp_ty = substs.tys[0];
let mode = appropriate_mode(ccx.tcx, tp_ty);
let src = Datum {val: get_param(decl, first_real_arg + 1u),
ty: tp_ty, mode: mode};
bcx = src.move_to(bcx, INIT, get_param(decl, first_real_arg));
RetVoid(bcx);
}
"min_align_of" => {
let tp_ty = substs.tys[0];
let lltp_ty = type_of::type_of(ccx, tp_ty);
Ret(bcx, C_uint(ccx, machine::llalign_of_min(ccx, lltp_ty)));
}
"pref_align_of"=> {
let tp_ty = substs.tys[0];
let lltp_ty = type_of::type_of(ccx, tp_ty);
Ret(bcx, C_uint(ccx, machine::llalign_of_pref(ccx, lltp_ty)));
}
"get_tydesc" => {
let tp_ty = substs.tys[0];
let static_ti = get_tydesc(ccx, tp_ty);
glue::lazily_emit_all_tydesc_glue(ccx, static_ti);
// FIXME (#3730): ideally this shouldn't need a cast,
// but there's a circularity between translating rust types to llvm
// types and having a tydesc type available. So I can't directly access
// the llvm type of intrinsic::TyDesc struct.
let userland_tydesc_ty = type_of::type_of(ccx, output_type);
let td = PointerCast(bcx, static_ti.tydesc, userland_tydesc_ty);
Ret(bcx, td);
}
"init" => {
let tp_ty = substs.tys[0];
let lltp_ty = type_of::type_of(ccx, tp_ty);
match bcx.fcx.llretptr {
Some(ptr) => { Store(bcx, C_null(lltp_ty), ptr); RetVoid(bcx); }
None if ty::type_is_nil(tp_ty) => RetVoid(bcx),
None => Ret(bcx, C_null(lltp_ty)),
}
}
"uninit" => {
// Do nothing, this is effectively a no-op
let retty = substs.tys[0];
if ty::type_is_immediate(ccx.tcx, retty) && !ty::type_is_nil(retty) {
unsafe {
Ret(bcx, lib::llvm::llvm::LLVMGetUndef(type_of(ccx, retty).to_ref()));
}
} else {
RetVoid(bcx)
}
}
"forget" => {
RetVoid(bcx);
}
"transmute" => {
let (in_type, out_type) = (substs.tys[0], substs.tys[1]);
let llintype = type_of::type_of(ccx, in_type);
let llouttype = type_of::type_of(ccx, out_type);
let in_type_size = machine::llbitsize_of_real(ccx, llintype);
let out_type_size = machine::llbitsize_of_real(ccx, llouttype);
if in_type_size != out_type_size {
let sp = match ccx.tcx.items.get_copy(&ref_id.unwrap()) {
ast_map::node_expr(e) => e.span,
_ => fail!("transmute has non-expr arg"),
};
let pluralize = |n| if 1u == n { "" } else { "s" };
ccx.sess.span_fatal(sp,
fmt!("transmute called on types with \
different sizes: %s (%u bit%s) to \
%s (%u bit%s)",
ty_to_str(ccx.tcx, in_type),
in_type_size,
pluralize(in_type_size),
ty_to_str(ccx.tcx, out_type),
out_type_size,
pluralize(out_type_size)));
}
if !ty::type_is_nil(out_type) {
let llsrcval = get_param(decl, first_real_arg);
if ty::type_is_immediate(ccx.tcx, in_type) {
match fcx.llretptr {
Some(llretptr) => {
Store(bcx, llsrcval, PointerCast(bcx, llretptr, llintype.ptr_to()));
RetVoid(bcx);
}
None => match (llintype.kind(), llouttype.kind()) {
(Pointer, other) | (other, Pointer) if other != Pointer => {
let tmp = Alloca(bcx, llouttype, "");
Store(bcx, llsrcval, PointerCast(bcx, tmp, llintype.ptr_to()));
Ret(bcx, Load(bcx, tmp));
}
_ => Ret(bcx, BitCast(bcx, llsrcval, llouttype))
}
}
} else if ty::type_is_immediate(ccx.tcx, out_type) {
let llsrcptr = PointerCast(bcx, llsrcval, llouttype.ptr_to());
Ret(bcx, Load(bcx, llsrcptr));
} else {
// NB: Do not use a Load and Store here. This causes massive
// code bloat when `transmute` is used on large structural
// types.
let lldestptr = fcx.llretptr.unwrap();
let lldestptr = PointerCast(bcx, lldestptr, Type::i8p());
let llsrcptr = PointerCast(bcx, llsrcval, Type::i8p());
let llsize = llsize_of(ccx, llintype);
call_memcpy(bcx, lldestptr, llsrcptr, llsize, 1);
RetVoid(bcx);
};
} else {
RetVoid(bcx);
}
}
"needs_drop" => {
let tp_ty = substs.tys[0];
Ret(bcx, C_bool(ty::type_needs_drop(ccx.tcx, tp_ty)));
}
"contains_managed" => {
let tp_ty = substs.tys[0];
Ret(bcx, C_bool(ty::type_contents(ccx.tcx, tp_ty).contains_managed()));
}
"visit_tydesc" => {
let td = get_param(decl, first_real_arg);
let visitor = get_param(decl, first_real_arg + 1u);
let td = PointerCast(bcx, td, ccx.tydesc_type.ptr_to());
glue::call_tydesc_glue_full(bcx, visitor, td,
abi::tydesc_field_visit_glue, None);
RetVoid(bcx);
}
"frame_address" => {
let frameaddress = ccx.intrinsics.get_copy(& &"llvm.frameaddress");
let frameaddress_val = Call(bcx, frameaddress, [C_i32(0i32)]);
let star_u8 = ty::mk_imm_ptr(
bcx.tcx(),
ty::mk_mach_uint(ast::ty_u8));
let fty = ty::mk_closure(bcx.tcx(), ty::ClosureTy {
purity: ast::impure_fn,
sigil: ast::BorrowedSigil,
onceness: ast::Many,
region: ty::re_bound(ty::br_anon(0)),
bounds: ty::EmptyBuiltinBounds(),
sig: FnSig {
bound_lifetime_names: opt_vec::Empty,
inputs: ~[ star_u8 ],
output: ty::mk_nil()
}
});
let datum = Datum {val: get_param(decl, first_real_arg),
mode: ByRef(ZeroMem), ty: fty};
let arg_vals = ~[frameaddress_val];
bcx = trans_call_inner(
bcx, None, fty, ty::mk_nil(),
|bcx| Callee {bcx: bcx, data: Closure(datum)},
ArgVals(arg_vals), Some(Ignore), DontAutorefArg).bcx;
RetVoid(bcx);
}
"morestack_addr" => {
// XXX This is a hack to grab the address of this particular
// native function. There should be a general in-language
// way to do this
let llfty = type_of_fn(bcx.ccx(), [], ty::mk_nil());
let morestack_addr = decl_cdecl_fn(
bcx.ccx().llmod, "__morestack", llfty);
let morestack_addr = PointerCast(bcx, morestack_addr, Type::nil().ptr_to());
Ret(bcx, morestack_addr);
}
"offset" => {
let ptr = get_param(decl, first_real_arg);
let offset = get_param(decl, first_real_arg + 1);
Ret(bcx, GEP(bcx, ptr, [offset]));
}
"offset_inbounds" => {
let ptr = get_param(decl, first_real_arg);
let offset = get_param(decl, first_real_arg + 1);
Ret(bcx, InBoundsGEP(bcx, ptr, [offset]));
}
"memcpy32" => memcpy_intrinsic(bcx, "llvm.memcpy.p0i8.p0i8.i32", substs.tys[0], 32),
"memcpy64" => memcpy_intrinsic(bcx, "llvm.memcpy.p0i8.p0i8.i64", substs.tys[0], 64),
"memmove32" => memcpy_intrinsic(bcx, "llvm.memmove.p0i8.p0i8.i32", substs.tys[0], 32),
"memmove64" => memcpy_intrinsic(bcx, "llvm.memmove.p0i8.p0i8.i64", substs.tys[0], 64),
"memset32" => memset_intrinsic(bcx, "llvm.memset.p0i8.i32", substs.tys[0], 32),
"memset64" => memset_intrinsic(bcx, "llvm.memset.p0i8.i64", substs.tys[0], 64),
"sqrtf32" => simple_llvm_intrinsic(bcx, "llvm.sqrt.f32", 1),
"sqrtf64" => simple_llvm_intrinsic(bcx, "llvm.sqrt.f64", 1),
"powif32" => simple_llvm_intrinsic(bcx, "llvm.powi.f32", 2),
"powif64" => simple_llvm_intrinsic(bcx, "llvm.powi.f64", 2),
"sinf32" => simple_llvm_intrinsic(bcx, "llvm.sin.f32", 1),
"sinf64" => simple_llvm_intrinsic(bcx, "llvm.sin.f64", 1),
"cosf32" => simple_llvm_intrinsic(bcx, "llvm.cos.f32", 1),
"cosf64" => simple_llvm_intrinsic(bcx, "llvm.cos.f64", 1),
"powf32" => simple_llvm_intrinsic(bcx, "llvm.pow.f32", 2),
"powf64" => simple_llvm_intrinsic(bcx, "llvm.pow.f64", 2),
"expf32" => simple_llvm_intrinsic(bcx, "llvm.exp.f32", 1),
"expf64" => simple_llvm_intrinsic(bcx, "llvm.exp.f64", 1),
"exp2f32" => simple_llvm_intrinsic(bcx, "llvm.exp2.f32", 1),
"exp2f64" => simple_llvm_intrinsic(bcx, "llvm.exp2.f64", 1),
"logf32" => simple_llvm_intrinsic(bcx, "llvm.log.f32", 1),
"logf64" => simple_llvm_intrinsic(bcx, "llvm.log.f64", 1),
"log10f32" => simple_llvm_intrinsic(bcx, "llvm.log10.f32", 1),
"log10f64" => simple_llvm_intrinsic(bcx, "llvm.log10.f64", 1),
"log2f32" => simple_llvm_intrinsic(bcx, "llvm.log2.f32", 1),
"log2f64" => simple_llvm_intrinsic(bcx, "llvm.log2.f64", 1),
"fmaf32" => simple_llvm_intrinsic(bcx, "llvm.fma.f32", 3),
"fmaf64" => simple_llvm_intrinsic(bcx, "llvm.fma.f64", 3),
"fabsf32" => simple_llvm_intrinsic(bcx, "llvm.fabs.f32", 1),
"fabsf64" => simple_llvm_intrinsic(bcx, "llvm.fabs.f64", 1),
"floorf32" => simple_llvm_intrinsic(bcx, "llvm.floor.f32", 1),
"floorf64" => simple_llvm_intrinsic(bcx, "llvm.floor.f64", 1),
"ceilf32" => simple_llvm_intrinsic(bcx, "llvm.ceil.f32", 1),
"ceilf64" => simple_llvm_intrinsic(bcx, "llvm.ceil.f64", 1),
"truncf32" => simple_llvm_intrinsic(bcx, "llvm.trunc.f32", 1),
"truncf64" => simple_llvm_intrinsic(bcx, "llvm.trunc.f64", 1),
"ctpop8" => simple_llvm_intrinsic(bcx, "llvm.ctpop.i8", 1),
"ctpop16" => simple_llvm_intrinsic(bcx, "llvm.ctpop.i16", 1),
"ctpop32" => simple_llvm_intrinsic(bcx, "llvm.ctpop.i32", 1),
"ctpop64" => simple_llvm_intrinsic(bcx, "llvm.ctpop.i64", 1),
"ctlz8" => count_zeros_intrinsic(bcx, "llvm.ctlz.i8"),
"ctlz16" => count_zeros_intrinsic(bcx, "llvm.ctlz.i16"),
"ctlz32" => count_zeros_intrinsic(bcx, "llvm.ctlz.i32"),
"ctlz64" => count_zeros_intrinsic(bcx, "llvm.ctlz.i64"),
"cttz8" => count_zeros_intrinsic(bcx, "llvm.cttz.i8"),
"cttz16" => count_zeros_intrinsic(bcx, "llvm.cttz.i16"),
"cttz32" => count_zeros_intrinsic(bcx, "llvm.cttz.i32"),
"cttz64" => count_zeros_intrinsic(bcx, "llvm.cttz.i64"),
"bswap16" => simple_llvm_intrinsic(bcx, "llvm.bswap.i16", 1),
"bswap32" => simple_llvm_intrinsic(bcx, "llvm.bswap.i32", 1),
"bswap64" => simple_llvm_intrinsic(bcx, "llvm.bswap.i64", 1),
"i8_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.sadd.with.overflow.i8"),
"i16_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.sadd.with.overflow.i16"),
"i32_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.sadd.with.overflow.i32"),
"i64_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.sadd.with.overflow.i64"),
"u8_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.uadd.with.overflow.i8"),
"u16_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.uadd.with.overflow.i16"),
"u32_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.uadd.with.overflow.i32"),
"u64_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.uadd.with.overflow.i64"),
"i8_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.ssub.with.overflow.i8"),
"i16_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.ssub.with.overflow.i16"),
"i32_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.ssub.with.overflow.i32"),
"i64_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.ssub.with.overflow.i64"),
"u8_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.usub.with.overflow.i8"),
"u16_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.usub.with.overflow.i16"),
"u32_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.usub.with.overflow.i32"),
"u64_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.usub.with.overflow.i64"),
"i8_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.smul.with.overflow.i8"),
"i16_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.smul.with.overflow.i16"),
"i32_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.smul.with.overflow.i32"),
"i64_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.smul.with.overflow.i64"),
"u8_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.umul.with.overflow.i8"),
"u16_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.umul.with.overflow.i16"),
"u32_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.umul.with.overflow.i32"),
"u64_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.umul.with.overflow.i64"),
_ => {
// Could we make this an enum rather than a string? does it get
// checked earlier?
ccx.sess.span_bug(item.span, "unknown intrinsic");
}
}
fcx.cleanup();
}
/**
* Translates a "crust" fn, meaning a Rust fn that can be called
* from C code. In this case, we have to perform some adaptation
* to (1) switch back to the Rust stack and (2) adapt the C calling
* convention to our own.
*
* Example: Given a crust fn F(x: X, y: Y) -> Z, we generate a
* Rust function R as normal:
*
* void R(Z* dest, void *env, X x, Y y) {...}
*
* and then we generate a wrapper function W that looks like:
*
* Z W(X x, Y y) {
* struct { X x; Y y; Z *z; } args = { x, y, z };
* call_on_c_stack_shim(S, &args);
* }
*
* Note that the wrapper follows the foreign (typically "C") ABI.
* The wrapper is the actual "value" of the foreign fn. Finally,
* we generate a shim function S that looks like:
*
* void S(struct { X x; Y y; Z *z; } *args) {
* R(args->z, NULL, args->x, args->y);
* }
*/
pub fn trans_foreign_fn(ccx: @mut CrateContext,
path: ast_map::path,
decl: &ast::fn_decl,
body: &ast::Block,
llwrapfn: ValueRef,
id: ast::NodeId) {
let _icx = push_ctxt("foreign::build_foreign_fn");
fn build_rust_fn(ccx: @mut CrateContext,
path: &ast_map::path,
decl: &ast::fn_decl,
body: &ast::Block,
id: ast::NodeId)
-> ValueRef {
let _icx = push_ctxt("foreign::foreign::build_rust_fn");
let t = ty::node_id_to_type(ccx.tcx, id);
// XXX: Bad copy.
let ps = link::mangle_internal_name_by_path(
ccx,
vec::append_one((*path).clone(),
ast_map::path_name(
special_idents::clownshoe_abi)));
let llty = type_of_fn_from_ty(ccx, t);
let llfndecl = decl_internal_cdecl_fn(ccx.llmod, ps, llty);
trans_fn(ccx,
(*path).clone(),
decl,
body,
llfndecl,
no_self,
None,
id,
[]);
return llfndecl;
}
fn build_shim_fn(ccx: @mut CrateContext,
path: ast_map::path,
llrustfn: ValueRef,
tys: &ShimTypes)
-> ValueRef {
/*!
*
* Generate the shim S:
*
* void S(struct { X x; Y y; Z *z; } *args) {
* R(args->z, NULL, &args->x, args->y);
* }
*
* One complication is that we must adapt to the Rust
* calling convention, which introduces indirection
* in some cases. To demonstrate this, I wrote one of the
* entries above as `&args->x`, because presumably `X` is
* one of those types that is passed by pointer in Rust.
*/
let _icx = push_ctxt("foreign::foreign::build_shim_fn");
fn build_args(bcx: @mut Block, tys: &ShimTypes, llargbundle: ValueRef)
-> ~[ValueRef] {
let _icx = push_ctxt("foreign::extern::shim::build_args");
let ccx = bcx.ccx();
let mut llargvals = ~[];
let mut i = 0u;
let n = tys.fn_sig.inputs.len();
if !ty::type_is_immediate(bcx.tcx(), tys.fn_sig.output) {
let llretptr = load_inbounds(bcx, llargbundle, [0u, n]);
llargvals.push(llretptr);
}
let llenvptr = C_null(Type::opaque_box(bcx.ccx()).ptr_to());
llargvals.push(llenvptr);
while i < n {
// Get a pointer to the argument:
let mut llargval = GEPi(bcx, llargbundle, [0u, i]);
if !type_of::arg_is_indirect(ccx, &tys.fn_sig.inputs[i]) {
// If Rust would pass this by value, load the value.
llargval = Load(bcx, llargval);
}
llargvals.push(llargval);
i += 1u;
}
return llargvals;
}
fn build_ret(bcx: @mut Block,
shim_types: &ShimTypes,
llargbundle: ValueRef,
llretval: ValueRef) {
if bcx.fcx.llretptr.is_some() &&
ty::type_is_immediate(bcx.tcx(), shim_types.fn_sig.output) {
// Write the value into the argument bundle.
let arg_count = shim_types.fn_sig.inputs.len();
let llretptr = load_inbounds(bcx,
llargbundle,
[0, arg_count]);
Store(bcx, llretval, llretptr);
} else {
// NB: The return pointer in the Rust ABI function is wired
// directly into the return slot in the shim struct.
}
}
let shim_name = link::mangle_internal_name_by_path(
ccx,
vec::append_one(path, ast_map::path_name(
special_idents::clownshoe_stack_shim
)));
build_shim_fn_(ccx,
shim_name,
llrustfn,
tys,
lib::llvm::CCallConv,
build_args,
build_ret)
}
fn build_wrap_fn(ccx: @mut CrateContext,
llshimfn: ValueRef,
llwrapfn: ValueRef,
tys: &ShimTypes) {
/*!
*
* Generate the wrapper W:
*
* Z W(X x, Y y) {
* struct { X x; Y y; Z *z; } args = { x, y, z };
* call_on_c_stack_shim(S, &args);
* }
*/
let _icx = push_ctxt("foreign::foreign::build_wrap_fn");
build_wrap_fn_(ccx,
tys,
llshimfn,
llwrapfn,
ccx.upcalls.call_shim_on_rust_stack,
true,
build_args,
build_ret);
fn build_args(bcx: @mut Block,
tys: &ShimTypes,
llwrapfn: ValueRef,
llargbundle: ValueRef) {
let _icx = push_ctxt("foreign::foreign::wrap::build_args");
tys.fn_ty.build_wrap_args(bcx,
tys.llsig.llret_ty,
llwrapfn,
llargbundle);
}
fn build_ret(bcx: @mut Block, tys: &ShimTypes, llargbundle: ValueRef) {
let _icx = push_ctxt("foreign::foreign::wrap::build_ret");
tys.fn_ty.build_wrap_ret(bcx, tys.llsig.llarg_tys, llargbundle);
}
}
let tys = shim_types(ccx, id);
// The internal Rust ABI function - runs on the Rust stack
// XXX: Bad copy.
let llrustfn = build_rust_fn(ccx, &path, decl, body, id);
// The internal shim function - runs on the Rust stack
let llshimfn = build_shim_fn(ccx, path, llrustfn, &tys);
// The foreign C function - runs on the C stack
build_wrap_fn(ccx, llshimfn, llwrapfn, &tys)
}
pub fn register_foreign_fn(ccx: @mut CrateContext,
sp: span,
sym: ~str,
node_id: ast::NodeId)
-> ValueRef {
let _icx = push_ctxt("foreign::register_foreign_fn");
let sym = Cell::new(sym);
let tys = shim_types(ccx, node_id);
do tys.fn_ty.decl_fn |fnty| {
register_fn_llvmty(ccx, sp, sym.take(), node_id, lib::llvm::CCallConv, fnty)
}
}