rust/clippy_lints/src/derive.rs

509 lines
17 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use clippy_utils::diagnostics::{span_lint_and_help, span_lint_and_note, span_lint_and_sugg, span_lint_and_then};
use clippy_utils::ty::{implements_trait, implements_trait_with_env, is_copy};
use clippy_utils::{has_non_exhaustive_attr, is_lint_allowed, match_def_path, paths};
use rustc_errors::Applicability;
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit::{walk_expr, walk_fn, walk_item, FnKind, Visitor};
use rustc_hir::{
self as hir, BlockCheckMode, BodyId, Expr, ExprKind, FnDecl, Impl, Item, ItemKind, UnsafeSource, Unsafety,
};
use rustc_lint::{LateContext, LateLintPass};
use rustc_middle::hir::nested_filter;
use rustc_middle::traits::Reveal;
use rustc_middle::ty::{
self, ClauseKind, GenericArgKind, GenericParamDefKind, ImplPolarity, ParamEnv, ToPredicate, TraitPredicate, Ty,
TyCtxt,
};
use rustc_session::declare_lint_pass;
use rustc_span::def_id::LocalDefId;
use rustc_span::{sym, Span};
declare_clippy_lint! {
/// ### What it does
/// Lints against manual `PartialEq` implementations for types with a derived `Hash`
/// implementation.
///
/// ### Why is this bad?
/// The implementation of these traits must agree (for
/// example for use with `HashMap`) so its probably a bad idea to use a
/// default-generated `Hash` implementation with an explicitly defined
/// `PartialEq`. In particular, the following must hold for any type:
///
/// ```text
/// k1 == k2 ⇒ hash(k1) == hash(k2)
/// ```
///
/// ### Example
/// ```ignore
/// #[derive(Hash)]
/// struct Foo;
///
/// impl PartialEq for Foo {
/// ...
/// }
/// ```
#[clippy::version = "pre 1.29.0"]
pub DERIVED_HASH_WITH_MANUAL_EQ,
correctness,
"deriving `Hash` but implementing `PartialEq` explicitly"
}
declare_clippy_lint! {
/// ### What it does
/// Lints against manual `PartialOrd` and `Ord` implementations for types with a derived `Ord`
/// or `PartialOrd` implementation.
///
/// ### Why is this bad?
/// The implementation of these traits must agree (for
/// example for use with `sort`) so its probably a bad idea to use a
/// default-generated `Ord` implementation with an explicitly defined
/// `PartialOrd`. In particular, the following must hold for any type
/// implementing `Ord`:
///
/// ```text
/// k1.cmp(&k2) == k1.partial_cmp(&k2).unwrap()
/// ```
///
/// ### Example
/// ```rust,ignore
/// #[derive(Ord, PartialEq, Eq)]
/// struct Foo;
///
/// impl PartialOrd for Foo {
/// ...
/// }
/// ```
/// Use instead:
/// ```rust,ignore
/// #[derive(PartialEq, Eq)]
/// struct Foo;
///
/// impl PartialOrd for Foo {
/// fn partial_cmp(&self, other: &Foo) -> Option<Ordering> {
/// Some(self.cmp(other))
/// }
/// }
///
/// impl Ord for Foo {
/// ...
/// }
/// ```
/// or, if you don't need a custom ordering:
/// ```rust,ignore
/// #[derive(Ord, PartialOrd, PartialEq, Eq)]
/// struct Foo;
/// ```
#[clippy::version = "1.47.0"]
pub DERIVE_ORD_XOR_PARTIAL_ORD,
correctness,
"deriving `Ord` but implementing `PartialOrd` explicitly"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for explicit `Clone` implementations for `Copy`
/// types.
///
/// ### Why is this bad?
/// To avoid surprising behavior, these traits should
/// agree and the behavior of `Copy` cannot be overridden. In almost all
/// situations a `Copy` type should have a `Clone` implementation that does
/// nothing more than copy the object, which is what `#[derive(Copy, Clone)]`
/// gets you.
///
/// ### Example
/// ```rust,ignore
/// #[derive(Copy)]
/// struct Foo;
///
/// impl Clone for Foo {
/// // ..
/// }
/// ```
#[clippy::version = "pre 1.29.0"]
pub EXPL_IMPL_CLONE_ON_COPY,
pedantic,
"implementing `Clone` explicitly on `Copy` types"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for deriving `serde::Deserialize` on a type that
/// has methods using `unsafe`.
///
/// ### Why is this bad?
/// Deriving `serde::Deserialize` will create a constructor
/// that may violate invariants hold by another constructor.
///
/// ### Example
/// ```rust,ignore
/// use serde::Deserialize;
///
/// #[derive(Deserialize)]
/// pub struct Foo {
/// // ..
/// }
///
/// impl Foo {
/// pub fn new() -> Self {
/// // setup here ..
/// }
///
/// pub unsafe fn parts() -> (&str, &str) {
/// // assumes invariants hold
/// }
/// }
/// ```
#[clippy::version = "1.45.0"]
pub UNSAFE_DERIVE_DESERIALIZE,
pedantic,
"deriving `serde::Deserialize` on a type that has methods using `unsafe`"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for types that derive `PartialEq` and could implement `Eq`.
///
/// ### Why is this bad?
/// If a type `T` derives `PartialEq` and all of its members implement `Eq`,
/// then `T` can always implement `Eq`. Implementing `Eq` allows `T` to be used
/// in APIs that require `Eq` types. It also allows structs containing `T` to derive
/// `Eq` themselves.
///
/// ### Example
/// ```no_run
/// #[derive(PartialEq)]
/// struct Foo {
/// i_am_eq: i32,
/// i_am_eq_too: Vec<String>,
/// }
/// ```
/// Use instead:
/// ```no_run
/// #[derive(PartialEq, Eq)]
/// struct Foo {
/// i_am_eq: i32,
/// i_am_eq_too: Vec<String>,
/// }
/// ```
#[clippy::version = "1.63.0"]
pub DERIVE_PARTIAL_EQ_WITHOUT_EQ,
nursery,
"deriving `PartialEq` on a type that can implement `Eq`, without implementing `Eq`"
}
declare_lint_pass!(Derive => [
EXPL_IMPL_CLONE_ON_COPY,
DERIVED_HASH_WITH_MANUAL_EQ,
DERIVE_ORD_XOR_PARTIAL_ORD,
UNSAFE_DERIVE_DESERIALIZE,
DERIVE_PARTIAL_EQ_WITHOUT_EQ
]);
impl<'tcx> LateLintPass<'tcx> for Derive {
fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) {
if let ItemKind::Impl(Impl {
of_trait: Some(ref trait_ref),
..
}) = item.kind
{
let ty = cx.tcx.type_of(item.owner_id).instantiate_identity();
let is_automatically_derived = cx.tcx.has_attr(item.owner_id, sym::automatically_derived);
check_hash_peq(cx, item.span, trait_ref, ty, is_automatically_derived);
check_ord_partial_ord(cx, item.span, trait_ref, ty, is_automatically_derived);
if is_automatically_derived {
check_unsafe_derive_deserialize(cx, item, trait_ref, ty);
check_partial_eq_without_eq(cx, item.span, trait_ref, ty);
} else {
check_copy_clone(cx, item, trait_ref, ty);
}
}
}
}
/// Implementation of the `DERIVED_HASH_WITH_MANUAL_EQ` lint.
fn check_hash_peq<'tcx>(
cx: &LateContext<'tcx>,
span: Span,
trait_ref: &hir::TraitRef<'_>,
ty: Ty<'tcx>,
hash_is_automatically_derived: bool,
) {
if let Some(peq_trait_def_id) = cx.tcx.lang_items().eq_trait()
&& let Some(def_id) = trait_ref.trait_def_id()
&& cx.tcx.is_diagnostic_item(sym::Hash, def_id)
{
// Look for the PartialEq implementations for `ty`
cx.tcx.for_each_relevant_impl(peq_trait_def_id, ty, |impl_id| {
let peq_is_automatically_derived = cx.tcx.has_attr(impl_id, sym::automatically_derived);
if !hash_is_automatically_derived || peq_is_automatically_derived {
return;
}
let trait_ref = cx.tcx.impl_trait_ref(impl_id).expect("must be a trait implementation");
// Only care about `impl PartialEq<Foo> for Foo`
// For `impl PartialEq<B> for A, input_types is [A, B]
if trait_ref.instantiate_identity().args.type_at(1) == ty {
span_lint_and_then(
cx,
DERIVED_HASH_WITH_MANUAL_EQ,
span,
"you are deriving `Hash` but have implemented `PartialEq` explicitly",
|diag| {
if let Some(local_def_id) = impl_id.as_local() {
let hir_id = cx.tcx.local_def_id_to_hir_id(local_def_id);
diag.span_note(cx.tcx.hir().span(hir_id), "`PartialEq` implemented here");
}
},
);
}
});
}
}
/// Implementation of the `DERIVE_ORD_XOR_PARTIAL_ORD` lint.
fn check_ord_partial_ord<'tcx>(
cx: &LateContext<'tcx>,
span: Span,
trait_ref: &hir::TraitRef<'_>,
ty: Ty<'tcx>,
ord_is_automatically_derived: bool,
) {
if let Some(ord_trait_def_id) = cx.tcx.get_diagnostic_item(sym::Ord)
&& let Some(partial_ord_trait_def_id) = cx.tcx.lang_items().partial_ord_trait()
&& let Some(def_id) = &trait_ref.trait_def_id()
&& *def_id == ord_trait_def_id
{
// Look for the PartialOrd implementations for `ty`
cx.tcx.for_each_relevant_impl(partial_ord_trait_def_id, ty, |impl_id| {
let partial_ord_is_automatically_derived = cx.tcx.has_attr(impl_id, sym::automatically_derived);
if partial_ord_is_automatically_derived == ord_is_automatically_derived {
return;
}
let trait_ref = cx.tcx.impl_trait_ref(impl_id).expect("must be a trait implementation");
// Only care about `impl PartialOrd<Foo> for Foo`
// For `impl PartialOrd<B> for A, input_types is [A, B]
if trait_ref.instantiate_identity().args.type_at(1) == ty {
let mess = if partial_ord_is_automatically_derived {
"you are implementing `Ord` explicitly but have derived `PartialOrd`"
} else {
"you are deriving `Ord` but have implemented `PartialOrd` explicitly"
};
span_lint_and_then(cx, DERIVE_ORD_XOR_PARTIAL_ORD, span, mess, |diag| {
if let Some(local_def_id) = impl_id.as_local() {
let hir_id = cx.tcx.local_def_id_to_hir_id(local_def_id);
diag.span_note(cx.tcx.hir().span(hir_id), "`PartialOrd` implemented here");
}
});
}
});
}
}
/// Implementation of the `EXPL_IMPL_CLONE_ON_COPY` lint.
fn check_copy_clone<'tcx>(cx: &LateContext<'tcx>, item: &Item<'_>, trait_ref: &hir::TraitRef<'_>, ty: Ty<'tcx>) {
let clone_id = match cx.tcx.lang_items().clone_trait() {
Some(id) if trait_ref.trait_def_id() == Some(id) => id,
_ => return,
};
let Some(copy_id) = cx.tcx.lang_items().copy_trait() else {
return;
};
let (ty_adt, ty_subs) = match *ty.kind() {
// Unions can't derive clone.
ty::Adt(adt, subs) if !adt.is_union() => (adt, subs),
_ => return,
};
// If the current self type doesn't implement Copy (due to generic constraints), search to see if
// there's a Copy impl for any instance of the adt.
if !is_copy(cx, ty) {
if ty_subs.non_erasable_generics(cx.tcx, ty_adt.did()).next().is_some() {
let has_copy_impl = cx.tcx.all_local_trait_impls(()).get(&copy_id).map_or(false, |impls| {
impls.iter().any(|&id| {
matches!(cx.tcx.type_of(id).instantiate_identity().kind(), ty::Adt(adt, _)
if ty_adt.did() == adt.did())
})
});
if !has_copy_impl {
return;
}
} else {
return;
}
}
// Derive constrains all generic types to requiring Clone. Check if any type is not constrained for
// this impl.
if ty_subs.types().any(|ty| !implements_trait(cx, ty, clone_id, &[])) {
return;
}
// `#[repr(packed)]` structs with type/const parameters can't derive `Clone`.
// https://github.com/rust-lang/rust-clippy/issues/10188
if ty_adt.repr().packed()
&& ty_subs
.iter()
.any(|arg| matches!(arg.unpack(), GenericArgKind::Type(_) | GenericArgKind::Const(_)))
{
return;
}
span_lint_and_note(
cx,
EXPL_IMPL_CLONE_ON_COPY,
item.span,
"you are implementing `Clone` explicitly on a `Copy` type",
Some(item.span),
"consider deriving `Clone` or removing `Copy`",
);
}
/// Implementation of the `UNSAFE_DERIVE_DESERIALIZE` lint.
fn check_unsafe_derive_deserialize<'tcx>(
cx: &LateContext<'tcx>,
item: &Item<'_>,
trait_ref: &hir::TraitRef<'_>,
ty: Ty<'tcx>,
) {
fn has_unsafe<'tcx>(cx: &LateContext<'tcx>, item: &'tcx Item<'_>) -> bool {
let mut visitor = UnsafeVisitor { cx, has_unsafe: false };
walk_item(&mut visitor, item);
visitor.has_unsafe
}
if let Some(trait_def_id) = trait_ref.trait_def_id()
&& match_def_path(cx, trait_def_id, &paths::SERDE_DESERIALIZE)
&& let ty::Adt(def, _) = ty.kind()
&& let Some(local_def_id) = def.did().as_local()
&& let adt_hir_id = cx.tcx.local_def_id_to_hir_id(local_def_id)
&& !is_lint_allowed(cx, UNSAFE_DERIVE_DESERIALIZE, adt_hir_id)
&& cx
.tcx
.inherent_impls(def.did())
.into_iter()
.flatten()
.map(|imp_did| cx.tcx.hir().expect_item(imp_did.expect_local()))
.any(|imp| has_unsafe(cx, imp))
{
span_lint_and_help(
cx,
UNSAFE_DERIVE_DESERIALIZE,
item.span,
"you are deriving `serde::Deserialize` on a type that has methods using `unsafe`",
None,
"consider implementing `serde::Deserialize` manually. See https://serde.rs/impl-deserialize.html",
);
}
}
struct UnsafeVisitor<'a, 'tcx> {
cx: &'a LateContext<'tcx>,
has_unsafe: bool,
}
impl<'tcx> Visitor<'tcx> for UnsafeVisitor<'_, 'tcx> {
type NestedFilter = nested_filter::All;
fn visit_fn(&mut self, kind: FnKind<'tcx>, decl: &'tcx FnDecl<'_>, body_id: BodyId, _: Span, id: LocalDefId) {
if self.has_unsafe {
return;
}
if let Some(header) = kind.header()
&& header.unsafety == Unsafety::Unsafe
{
self.has_unsafe = true;
}
walk_fn(self, kind, decl, body_id, id);
}
fn visit_expr(&mut self, expr: &'tcx Expr<'_>) {
if self.has_unsafe {
return;
}
if let ExprKind::Block(block, _) = expr.kind {
if block.rules == BlockCheckMode::UnsafeBlock(UnsafeSource::UserProvided) {
self.has_unsafe = true;
}
}
walk_expr(self, expr);
}
fn nested_visit_map(&mut self) -> Self::Map {
self.cx.tcx.hir()
}
}
/// Implementation of the `DERIVE_PARTIAL_EQ_WITHOUT_EQ` lint.
fn check_partial_eq_without_eq<'tcx>(cx: &LateContext<'tcx>, span: Span, trait_ref: &hir::TraitRef<'_>, ty: Ty<'tcx>) {
if let ty::Adt(adt, args) = ty.kind()
&& cx.tcx.visibility(adt.did()).is_public()
&& let Some(eq_trait_def_id) = cx.tcx.get_diagnostic_item(sym::Eq)
&& let Some(def_id) = trait_ref.trait_def_id()
&& cx.tcx.is_diagnostic_item(sym::PartialEq, def_id)
&& !has_non_exhaustive_attr(cx.tcx, *adt)
&& let param_env = param_env_for_derived_eq(cx.tcx, adt.did(), eq_trait_def_id)
&& !implements_trait_with_env(cx.tcx, param_env, ty, eq_trait_def_id, None, &[])
// If all of our fields implement `Eq`, we can implement `Eq` too
&& adt
.all_fields()
.map(|f| f.ty(cx.tcx, args))
.all(|ty| implements_trait_with_env(cx.tcx, param_env, ty, eq_trait_def_id, None, &[]))
{
span_lint_and_sugg(
cx,
DERIVE_PARTIAL_EQ_WITHOUT_EQ,
span.ctxt().outer_expn_data().call_site,
"you are deriving `PartialEq` and can implement `Eq`",
"consider deriving `Eq` as well",
"PartialEq, Eq".to_string(),
Applicability::MachineApplicable,
);
}
}
/// Creates the `ParamEnv` used for the give type's derived `Eq` impl.
fn param_env_for_derived_eq(tcx: TyCtxt<'_>, did: DefId, eq_trait_id: DefId) -> ParamEnv<'_> {
// Initial map from generic index to param def.
// Vec<(param_def, needs_eq)>
let mut params = tcx
.generics_of(did)
.params
.iter()
.map(|p| (p, matches!(p.kind, GenericParamDefKind::Type { .. })))
.collect::<Vec<_>>();
let ty_predicates = tcx.predicates_of(did).predicates;
for (p, _) in ty_predicates {
if let ClauseKind::Trait(p) = p.kind().skip_binder()
&& p.trait_ref.def_id == eq_trait_id
&& let ty::Param(self_ty) = p.trait_ref.self_ty().kind()
{
// Flag types which already have an `Eq` bound.
params[self_ty.index as usize].1 = false;
}
}
ParamEnv::new(
tcx.mk_clauses_from_iter(ty_predicates.iter().map(|&(p, _)| p).chain(
params.iter().filter(|&&(_, needs_eq)| needs_eq).map(|&(param, _)| {
ClauseKind::Trait(TraitPredicate {
trait_ref: ty::TraitRef::new(tcx, eq_trait_id, [tcx.mk_param_from_def(param)]),
polarity: ImplPolarity::Positive,
})
.to_predicate(tcx)
}),
)),
Reveal::UserFacing,
)
}