509 lines
17 KiB
Rust
509 lines
17 KiB
Rust
use clippy_utils::diagnostics::{span_lint_and_help, span_lint_and_note, span_lint_and_sugg, span_lint_and_then};
|
||
use clippy_utils::ty::{implements_trait, implements_trait_with_env, is_copy};
|
||
use clippy_utils::{has_non_exhaustive_attr, is_lint_allowed, match_def_path, paths};
|
||
use rustc_errors::Applicability;
|
||
use rustc_hir::def_id::DefId;
|
||
use rustc_hir::intravisit::{walk_expr, walk_fn, walk_item, FnKind, Visitor};
|
||
use rustc_hir::{
|
||
self as hir, BlockCheckMode, BodyId, Expr, ExprKind, FnDecl, Impl, Item, ItemKind, UnsafeSource, Unsafety,
|
||
};
|
||
use rustc_lint::{LateContext, LateLintPass};
|
||
use rustc_middle::hir::nested_filter;
|
||
use rustc_middle::traits::Reveal;
|
||
use rustc_middle::ty::{
|
||
self, ClauseKind, GenericArgKind, GenericParamDefKind, ImplPolarity, ParamEnv, ToPredicate, TraitPredicate, Ty,
|
||
TyCtxt,
|
||
};
|
||
use rustc_session::declare_lint_pass;
|
||
use rustc_span::def_id::LocalDefId;
|
||
use rustc_span::{sym, Span};
|
||
|
||
declare_clippy_lint! {
|
||
/// ### What it does
|
||
/// Lints against manual `PartialEq` implementations for types with a derived `Hash`
|
||
/// implementation.
|
||
///
|
||
/// ### Why is this bad?
|
||
/// The implementation of these traits must agree (for
|
||
/// example for use with `HashMap`) so it’s probably a bad idea to use a
|
||
/// default-generated `Hash` implementation with an explicitly defined
|
||
/// `PartialEq`. In particular, the following must hold for any type:
|
||
///
|
||
/// ```text
|
||
/// k1 == k2 ⇒ hash(k1) == hash(k2)
|
||
/// ```
|
||
///
|
||
/// ### Example
|
||
/// ```ignore
|
||
/// #[derive(Hash)]
|
||
/// struct Foo;
|
||
///
|
||
/// impl PartialEq for Foo {
|
||
/// ...
|
||
/// }
|
||
/// ```
|
||
#[clippy::version = "pre 1.29.0"]
|
||
pub DERIVED_HASH_WITH_MANUAL_EQ,
|
||
correctness,
|
||
"deriving `Hash` but implementing `PartialEq` explicitly"
|
||
}
|
||
|
||
declare_clippy_lint! {
|
||
/// ### What it does
|
||
/// Lints against manual `PartialOrd` and `Ord` implementations for types with a derived `Ord`
|
||
/// or `PartialOrd` implementation.
|
||
///
|
||
/// ### Why is this bad?
|
||
/// The implementation of these traits must agree (for
|
||
/// example for use with `sort`) so it’s probably a bad idea to use a
|
||
/// default-generated `Ord` implementation with an explicitly defined
|
||
/// `PartialOrd`. In particular, the following must hold for any type
|
||
/// implementing `Ord`:
|
||
///
|
||
/// ```text
|
||
/// k1.cmp(&k2) == k1.partial_cmp(&k2).unwrap()
|
||
/// ```
|
||
///
|
||
/// ### Example
|
||
/// ```rust,ignore
|
||
/// #[derive(Ord, PartialEq, Eq)]
|
||
/// struct Foo;
|
||
///
|
||
/// impl PartialOrd for Foo {
|
||
/// ...
|
||
/// }
|
||
/// ```
|
||
/// Use instead:
|
||
/// ```rust,ignore
|
||
/// #[derive(PartialEq, Eq)]
|
||
/// struct Foo;
|
||
///
|
||
/// impl PartialOrd for Foo {
|
||
/// fn partial_cmp(&self, other: &Foo) -> Option<Ordering> {
|
||
/// Some(self.cmp(other))
|
||
/// }
|
||
/// }
|
||
///
|
||
/// impl Ord for Foo {
|
||
/// ...
|
||
/// }
|
||
/// ```
|
||
/// or, if you don't need a custom ordering:
|
||
/// ```rust,ignore
|
||
/// #[derive(Ord, PartialOrd, PartialEq, Eq)]
|
||
/// struct Foo;
|
||
/// ```
|
||
#[clippy::version = "1.47.0"]
|
||
pub DERIVE_ORD_XOR_PARTIAL_ORD,
|
||
correctness,
|
||
"deriving `Ord` but implementing `PartialOrd` explicitly"
|
||
}
|
||
|
||
declare_clippy_lint! {
|
||
/// ### What it does
|
||
/// Checks for explicit `Clone` implementations for `Copy`
|
||
/// types.
|
||
///
|
||
/// ### Why is this bad?
|
||
/// To avoid surprising behavior, these traits should
|
||
/// agree and the behavior of `Copy` cannot be overridden. In almost all
|
||
/// situations a `Copy` type should have a `Clone` implementation that does
|
||
/// nothing more than copy the object, which is what `#[derive(Copy, Clone)]`
|
||
/// gets you.
|
||
///
|
||
/// ### Example
|
||
/// ```rust,ignore
|
||
/// #[derive(Copy)]
|
||
/// struct Foo;
|
||
///
|
||
/// impl Clone for Foo {
|
||
/// // ..
|
||
/// }
|
||
/// ```
|
||
#[clippy::version = "pre 1.29.0"]
|
||
pub EXPL_IMPL_CLONE_ON_COPY,
|
||
pedantic,
|
||
"implementing `Clone` explicitly on `Copy` types"
|
||
}
|
||
|
||
declare_clippy_lint! {
|
||
/// ### What it does
|
||
/// Checks for deriving `serde::Deserialize` on a type that
|
||
/// has methods using `unsafe`.
|
||
///
|
||
/// ### Why is this bad?
|
||
/// Deriving `serde::Deserialize` will create a constructor
|
||
/// that may violate invariants hold by another constructor.
|
||
///
|
||
/// ### Example
|
||
/// ```rust,ignore
|
||
/// use serde::Deserialize;
|
||
///
|
||
/// #[derive(Deserialize)]
|
||
/// pub struct Foo {
|
||
/// // ..
|
||
/// }
|
||
///
|
||
/// impl Foo {
|
||
/// pub fn new() -> Self {
|
||
/// // setup here ..
|
||
/// }
|
||
///
|
||
/// pub unsafe fn parts() -> (&str, &str) {
|
||
/// // assumes invariants hold
|
||
/// }
|
||
/// }
|
||
/// ```
|
||
#[clippy::version = "1.45.0"]
|
||
pub UNSAFE_DERIVE_DESERIALIZE,
|
||
pedantic,
|
||
"deriving `serde::Deserialize` on a type that has methods using `unsafe`"
|
||
}
|
||
|
||
declare_clippy_lint! {
|
||
/// ### What it does
|
||
/// Checks for types that derive `PartialEq` and could implement `Eq`.
|
||
///
|
||
/// ### Why is this bad?
|
||
/// If a type `T` derives `PartialEq` and all of its members implement `Eq`,
|
||
/// then `T` can always implement `Eq`. Implementing `Eq` allows `T` to be used
|
||
/// in APIs that require `Eq` types. It also allows structs containing `T` to derive
|
||
/// `Eq` themselves.
|
||
///
|
||
/// ### Example
|
||
/// ```no_run
|
||
/// #[derive(PartialEq)]
|
||
/// struct Foo {
|
||
/// i_am_eq: i32,
|
||
/// i_am_eq_too: Vec<String>,
|
||
/// }
|
||
/// ```
|
||
/// Use instead:
|
||
/// ```no_run
|
||
/// #[derive(PartialEq, Eq)]
|
||
/// struct Foo {
|
||
/// i_am_eq: i32,
|
||
/// i_am_eq_too: Vec<String>,
|
||
/// }
|
||
/// ```
|
||
#[clippy::version = "1.63.0"]
|
||
pub DERIVE_PARTIAL_EQ_WITHOUT_EQ,
|
||
nursery,
|
||
"deriving `PartialEq` on a type that can implement `Eq`, without implementing `Eq`"
|
||
}
|
||
|
||
declare_lint_pass!(Derive => [
|
||
EXPL_IMPL_CLONE_ON_COPY,
|
||
DERIVED_HASH_WITH_MANUAL_EQ,
|
||
DERIVE_ORD_XOR_PARTIAL_ORD,
|
||
UNSAFE_DERIVE_DESERIALIZE,
|
||
DERIVE_PARTIAL_EQ_WITHOUT_EQ
|
||
]);
|
||
|
||
impl<'tcx> LateLintPass<'tcx> for Derive {
|
||
fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) {
|
||
if let ItemKind::Impl(Impl {
|
||
of_trait: Some(ref trait_ref),
|
||
..
|
||
}) = item.kind
|
||
{
|
||
let ty = cx.tcx.type_of(item.owner_id).instantiate_identity();
|
||
let is_automatically_derived = cx.tcx.has_attr(item.owner_id, sym::automatically_derived);
|
||
|
||
check_hash_peq(cx, item.span, trait_ref, ty, is_automatically_derived);
|
||
check_ord_partial_ord(cx, item.span, trait_ref, ty, is_automatically_derived);
|
||
|
||
if is_automatically_derived {
|
||
check_unsafe_derive_deserialize(cx, item, trait_ref, ty);
|
||
check_partial_eq_without_eq(cx, item.span, trait_ref, ty);
|
||
} else {
|
||
check_copy_clone(cx, item, trait_ref, ty);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Implementation of the `DERIVED_HASH_WITH_MANUAL_EQ` lint.
|
||
fn check_hash_peq<'tcx>(
|
||
cx: &LateContext<'tcx>,
|
||
span: Span,
|
||
trait_ref: &hir::TraitRef<'_>,
|
||
ty: Ty<'tcx>,
|
||
hash_is_automatically_derived: bool,
|
||
) {
|
||
if let Some(peq_trait_def_id) = cx.tcx.lang_items().eq_trait()
|
||
&& let Some(def_id) = trait_ref.trait_def_id()
|
||
&& cx.tcx.is_diagnostic_item(sym::Hash, def_id)
|
||
{
|
||
// Look for the PartialEq implementations for `ty`
|
||
cx.tcx.for_each_relevant_impl(peq_trait_def_id, ty, |impl_id| {
|
||
let peq_is_automatically_derived = cx.tcx.has_attr(impl_id, sym::automatically_derived);
|
||
|
||
if !hash_is_automatically_derived || peq_is_automatically_derived {
|
||
return;
|
||
}
|
||
|
||
let trait_ref = cx.tcx.impl_trait_ref(impl_id).expect("must be a trait implementation");
|
||
|
||
// Only care about `impl PartialEq<Foo> for Foo`
|
||
// For `impl PartialEq<B> for A, input_types is [A, B]
|
||
if trait_ref.instantiate_identity().args.type_at(1) == ty {
|
||
span_lint_and_then(
|
||
cx,
|
||
DERIVED_HASH_WITH_MANUAL_EQ,
|
||
span,
|
||
"you are deriving `Hash` but have implemented `PartialEq` explicitly",
|
||
|diag| {
|
||
if let Some(local_def_id) = impl_id.as_local() {
|
||
let hir_id = cx.tcx.local_def_id_to_hir_id(local_def_id);
|
||
diag.span_note(cx.tcx.hir().span(hir_id), "`PartialEq` implemented here");
|
||
}
|
||
},
|
||
);
|
||
}
|
||
});
|
||
}
|
||
}
|
||
|
||
/// Implementation of the `DERIVE_ORD_XOR_PARTIAL_ORD` lint.
|
||
fn check_ord_partial_ord<'tcx>(
|
||
cx: &LateContext<'tcx>,
|
||
span: Span,
|
||
trait_ref: &hir::TraitRef<'_>,
|
||
ty: Ty<'tcx>,
|
||
ord_is_automatically_derived: bool,
|
||
) {
|
||
if let Some(ord_trait_def_id) = cx.tcx.get_diagnostic_item(sym::Ord)
|
||
&& let Some(partial_ord_trait_def_id) = cx.tcx.lang_items().partial_ord_trait()
|
||
&& let Some(def_id) = &trait_ref.trait_def_id()
|
||
&& *def_id == ord_trait_def_id
|
||
{
|
||
// Look for the PartialOrd implementations for `ty`
|
||
cx.tcx.for_each_relevant_impl(partial_ord_trait_def_id, ty, |impl_id| {
|
||
let partial_ord_is_automatically_derived = cx.tcx.has_attr(impl_id, sym::automatically_derived);
|
||
|
||
if partial_ord_is_automatically_derived == ord_is_automatically_derived {
|
||
return;
|
||
}
|
||
|
||
let trait_ref = cx.tcx.impl_trait_ref(impl_id).expect("must be a trait implementation");
|
||
|
||
// Only care about `impl PartialOrd<Foo> for Foo`
|
||
// For `impl PartialOrd<B> for A, input_types is [A, B]
|
||
if trait_ref.instantiate_identity().args.type_at(1) == ty {
|
||
let mess = if partial_ord_is_automatically_derived {
|
||
"you are implementing `Ord` explicitly but have derived `PartialOrd`"
|
||
} else {
|
||
"you are deriving `Ord` but have implemented `PartialOrd` explicitly"
|
||
};
|
||
|
||
span_lint_and_then(cx, DERIVE_ORD_XOR_PARTIAL_ORD, span, mess, |diag| {
|
||
if let Some(local_def_id) = impl_id.as_local() {
|
||
let hir_id = cx.tcx.local_def_id_to_hir_id(local_def_id);
|
||
diag.span_note(cx.tcx.hir().span(hir_id), "`PartialOrd` implemented here");
|
||
}
|
||
});
|
||
}
|
||
});
|
||
}
|
||
}
|
||
|
||
/// Implementation of the `EXPL_IMPL_CLONE_ON_COPY` lint.
|
||
fn check_copy_clone<'tcx>(cx: &LateContext<'tcx>, item: &Item<'_>, trait_ref: &hir::TraitRef<'_>, ty: Ty<'tcx>) {
|
||
let clone_id = match cx.tcx.lang_items().clone_trait() {
|
||
Some(id) if trait_ref.trait_def_id() == Some(id) => id,
|
||
_ => return,
|
||
};
|
||
let Some(copy_id) = cx.tcx.lang_items().copy_trait() else {
|
||
return;
|
||
};
|
||
let (ty_adt, ty_subs) = match *ty.kind() {
|
||
// Unions can't derive clone.
|
||
ty::Adt(adt, subs) if !adt.is_union() => (adt, subs),
|
||
_ => return,
|
||
};
|
||
// If the current self type doesn't implement Copy (due to generic constraints), search to see if
|
||
// there's a Copy impl for any instance of the adt.
|
||
if !is_copy(cx, ty) {
|
||
if ty_subs.non_erasable_generics(cx.tcx, ty_adt.did()).next().is_some() {
|
||
let has_copy_impl = cx.tcx.all_local_trait_impls(()).get(©_id).map_or(false, |impls| {
|
||
impls.iter().any(|&id| {
|
||
matches!(cx.tcx.type_of(id).instantiate_identity().kind(), ty::Adt(adt, _)
|
||
if ty_adt.did() == adt.did())
|
||
})
|
||
});
|
||
if !has_copy_impl {
|
||
return;
|
||
}
|
||
} else {
|
||
return;
|
||
}
|
||
}
|
||
// Derive constrains all generic types to requiring Clone. Check if any type is not constrained for
|
||
// this impl.
|
||
if ty_subs.types().any(|ty| !implements_trait(cx, ty, clone_id, &[])) {
|
||
return;
|
||
}
|
||
// `#[repr(packed)]` structs with type/const parameters can't derive `Clone`.
|
||
// https://github.com/rust-lang/rust-clippy/issues/10188
|
||
if ty_adt.repr().packed()
|
||
&& ty_subs
|
||
.iter()
|
||
.any(|arg| matches!(arg.unpack(), GenericArgKind::Type(_) | GenericArgKind::Const(_)))
|
||
{
|
||
return;
|
||
}
|
||
|
||
span_lint_and_note(
|
||
cx,
|
||
EXPL_IMPL_CLONE_ON_COPY,
|
||
item.span,
|
||
"you are implementing `Clone` explicitly on a `Copy` type",
|
||
Some(item.span),
|
||
"consider deriving `Clone` or removing `Copy`",
|
||
);
|
||
}
|
||
|
||
/// Implementation of the `UNSAFE_DERIVE_DESERIALIZE` lint.
|
||
fn check_unsafe_derive_deserialize<'tcx>(
|
||
cx: &LateContext<'tcx>,
|
||
item: &Item<'_>,
|
||
trait_ref: &hir::TraitRef<'_>,
|
||
ty: Ty<'tcx>,
|
||
) {
|
||
fn has_unsafe<'tcx>(cx: &LateContext<'tcx>, item: &'tcx Item<'_>) -> bool {
|
||
let mut visitor = UnsafeVisitor { cx, has_unsafe: false };
|
||
walk_item(&mut visitor, item);
|
||
visitor.has_unsafe
|
||
}
|
||
|
||
if let Some(trait_def_id) = trait_ref.trait_def_id()
|
||
&& match_def_path(cx, trait_def_id, &paths::SERDE_DESERIALIZE)
|
||
&& let ty::Adt(def, _) = ty.kind()
|
||
&& let Some(local_def_id) = def.did().as_local()
|
||
&& let adt_hir_id = cx.tcx.local_def_id_to_hir_id(local_def_id)
|
||
&& !is_lint_allowed(cx, UNSAFE_DERIVE_DESERIALIZE, adt_hir_id)
|
||
&& cx
|
||
.tcx
|
||
.inherent_impls(def.did())
|
||
.into_iter()
|
||
.flatten()
|
||
.map(|imp_did| cx.tcx.hir().expect_item(imp_did.expect_local()))
|
||
.any(|imp| has_unsafe(cx, imp))
|
||
{
|
||
span_lint_and_help(
|
||
cx,
|
||
UNSAFE_DERIVE_DESERIALIZE,
|
||
item.span,
|
||
"you are deriving `serde::Deserialize` on a type that has methods using `unsafe`",
|
||
None,
|
||
"consider implementing `serde::Deserialize` manually. See https://serde.rs/impl-deserialize.html",
|
||
);
|
||
}
|
||
}
|
||
|
||
struct UnsafeVisitor<'a, 'tcx> {
|
||
cx: &'a LateContext<'tcx>,
|
||
has_unsafe: bool,
|
||
}
|
||
|
||
impl<'tcx> Visitor<'tcx> for UnsafeVisitor<'_, 'tcx> {
|
||
type NestedFilter = nested_filter::All;
|
||
|
||
fn visit_fn(&mut self, kind: FnKind<'tcx>, decl: &'tcx FnDecl<'_>, body_id: BodyId, _: Span, id: LocalDefId) {
|
||
if self.has_unsafe {
|
||
return;
|
||
}
|
||
|
||
if let Some(header) = kind.header()
|
||
&& header.unsafety == Unsafety::Unsafe
|
||
{
|
||
self.has_unsafe = true;
|
||
}
|
||
|
||
walk_fn(self, kind, decl, body_id, id);
|
||
}
|
||
|
||
fn visit_expr(&mut self, expr: &'tcx Expr<'_>) {
|
||
if self.has_unsafe {
|
||
return;
|
||
}
|
||
|
||
if let ExprKind::Block(block, _) = expr.kind {
|
||
if block.rules == BlockCheckMode::UnsafeBlock(UnsafeSource::UserProvided) {
|
||
self.has_unsafe = true;
|
||
}
|
||
}
|
||
|
||
walk_expr(self, expr);
|
||
}
|
||
|
||
fn nested_visit_map(&mut self) -> Self::Map {
|
||
self.cx.tcx.hir()
|
||
}
|
||
}
|
||
|
||
/// Implementation of the `DERIVE_PARTIAL_EQ_WITHOUT_EQ` lint.
|
||
fn check_partial_eq_without_eq<'tcx>(cx: &LateContext<'tcx>, span: Span, trait_ref: &hir::TraitRef<'_>, ty: Ty<'tcx>) {
|
||
if let ty::Adt(adt, args) = ty.kind()
|
||
&& cx.tcx.visibility(adt.did()).is_public()
|
||
&& let Some(eq_trait_def_id) = cx.tcx.get_diagnostic_item(sym::Eq)
|
||
&& let Some(def_id) = trait_ref.trait_def_id()
|
||
&& cx.tcx.is_diagnostic_item(sym::PartialEq, def_id)
|
||
&& !has_non_exhaustive_attr(cx.tcx, *adt)
|
||
&& let param_env = param_env_for_derived_eq(cx.tcx, adt.did(), eq_trait_def_id)
|
||
&& !implements_trait_with_env(cx.tcx, param_env, ty, eq_trait_def_id, None, &[])
|
||
// If all of our fields implement `Eq`, we can implement `Eq` too
|
||
&& adt
|
||
.all_fields()
|
||
.map(|f| f.ty(cx.tcx, args))
|
||
.all(|ty| implements_trait_with_env(cx.tcx, param_env, ty, eq_trait_def_id, None, &[]))
|
||
{
|
||
span_lint_and_sugg(
|
||
cx,
|
||
DERIVE_PARTIAL_EQ_WITHOUT_EQ,
|
||
span.ctxt().outer_expn_data().call_site,
|
||
"you are deriving `PartialEq` and can implement `Eq`",
|
||
"consider deriving `Eq` as well",
|
||
"PartialEq, Eq".to_string(),
|
||
Applicability::MachineApplicable,
|
||
);
|
||
}
|
||
}
|
||
|
||
/// Creates the `ParamEnv` used for the give type's derived `Eq` impl.
|
||
fn param_env_for_derived_eq(tcx: TyCtxt<'_>, did: DefId, eq_trait_id: DefId) -> ParamEnv<'_> {
|
||
// Initial map from generic index to param def.
|
||
// Vec<(param_def, needs_eq)>
|
||
let mut params = tcx
|
||
.generics_of(did)
|
||
.params
|
||
.iter()
|
||
.map(|p| (p, matches!(p.kind, GenericParamDefKind::Type { .. })))
|
||
.collect::<Vec<_>>();
|
||
|
||
let ty_predicates = tcx.predicates_of(did).predicates;
|
||
for (p, _) in ty_predicates {
|
||
if let ClauseKind::Trait(p) = p.kind().skip_binder()
|
||
&& p.trait_ref.def_id == eq_trait_id
|
||
&& let ty::Param(self_ty) = p.trait_ref.self_ty().kind()
|
||
{
|
||
// Flag types which already have an `Eq` bound.
|
||
params[self_ty.index as usize].1 = false;
|
||
}
|
||
}
|
||
|
||
ParamEnv::new(
|
||
tcx.mk_clauses_from_iter(ty_predicates.iter().map(|&(p, _)| p).chain(
|
||
params.iter().filter(|&&(_, needs_eq)| needs_eq).map(|&(param, _)| {
|
||
ClauseKind::Trait(TraitPredicate {
|
||
trait_ref: ty::TraitRef::new(tcx, eq_trait_id, [tcx.mk_param_from_def(param)]),
|
||
polarity: ImplPolarity::Positive,
|
||
})
|
||
.to_predicate(tcx)
|
||
}),
|
||
)),
|
||
Reveal::UserFacing,
|
||
)
|
||
}
|