This commit stabilizes the `std::num` module: * The `Int` and `Float` traits are deprecated in favor of (1) the newly-added inherent methods and (2) the generic traits available in rust-lang/num. * The `Zero` and `One` traits are reintroduced in `std::num`, which together with various other traits allow you to recover the most common forms of generic programming. * The `FromStrRadix` trait, and associated free function, is deprecated in favor of inherent implementations. * A wide range of methods and constants for both integers and floating point numbers are now `#[stable]`, having been adjusted for integer guidelines. * `is_positive` and `is_negative` are renamed to `is_sign_positive` and `is_sign_negative`, in order to address #22985 * The `Wrapping` type is moved to `std::num` and stabilized; `WrappingOps` is deprecated in favor of inherent methods on the integer types, and direct implementation of operations on `Wrapping<X>` for each concrete integer type `X`. Closes #22985 Closes #21069 [breaking-change]
632 lines
20 KiB
Rust
632 lines
20 KiB
Rust
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! The ISAAC random number generator.
|
|
|
|
#![allow(non_camel_case_types)]
|
|
|
|
use core::prelude::*;
|
|
use core::slice;
|
|
use core::iter::repeat;
|
|
use core::num::Wrapping as w;
|
|
|
|
use {Rng, SeedableRng, Rand};
|
|
|
|
type w32 = w<u32>;
|
|
type w64 = w<u64>;
|
|
|
|
const RAND_SIZE_LEN: usize = 8;
|
|
const RAND_SIZE: u32 = 1 << RAND_SIZE_LEN;
|
|
const RAND_SIZE_USIZE: usize = 1 << RAND_SIZE_LEN;
|
|
|
|
/// A random number generator that uses the ISAAC algorithm[1].
|
|
///
|
|
/// The ISAAC algorithm is generally accepted as suitable for
|
|
/// cryptographic purposes, but this implementation has not be
|
|
/// verified as such. Prefer a generator like `OsRng` that defers to
|
|
/// the operating system for cases that need high security.
|
|
///
|
|
/// [1]: Bob Jenkins, [*ISAAC: A fast cryptographic random number
|
|
/// generator*](http://www.burtleburtle.net/bob/rand/isaacafa.html)
|
|
#[derive(Copy)]
|
|
pub struct IsaacRng {
|
|
cnt: u32,
|
|
rsl: [w32; RAND_SIZE_USIZE],
|
|
mem: [w32; RAND_SIZE_USIZE],
|
|
a: w32,
|
|
b: w32,
|
|
c: w32,
|
|
}
|
|
|
|
static EMPTY: IsaacRng = IsaacRng {
|
|
cnt: 0,
|
|
rsl: [w(0); RAND_SIZE_USIZE],
|
|
mem: [w(0); RAND_SIZE_USIZE],
|
|
a: w(0), b: w(0), c: w(0),
|
|
};
|
|
|
|
impl IsaacRng {
|
|
|
|
/// Create an ISAAC random number generator using the default
|
|
/// fixed seed.
|
|
pub fn new_unseeded() -> IsaacRng {
|
|
let mut rng = EMPTY;
|
|
rng.init(false);
|
|
rng
|
|
}
|
|
|
|
/// Initialises `self`. If `use_rsl` is true, then use the current value
|
|
/// of `rsl` as a seed, otherwise construct one algorithmically (not
|
|
/// randomly).
|
|
fn init(&mut self, use_rsl: bool) {
|
|
let mut a = w(0x9e3779b9);
|
|
let mut b = a;
|
|
let mut c = a;
|
|
let mut d = a;
|
|
let mut e = a;
|
|
let mut f = a;
|
|
let mut g = a;
|
|
let mut h = a;
|
|
|
|
macro_rules! mix {
|
|
() => {{
|
|
a=a^(b<<11); d=d+a; b=b+c;
|
|
b=b^(c>>2); e=e+b; c=c+d;
|
|
c=c^(d<<8); f=f+c; d=d+e;
|
|
d=d^(e>>16); g=g+d; e=e+f;
|
|
e=e^(f<<10); h=h+e; f=f+g;
|
|
f=f^(g>>4); a=a+f; g=g+h;
|
|
g=g^(h<<8); b=b+g; h=h+a;
|
|
h=h^(a>>9); c=c+h; a=a+b;
|
|
}}
|
|
}
|
|
|
|
for _ in 0..4 {
|
|
mix!();
|
|
}
|
|
|
|
if use_rsl {
|
|
macro_rules! memloop {
|
|
($arr:expr) => {{
|
|
for i in (0..RAND_SIZE_USIZE).step_by(8) {
|
|
a=a+$arr[i ]; b=b+$arr[i+1];
|
|
c=c+$arr[i+2]; d=d+$arr[i+3];
|
|
e=e+$arr[i+4]; f=f+$arr[i+5];
|
|
g=g+$arr[i+6]; h=h+$arr[i+7];
|
|
mix!();
|
|
self.mem[i ]=a; self.mem[i+1]=b;
|
|
self.mem[i+2]=c; self.mem[i+3]=d;
|
|
self.mem[i+4]=e; self.mem[i+5]=f;
|
|
self.mem[i+6]=g; self.mem[i+7]=h;
|
|
}
|
|
}}
|
|
}
|
|
|
|
memloop!(self.rsl);
|
|
memloop!(self.mem);
|
|
} else {
|
|
for i in (0..RAND_SIZE_USIZE).step_by(8) {
|
|
mix!();
|
|
self.mem[i ]=a; self.mem[i+1]=b;
|
|
self.mem[i+2]=c; self.mem[i+3]=d;
|
|
self.mem[i+4]=e; self.mem[i+5]=f;
|
|
self.mem[i+6]=g; self.mem[i+7]=h;
|
|
}
|
|
}
|
|
|
|
self.isaac();
|
|
}
|
|
|
|
/// Refills the output buffer (`self.rsl`)
|
|
#[inline]
|
|
#[allow(unsigned_negation)]
|
|
fn isaac(&mut self) {
|
|
self.c = self.c + w(1);
|
|
// abbreviations
|
|
let mut a = self.a;
|
|
let mut b = self.b + self.c;
|
|
|
|
const MIDPOINT: usize = RAND_SIZE_USIZE / 2;
|
|
|
|
macro_rules! ind {
|
|
($x:expr) => (self.mem[($x >> 2).0 as usize & (RAND_SIZE_USIZE - 1)] )
|
|
}
|
|
|
|
let r = [(0, MIDPOINT), (MIDPOINT, 0)];
|
|
for &(mr_offset, m2_offset) in r.iter() {
|
|
|
|
macro_rules! rngstepp {
|
|
($j:expr, $shift:expr) => {{
|
|
let base = $j;
|
|
let mix = a << $shift;
|
|
|
|
let x = self.mem[base + mr_offset];
|
|
a = (a ^ mix) + self.mem[base + m2_offset];
|
|
let y = ind!(x) + a + b;
|
|
self.mem[base + mr_offset] = y;
|
|
|
|
b = ind!(y >> RAND_SIZE_LEN) + x;
|
|
self.rsl[base + mr_offset] = b;
|
|
}}
|
|
}
|
|
|
|
macro_rules! rngstepn {
|
|
($j:expr, $shift:expr) => {{
|
|
let base = $j;
|
|
let mix = a >> $shift;
|
|
|
|
let x = self.mem[base + mr_offset];
|
|
a = (a ^ mix) + self.mem[base + m2_offset];
|
|
let y = ind!(x) + a + b;
|
|
self.mem[base + mr_offset] = y;
|
|
|
|
b = ind!(y >> RAND_SIZE_LEN) + x;
|
|
self.rsl[base + mr_offset] = b;
|
|
}}
|
|
}
|
|
|
|
for i in (0..MIDPOINT).step_by(4) {
|
|
rngstepp!(i + 0, 13);
|
|
rngstepn!(i + 1, 6);
|
|
rngstepp!(i + 2, 2);
|
|
rngstepn!(i + 3, 16);
|
|
}
|
|
}
|
|
|
|
self.a = a;
|
|
self.b = b;
|
|
self.cnt = RAND_SIZE;
|
|
}
|
|
}
|
|
|
|
// Cannot be derived because [u32; 256] does not implement Clone
|
|
impl Clone for IsaacRng {
|
|
fn clone(&self) -> IsaacRng {
|
|
*self
|
|
}
|
|
}
|
|
|
|
impl Rng for IsaacRng {
|
|
#[inline]
|
|
fn next_u32(&mut self) -> u32 {
|
|
if self.cnt == 0 {
|
|
// make some more numbers
|
|
self.isaac();
|
|
}
|
|
self.cnt -= 1;
|
|
|
|
// self.cnt is at most RAND_SIZE, but that is before the
|
|
// subtraction above. We want to index without bounds
|
|
// checking, but this could lead to incorrect code if someone
|
|
// misrefactors, so we check, sometimes.
|
|
//
|
|
// (Changes here should be reflected in Isaac64Rng.next_u64.)
|
|
debug_assert!(self.cnt < RAND_SIZE);
|
|
|
|
// (the % is cheaply telling the optimiser that we're always
|
|
// in bounds, without unsafe. NB. this is a power of two, so
|
|
// it optimises to a bitwise mask).
|
|
self.rsl[(self.cnt % RAND_SIZE) as usize].0
|
|
}
|
|
}
|
|
|
|
impl<'a> SeedableRng<&'a [u32]> for IsaacRng {
|
|
fn reseed(&mut self, seed: &'a [u32]) {
|
|
// make the seed into [seed[0], seed[1], ..., seed[seed.len()
|
|
// - 1], 0, 0, ...], to fill rng.rsl.
|
|
let seed_iter = seed.iter().cloned().chain(repeat(0));
|
|
|
|
for (rsl_elem, seed_elem) in self.rsl.iter_mut().zip(seed_iter) {
|
|
*rsl_elem = w(seed_elem);
|
|
}
|
|
self.cnt = 0;
|
|
self.a = w(0);
|
|
self.b = w(0);
|
|
self.c = w(0);
|
|
|
|
self.init(true);
|
|
}
|
|
|
|
/// Create an ISAAC random number generator with a seed. This can
|
|
/// be any length, although the maximum number of elements used is
|
|
/// 256 and any more will be silently ignored. A generator
|
|
/// constructed with a given seed will generate the same sequence
|
|
/// of values as all other generators constructed with that seed.
|
|
fn from_seed(seed: &'a [u32]) -> IsaacRng {
|
|
let mut rng = EMPTY;
|
|
rng.reseed(seed);
|
|
rng
|
|
}
|
|
}
|
|
|
|
impl Rand for IsaacRng {
|
|
fn rand<R: Rng>(other: &mut R) -> IsaacRng {
|
|
let mut ret = EMPTY;
|
|
unsafe {
|
|
let ptr = ret.rsl.as_mut_ptr() as *mut u8;
|
|
|
|
let slice = slice::from_raw_parts_mut(ptr, RAND_SIZE_USIZE * 4);
|
|
other.fill_bytes(slice);
|
|
}
|
|
ret.cnt = 0;
|
|
ret.a = w(0);
|
|
ret.b = w(0);
|
|
ret.c = w(0);
|
|
|
|
ret.init(true);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
const RAND_SIZE_64_LEN: usize = 8;
|
|
const RAND_SIZE_64: usize = 1 << RAND_SIZE_64_LEN;
|
|
|
|
/// A random number generator that uses ISAAC-64[1], the 64-bit
|
|
/// variant of the ISAAC algorithm.
|
|
///
|
|
/// The ISAAC algorithm is generally accepted as suitable for
|
|
/// cryptographic purposes, but this implementation has not be
|
|
/// verified as such. Prefer a generator like `OsRng` that defers to
|
|
/// the operating system for cases that need high security.
|
|
///
|
|
/// [1]: Bob Jenkins, [*ISAAC: A fast cryptographic random number
|
|
/// generator*](http://www.burtleburtle.net/bob/rand/isaacafa.html)
|
|
#[derive(Copy)]
|
|
pub struct Isaac64Rng {
|
|
cnt: usize,
|
|
rsl: [w64; RAND_SIZE_64],
|
|
mem: [w64; RAND_SIZE_64],
|
|
a: w64,
|
|
b: w64,
|
|
c: w64,
|
|
}
|
|
|
|
static EMPTY_64: Isaac64Rng = Isaac64Rng {
|
|
cnt: 0,
|
|
rsl: [w(0); RAND_SIZE_64],
|
|
mem: [w(0); RAND_SIZE_64],
|
|
a: w(0), b: w(0), c: w(0),
|
|
};
|
|
|
|
impl Isaac64Rng {
|
|
/// Create a 64-bit ISAAC random number generator using the
|
|
/// default fixed seed.
|
|
pub fn new_unseeded() -> Isaac64Rng {
|
|
let mut rng = EMPTY_64;
|
|
rng.init(false);
|
|
rng
|
|
}
|
|
|
|
/// Initialises `self`. If `use_rsl` is true, then use the current value
|
|
/// of `rsl` as a seed, otherwise construct one algorithmically (not
|
|
/// randomly).
|
|
fn init(&mut self, use_rsl: bool) {
|
|
macro_rules! init {
|
|
($var:ident) => (
|
|
let mut $var = w(0x9e3779b97f4a7c13);
|
|
)
|
|
}
|
|
init!(a); init!(b); init!(c); init!(d);
|
|
init!(e); init!(f); init!(g); init!(h);
|
|
|
|
macro_rules! mix {
|
|
() => {{
|
|
a=a-e; f=f^(h>>9); h=h+a;
|
|
b=b-f; g=g^(a<<9); a=a+b;
|
|
c=c-g; h=h^(b>>23); b=b+c;
|
|
d=d-h; a=a^(c<<15); c=c+d;
|
|
e=e-a; b=b^(d>>14); d=d+e;
|
|
f=f-b; c=c^(e<<20); e=e+f;
|
|
g=g-c; d=d^(f>>17); f=f+g;
|
|
h=h-d; e=e^(g<<14); g=g+h;
|
|
}}
|
|
}
|
|
|
|
for _ in 0..4 {
|
|
mix!();
|
|
}
|
|
|
|
if use_rsl {
|
|
macro_rules! memloop {
|
|
($arr:expr) => {{
|
|
for i in (0..RAND_SIZE_64 / 8).map(|i| i * 8) {
|
|
a=a+$arr[i ]; b=b+$arr[i+1];
|
|
c=c+$arr[i+2]; d=d+$arr[i+3];
|
|
e=e+$arr[i+4]; f=f+$arr[i+5];
|
|
g=g+$arr[i+6]; h=h+$arr[i+7];
|
|
mix!();
|
|
self.mem[i ]=a; self.mem[i+1]=b;
|
|
self.mem[i+2]=c; self.mem[i+3]=d;
|
|
self.mem[i+4]=e; self.mem[i+5]=f;
|
|
self.mem[i+6]=g; self.mem[i+7]=h;
|
|
}
|
|
}}
|
|
}
|
|
|
|
memloop!(self.rsl);
|
|
memloop!(self.mem);
|
|
} else {
|
|
for i in (0..RAND_SIZE_64 / 8).map(|i| i * 8) {
|
|
mix!();
|
|
self.mem[i ]=a; self.mem[i+1]=b;
|
|
self.mem[i+2]=c; self.mem[i+3]=d;
|
|
self.mem[i+4]=e; self.mem[i+5]=f;
|
|
self.mem[i+6]=g; self.mem[i+7]=h;
|
|
}
|
|
}
|
|
|
|
self.isaac64();
|
|
}
|
|
|
|
/// Refills the output buffer (`self.rsl`)
|
|
fn isaac64(&mut self) {
|
|
self.c = self.c + w(1);
|
|
// abbreviations
|
|
let mut a = self.a;
|
|
let mut b = self.b + self.c;
|
|
const MIDPOINT: usize = RAND_SIZE_64 / 2;
|
|
const MP_VEC: [(usize, usize); 2] = [(0,MIDPOINT), (MIDPOINT, 0)];
|
|
macro_rules! ind {
|
|
($x:expr) => {
|
|
*self.mem.get_unchecked((($x >> 3).0 as usize) & (RAND_SIZE_64 - 1))
|
|
}
|
|
}
|
|
|
|
for &(mr_offset, m2_offset) in MP_VEC.iter() {
|
|
for base in (0..MIDPOINT / 4).map(|i| i * 4) {
|
|
|
|
macro_rules! rngstepp {
|
|
($j:expr, $shift:expr) => {{
|
|
let base = base + $j;
|
|
let mix = a ^ (a << $shift);
|
|
let mix = if $j == 0 {!mix} else {mix};
|
|
|
|
unsafe {
|
|
let x = *self.mem.get_unchecked(base + mr_offset);
|
|
a = mix + *self.mem.get_unchecked(base + m2_offset);
|
|
let y = ind!(x) + a + b;
|
|
*self.mem.get_unchecked_mut(base + mr_offset) = y;
|
|
|
|
b = ind!(y >> RAND_SIZE_64_LEN) + x;
|
|
*self.rsl.get_unchecked_mut(base + mr_offset) = b;
|
|
}
|
|
}}
|
|
}
|
|
|
|
macro_rules! rngstepn {
|
|
($j:expr, $shift:expr) => {{
|
|
let base = base + $j;
|
|
let mix = a ^ (a >> $shift);
|
|
let mix = if $j == 0 {!mix} else {mix};
|
|
|
|
unsafe {
|
|
let x = *self.mem.get_unchecked(base + mr_offset);
|
|
a = mix + *self.mem.get_unchecked(base + m2_offset);
|
|
let y = ind!(x) + a + b;
|
|
*self.mem.get_unchecked_mut(base + mr_offset) = y;
|
|
|
|
b = ind!(y >> RAND_SIZE_64_LEN) + x;
|
|
*self.rsl.get_unchecked_mut(base + mr_offset) = b;
|
|
}
|
|
}}
|
|
}
|
|
|
|
rngstepp!(0, 21);
|
|
rngstepn!(1, 5);
|
|
rngstepp!(2, 12);
|
|
rngstepn!(3, 33);
|
|
}
|
|
}
|
|
|
|
self.a = a;
|
|
self.b = b;
|
|
self.cnt = RAND_SIZE_64;
|
|
}
|
|
}
|
|
|
|
// Cannot be derived because [u32; 256] does not implement Clone
|
|
impl Clone for Isaac64Rng {
|
|
fn clone(&self) -> Isaac64Rng {
|
|
*self
|
|
}
|
|
}
|
|
|
|
impl Rng for Isaac64Rng {
|
|
// FIXME #7771: having next_u32 like this should be unnecessary
|
|
#[inline]
|
|
fn next_u32(&mut self) -> u32 {
|
|
self.next_u64() as u32
|
|
}
|
|
|
|
#[inline]
|
|
fn next_u64(&mut self) -> u64 {
|
|
if self.cnt == 0 {
|
|
// make some more numbers
|
|
self.isaac64();
|
|
}
|
|
self.cnt -= 1;
|
|
|
|
// See corresponding location in IsaacRng.next_u32 for
|
|
// explanation.
|
|
debug_assert!(self.cnt < RAND_SIZE_64);
|
|
self.rsl[(self.cnt % RAND_SIZE_64) as usize].0
|
|
}
|
|
}
|
|
|
|
impl<'a> SeedableRng<&'a [u64]> for Isaac64Rng {
|
|
fn reseed(&mut self, seed: &'a [u64]) {
|
|
// make the seed into [seed[0], seed[1], ..., seed[seed.len()
|
|
// - 1], 0, 0, ...], to fill rng.rsl.
|
|
let seed_iter = seed.iter().cloned().chain(repeat(0));
|
|
|
|
for (rsl_elem, seed_elem) in self.rsl.iter_mut().zip(seed_iter) {
|
|
*rsl_elem = w(seed_elem);
|
|
}
|
|
self.cnt = 0;
|
|
self.a = w(0);
|
|
self.b = w(0);
|
|
self.c = w(0);
|
|
|
|
self.init(true);
|
|
}
|
|
|
|
/// Create an ISAAC random number generator with a seed. This can
|
|
/// be any length, although the maximum number of elements used is
|
|
/// 256 and any more will be silently ignored. A generator
|
|
/// constructed with a given seed will generate the same sequence
|
|
/// of values as all other generators constructed with that seed.
|
|
fn from_seed(seed: &'a [u64]) -> Isaac64Rng {
|
|
let mut rng = EMPTY_64;
|
|
rng.reseed(seed);
|
|
rng
|
|
}
|
|
}
|
|
|
|
impl Rand for Isaac64Rng {
|
|
fn rand<R: Rng>(other: &mut R) -> Isaac64Rng {
|
|
let mut ret = EMPTY_64;
|
|
unsafe {
|
|
let ptr = ret.rsl.as_mut_ptr() as *mut u8;
|
|
|
|
let slice = slice::from_raw_parts_mut(ptr, RAND_SIZE_64 * 8);
|
|
other.fill_bytes(slice);
|
|
}
|
|
ret.cnt = 0;
|
|
ret.a = w(0);
|
|
ret.b = w(0);
|
|
ret.c = w(0);
|
|
|
|
ret.init(true);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use std::prelude::v1::*;
|
|
|
|
use core::iter::order;
|
|
use {Rng, SeedableRng};
|
|
use super::{IsaacRng, Isaac64Rng};
|
|
|
|
#[test]
|
|
fn test_rng_32_rand_seeded() {
|
|
let s = ::test::rng().gen_iter::<u32>().take(256).collect::<Vec<u32>>();
|
|
let mut ra: IsaacRng = SeedableRng::from_seed(&s[..]);
|
|
let mut rb: IsaacRng = SeedableRng::from_seed(&s[..]);
|
|
assert!(order::equals(ra.gen_ascii_chars().take(100),
|
|
rb.gen_ascii_chars().take(100)));
|
|
}
|
|
#[test]
|
|
fn test_rng_64_rand_seeded() {
|
|
let s = ::test::rng().gen_iter::<u64>().take(256).collect::<Vec<u64>>();
|
|
let mut ra: Isaac64Rng = SeedableRng::from_seed(&s[..]);
|
|
let mut rb: Isaac64Rng = SeedableRng::from_seed(&s[..]);
|
|
assert!(order::equals(ra.gen_ascii_chars().take(100),
|
|
rb.gen_ascii_chars().take(100)));
|
|
}
|
|
|
|
#[test]
|
|
fn test_rng_32_seeded() {
|
|
let seed: &[_] = &[1, 23, 456, 7890, 12345];
|
|
let mut ra: IsaacRng = SeedableRng::from_seed(seed);
|
|
let mut rb: IsaacRng = SeedableRng::from_seed(seed);
|
|
assert!(order::equals(ra.gen_ascii_chars().take(100),
|
|
rb.gen_ascii_chars().take(100)));
|
|
}
|
|
#[test]
|
|
fn test_rng_64_seeded() {
|
|
let seed: &[_] = &[1, 23, 456, 7890, 12345];
|
|
let mut ra: Isaac64Rng = SeedableRng::from_seed(seed);
|
|
let mut rb: Isaac64Rng = SeedableRng::from_seed(seed);
|
|
assert!(order::equals(ra.gen_ascii_chars().take(100),
|
|
rb.gen_ascii_chars().take(100)));
|
|
}
|
|
|
|
#[test]
|
|
fn test_rng_32_reseed() {
|
|
let s = ::test::rng().gen_iter::<u32>().take(256).collect::<Vec<u32>>();
|
|
let mut r: IsaacRng = SeedableRng::from_seed(&s[..]);
|
|
let string1: String = r.gen_ascii_chars().take(100).collect();
|
|
|
|
r.reseed(&s);
|
|
|
|
let string2: String = r.gen_ascii_chars().take(100).collect();
|
|
assert_eq!(string1, string2);
|
|
}
|
|
#[test]
|
|
fn test_rng_64_reseed() {
|
|
let s = ::test::rng().gen_iter::<u64>().take(256).collect::<Vec<u64>>();
|
|
let mut r: Isaac64Rng = SeedableRng::from_seed(&s[..]);
|
|
let string1: String = r.gen_ascii_chars().take(100).collect();
|
|
|
|
r.reseed(&s);
|
|
|
|
let string2: String = r.gen_ascii_chars().take(100).collect();
|
|
assert_eq!(string1, string2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_rng_32_true_values() {
|
|
let seed: &[_] = &[1, 23, 456, 7890, 12345];
|
|
let mut ra: IsaacRng = SeedableRng::from_seed(seed);
|
|
// Regression test that isaac is actually using the above vector
|
|
let v = (0..10).map(|_| ra.next_u32()).collect::<Vec<_>>();
|
|
assert_eq!(v,
|
|
vec!(2558573138, 873787463, 263499565, 2103644246, 3595684709,
|
|
4203127393, 264982119, 2765226902, 2737944514, 3900253796));
|
|
|
|
let seed: &[_] = &[12345, 67890, 54321, 9876];
|
|
let mut rb: IsaacRng = SeedableRng::from_seed(seed);
|
|
// skip forward to the 10000th number
|
|
for _ in 0..10000 { rb.next_u32(); }
|
|
|
|
let v = (0..10).map(|_| rb.next_u32()).collect::<Vec<_>>();
|
|
assert_eq!(v,
|
|
vec!(3676831399, 3183332890, 2834741178, 3854698763, 2717568474,
|
|
1576568959, 3507990155, 179069555, 141456972, 2478885421));
|
|
}
|
|
#[test]
|
|
fn test_rng_64_true_values() {
|
|
let seed: &[_] = &[1, 23, 456, 7890, 12345];
|
|
let mut ra: Isaac64Rng = SeedableRng::from_seed(seed);
|
|
// Regression test that isaac is actually using the above vector
|
|
let v = (0..10).map(|_| ra.next_u64()).collect::<Vec<_>>();
|
|
assert_eq!(v,
|
|
vec!(547121783600835980, 14377643087320773276, 17351601304698403469,
|
|
1238879483818134882, 11952566807690396487, 13970131091560099343,
|
|
4469761996653280935, 15552757044682284409, 6860251611068737823,
|
|
13722198873481261842));
|
|
|
|
let seed: &[_] = &[12345, 67890, 54321, 9876];
|
|
let mut rb: Isaac64Rng = SeedableRng::from_seed(seed);
|
|
// skip forward to the 10000th number
|
|
for _ in 0..10000 { rb.next_u64(); }
|
|
|
|
let v = (0..10).map(|_| rb.next_u64()).collect::<Vec<_>>();
|
|
assert_eq!(v,
|
|
vec!(18143823860592706164, 8491801882678285927, 2699425367717515619,
|
|
17196852593171130876, 2606123525235546165, 15790932315217671084,
|
|
596345674630742204, 9947027391921273664, 11788097613744130851,
|
|
10391409374914919106));
|
|
}
|
|
|
|
#[test]
|
|
fn test_rng_clone() {
|
|
let seed: &[_] = &[1, 23, 456, 7890, 12345];
|
|
let mut rng: Isaac64Rng = SeedableRng::from_seed(seed);
|
|
let mut clone = rng.clone();
|
|
for _ in 0..16 {
|
|
assert_eq!(rng.next_u64(), clone.next_u64());
|
|
}
|
|
}
|
|
}
|