rust/src/librustc/middle/trans/closure.rs
2013-04-19 12:00:08 -07:00

606 lines
22 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use core::prelude::*;
use back::abi;
use back::link::{mangle_internal_name_by_path_and_seq};
use lib::llvm::{llvm, ValueRef};
use middle::moves;
use middle::trans::base::*;
use middle::trans::build::*;
use middle::trans::callee;
use middle::trans::common::*;
use middle::trans::datum::{Datum, INIT, ByRef, ZeroMem};
use middle::trans::expr;
use middle::trans::glue;
use middle::trans::machine;
use middle::trans::type_of::*;
use middle::ty;
use util::ppaux::ty_to_str;
use syntax::ast;
use syntax::ast_map::path_name;
use syntax::ast_util;
use syntax::parse::token::special_idents;
// ___Good to know (tm)__________________________________________________
//
// The layout of a closure environment in memory is
// roughly as follows:
//
// struct rust_opaque_box { // see rust_internal.h
// unsigned ref_count; // only used for @fn()
// type_desc *tydesc; // describes closure_data struct
// rust_opaque_box *prev; // (used internally by memory alloc)
// rust_opaque_box *next; // (used internally by memory alloc)
// struct closure_data {
// type_desc *bound_tdescs[]; // bound descriptors
// struct {
// upvar1_t upvar1;
// ...
// upvarN_t upvarN;
// } bound_data;
// }
// };
//
// Note that the closure is itself a rust_opaque_box. This is true
// even for ~fn and &fn, because we wish to keep binary compatibility
// between all kinds of closures. The allocation strategy for this
// closure depends on the closure type. For a sendfn, the closure
// (and the referenced type descriptors) will be allocated in the
// exchange heap. For a fn, the closure is allocated in the task heap
// and is reference counted. For a block, the closure is allocated on
// the stack.
//
// ## Opaque closures and the embedded type descriptor ##
//
// One interesting part of closures is that they encapsulate the data
// that they close over. So when I have a ptr to a closure, I do not
// know how many type descriptors it contains nor what upvars are
// captured within. That means I do not know precisely how big it is
// nor where its fields are located. This is called an "opaque
// closure".
//
// Typically an opaque closure suffices because we only manipulate it
// by ptr. The routine common::T_opaque_box_ptr() returns an
// appropriate type for such an opaque closure; it allows access to
// the box fields, but not the closure_data itself.
//
// But sometimes, such as when cloning or freeing a closure, we need
// to know the full information. That is where the type descriptor
// that defines the closure comes in handy. We can use its take and
// drop glue functions to allocate/free data as needed.
//
// ## Subtleties concerning alignment ##
//
// It is important that we be able to locate the closure data *without
// knowing the kind of data that is being bound*. This can be tricky
// because the alignment requirements of the bound data affects the
// alignment requires of the closure_data struct as a whole. However,
// right now this is a non-issue in any case, because the size of the
// rust_opaque_box header is always a mutiple of 16-bytes, which is
// the maximum alignment requirement we ever have to worry about.
//
// The only reason alignment matters is that, in order to learn what data
// is bound, we would normally first load the type descriptors: but their
// location is ultimately depend on their content! There is, however, a
// workaround. We can load the tydesc from the rust_opaque_box, which
// describes the closure_data struct and has self-contained derived type
// descriptors, and read the alignment from there. It's just annoying to
// do. Hopefully should this ever become an issue we'll have monomorphized
// and type descriptors will all be a bad dream.
//
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
pub enum EnvAction {
/// Copy the value from this llvm ValueRef into the environment.
EnvCopy,
/// Move the value from this llvm ValueRef into the environment.
EnvMove,
/// Access by reference (used for stack closures).
EnvRef
}
pub struct EnvValue {
action: EnvAction,
datum: Datum
}
pub impl EnvAction {
fn to_str(&self) -> ~str {
match *self {
EnvCopy => ~"EnvCopy",
EnvMove => ~"EnvMove",
EnvRef => ~"EnvRef"
}
}
}
pub impl EnvValue {
fn to_str(&self, ccx: @CrateContext) -> ~str {
fmt!("%s(%s)", self.action.to_str(), self.datum.to_str(ccx))
}
}
pub fn mk_tuplified_uniq_cbox_ty(tcx: ty::ctxt, cdata_ty: ty::t) -> ty::t {
let cbox_ty = tuplify_box_ty(tcx, cdata_ty);
return ty::mk_imm_uniq(tcx, cbox_ty);
}
// Given a closure ty, emits a corresponding tuple ty
pub fn mk_closure_tys(tcx: ty::ctxt,
bound_values: ~[EnvValue])
-> ty::t {
// determine the types of the values in the env. Note that this
// is the actual types that will be stored in the map, not the
// logical types as the user sees them, so by-ref upvars must be
// converted to ptrs.
let bound_tys = bound_values.map(|bv| {
match bv.action {
EnvCopy | EnvMove => bv.datum.ty,
EnvRef => ty::mk_mut_ptr(tcx, bv.datum.ty)
}
});
let cdata_ty = ty::mk_tup(tcx, bound_tys);
debug!("cdata_ty=%s", ty_to_str(tcx, cdata_ty));
return cdata_ty;
}
pub fn allocate_cbox(bcx: block, sigil: ast::Sigil, cdata_ty: ty::t)
-> Result {
let _icx = bcx.insn_ctxt("closure::allocate_cbox");
let ccx = bcx.ccx(), tcx = ccx.tcx;
fn nuke_ref_count(bcx: block, llbox: ValueRef) {
let _icx = bcx.insn_ctxt("closure::nuke_ref_count");
// Initialize ref count to arbitrary value for debugging:
let ccx = bcx.ccx();
let llbox = PointerCast(bcx, llbox, T_opaque_box_ptr(ccx));
let ref_cnt = GEPi(bcx, llbox, [0u, abi::box_field_refcnt]);
let rc = C_int(ccx, 0x12345678);
Store(bcx, rc, ref_cnt);
}
// Allocate and initialize the box:
match sigil {
ast::ManagedSigil => {
malloc_raw(bcx, cdata_ty, heap_managed)
}
ast::OwnedSigil => {
malloc_raw(bcx, cdata_ty, heap_for_unique(bcx, cdata_ty))
}
ast::BorrowedSigil => {
let cbox_ty = tuplify_box_ty(tcx, cdata_ty);
let llbox = alloc_ty(bcx, cbox_ty);
nuke_ref_count(bcx, llbox);
rslt(bcx, llbox)
}
}
}
pub struct ClosureResult {
llbox: ValueRef, // llvalue of ptr to closure
cdata_ty: ty::t, // type of the closure data
bcx: block // final bcx
}
// Given a block context and a list of tydescs and values to bind
// construct a closure out of them. If copying is true, it is a
// heap allocated closure that copies the upvars into environment.
// Otherwise, it is stack allocated and copies pointers to the upvars.
pub fn store_environment(bcx: block,
bound_values: ~[EnvValue],
sigil: ast::Sigil) -> ClosureResult {
let _icx = bcx.insn_ctxt("closure::store_environment");
let ccx = bcx.ccx(), tcx = ccx.tcx;
// compute the shape of the closure
// XXX: Bad copy.
let cdata_ty = mk_closure_tys(tcx, copy bound_values);
// allocate closure in the heap
let Result {bcx: bcx, val: llbox} = allocate_cbox(bcx, sigil, cdata_ty);
let mut temp_cleanups = ~[];
// cbox_ty has the form of a tuple: (a, b, c) we want a ptr to a
// tuple. This could be a ptr in uniq or a box or on stack,
// whatever.
let cbox_ty = tuplify_box_ty(tcx, cdata_ty);
let cboxptr_ty = ty::mk_ptr(tcx, ty::mt {ty:cbox_ty, mutbl:ast::m_imm});
let llbox = PointerCast(bcx, llbox, type_of(ccx, cboxptr_ty));
debug!("tuplify_box_ty = %s", ty_to_str(tcx, cbox_ty));
// Copy expr values into boxed bindings.
let mut bcx = bcx;
for vec::eachi(bound_values) |i, bv| {
debug!("Copy %s into closure", bv.to_str(ccx));
if !ccx.sess.no_asm_comments() {
add_comment(bcx, fmt!("Copy %s into closure",
bv.to_str(ccx)));
}
let bound_data = GEPi(bcx, llbox, [0u, abi::box_field_body, i]);
match bv.action {
EnvCopy => {
bcx = bv.datum.copy_to(bcx, INIT, bound_data);
}
EnvMove => {
bcx = bv.datum.move_to(bcx, INIT, bound_data);
}
EnvRef => {
Store(bcx, bv.datum.to_ref_llval(bcx), bound_data);
}
}
}
for vec::each(temp_cleanups) |cleanup| {
revoke_clean(bcx, *cleanup);
}
ClosureResult { llbox: llbox, cdata_ty: cdata_ty, bcx: bcx }
}
// Given a context and a list of upvars, build a closure. This just
// collects the upvars and packages them up for store_environment.
pub fn build_closure(bcx0: block,
cap_vars: &[moves::CaptureVar],
sigil: ast::Sigil,
include_ret_handle: Option<ValueRef>) -> ClosureResult {
let _icx = bcx0.insn_ctxt("closure::build_closure");
// If we need to, package up the iterator body to call
let mut bcx = bcx0;;
let ccx = bcx.ccx(), tcx = ccx.tcx;
// Package up the captured upvars
let mut env_vals = ~[];
for cap_vars.each |cap_var| {
debug!("Building closure: captured variable %?", *cap_var);
let datum = expr::trans_local_var(bcx, cap_var.def);
match cap_var.mode {
moves::CapRef => {
assert!(sigil == ast::BorrowedSigil);
env_vals.push(EnvValue {action: EnvRef,
datum: datum});
}
moves::CapCopy => {
env_vals.push(EnvValue {action: EnvCopy,
datum: datum});
}
moves::CapMove => {
env_vals.push(EnvValue {action: EnvMove,
datum: datum});
}
}
}
// If this is a `for` loop body, add two special environment
// variables:
for include_ret_handle.each |flagptr| {
// Flag indicating we have returned (a by-ref bool):
let flag_datum = Datum {val: *flagptr, ty: ty::mk_bool(tcx),
mode: ByRef, source: ZeroMem};
env_vals.push(EnvValue {action: EnvRef,
datum: flag_datum});
// Return value (we just pass a by-ref () and cast it later to
// the right thing):
let ret_true = match bcx.fcx.loop_ret {
Some((_, retptr)) => retptr,
None => bcx.fcx.llretptr.get()
};
let ret_casted = PointerCast(bcx, ret_true, T_ptr(T_nil()));
let ret_datum = Datum {val: ret_casted, ty: ty::mk_nil(tcx),
mode: ByRef, source: ZeroMem};
env_vals.push(EnvValue {action: EnvRef,
datum: ret_datum});
}
return store_environment(bcx, env_vals, sigil);
}
// Given an enclosing block context, a new function context, a closure type,
// and a list of upvars, generate code to load and populate the environment
// with the upvars and type descriptors.
pub fn load_environment(fcx: fn_ctxt,
cdata_ty: ty::t,
cap_vars: &[moves::CaptureVar],
load_ret_handle: bool,
sigil: ast::Sigil) {
let _icx = fcx.insn_ctxt("closure::load_environment");
let llloadenv = match fcx.llloadenv {
Some(ll) => ll,
None => {
let ll =
str::as_c_str(~"load_env",
|buf|
unsafe {
llvm::LLVMAppendBasicBlock(fcx.llfn, buf)
});
fcx.llloadenv = Some(ll);
ll
}
};
let bcx = raw_block(fcx, false, llloadenv);
// Load a pointer to the closure data, skipping over the box header:
let llcdata = opaque_box_body(bcx, cdata_ty, fcx.llenv);
// Populate the upvars from the environment.
let mut i = 0u;
for cap_vars.each |cap_var| {
let mut upvarptr = GEPi(bcx, llcdata, [0u, i]);
match sigil {
ast::BorrowedSigil => { upvarptr = Load(bcx, upvarptr); }
ast::ManagedSigil | ast::OwnedSigil => {}
}
let def_id = ast_util::def_id_of_def(cap_var.def);
fcx.llupvars.insert(def_id.node, upvarptr);
i += 1u;
}
if load_ret_handle {
let flagptr = Load(bcx, GEPi(bcx, llcdata, [0u, i]));
let retptr = Load(bcx,
GEPi(bcx, llcdata, [0u, i+1u]));
fcx.loop_ret = Some((flagptr, retptr));
}
}
pub fn trans_expr_fn(bcx: block,
sigil: ast::Sigil,
decl: &ast::fn_decl,
body: &ast::blk,
outer_id: ast::node_id,
user_id: ast::node_id,
is_loop_body: Option<Option<ValueRef>>,
dest: expr::Dest) -> block {
/*!
*
* Translates the body of a closure expression.
*
* - `sigil`
* - `decl`
* - `body`
* - `outer_id`: The id of the closure expression with the correct
* type. This is usually the same as as `user_id`, but in the
* case of a `for` loop, the `outer_id` will have the return
* type of boolean, and the `user_id` will have the return type
* of `nil`.
* - `user_id`: The id of the closure as the user expressed it.
Generally the same as `outer_id`
* - `cap_clause`: information about captured variables, if any.
* - `is_loop_body`: `Some()` if this is part of a `for` loop.
* - `dest`: where to write the closure value, which must be a
(fn ptr, env) pair
*/
let _icx = bcx.insn_ctxt("closure::trans_expr_fn");
let dest_addr = match dest {
expr::SaveIn(p) => p,
expr::Ignore => {
return bcx; // closure construction is non-side-effecting
}
};
let ccx = bcx.ccx();
let fty = node_id_type(bcx, outer_id);
let llfnty = type_of_fn_from_ty(ccx, fty);
let sub_path = vec::append_one(/*bad*/copy bcx.fcx.path,
path_name(special_idents::anon));
// XXX: Bad copy.
let s = mangle_internal_name_by_path_and_seq(ccx,
copy sub_path,
~"expr_fn");
let llfn = decl_internal_cdecl_fn(ccx.llmod, s, llfnty);
// Always mark inline if this is a loop body. This is important for
// performance on many programs with tight loops.
if is_loop_body.is_some() {
set_always_inline(llfn);
} else {
// Can't hurt.
set_inline_hint(llfn);
}
let real_return_type = if is_loop_body.is_some() {
ty::mk_bool(bcx.tcx())
} else {
ty::ty_fn_ret(fty)
};
let Result {bcx: bcx, val: closure} = match sigil {
ast::BorrowedSigil | ast::ManagedSigil | ast::OwnedSigil => {
let cap_vars = *ccx.maps.capture_map.get(&user_id);
let ret_handle = match is_loop_body {Some(x) => x,
None => None};
let ClosureResult {llbox, cdata_ty, bcx}
= build_closure(bcx, cap_vars, sigil, ret_handle);
trans_closure(ccx,
sub_path,
decl,
body,
llfn,
no_self,
/*bad*/ copy bcx.fcx.param_substs,
user_id,
None,
[],
real_return_type,
|fcx| load_environment(fcx, cdata_ty, cap_vars,
ret_handle.is_some(), sigil),
|bcx| {
if is_loop_body.is_some() {
Store(bcx,
C_bool(true),
bcx.fcx.llretptr.get());
}
});
rslt(bcx, llbox)
}
};
fill_fn_pair(bcx, dest_addr, llfn, closure);
return bcx;
}
pub fn make_closure_glue(
cx: block,
v: ValueRef,
t: ty::t,
glue_fn: @fn(block, v: ValueRef, t: ty::t) -> block) -> block {
let _icx = cx.insn_ctxt("closure::make_closure_glue");
let bcx = cx;
let tcx = cx.tcx();
let sigil = ty::ty_closure_sigil(t);
match sigil {
ast::BorrowedSigil => bcx,
ast::OwnedSigil | ast::ManagedSigil => {
let box_cell_v = GEPi(cx, v, [0u, abi::fn_field_box]);
let box_ptr_v = Load(cx, box_cell_v);
do with_cond(cx, IsNotNull(cx, box_ptr_v)) |bcx| {
let closure_ty = ty::mk_opaque_closure_ptr(tcx, sigil);
glue_fn(bcx, box_cell_v, closure_ty)
}
}
}
}
pub fn make_opaque_cbox_take_glue(
bcx: block,
sigil: ast::Sigil,
cboxptr: ValueRef) // ptr to ptr to the opaque closure
-> block {
// Easy cases:
let _icx = bcx.insn_ctxt("closure::make_opaque_cbox_take_glue");
match sigil {
ast::BorrowedSigil => {
return bcx;
}
ast::ManagedSigil => {
glue::incr_refcnt_of_boxed(bcx, Load(bcx, cboxptr));
return bcx;
}
ast::OwnedSigil => {
/* hard case: fallthrough to code below */
}
}
// ~fn requires a deep copy.
let ccx = bcx.ccx(), tcx = ccx.tcx;
let llopaquecboxty = T_opaque_box_ptr(ccx);
let cbox_in = Load(bcx, cboxptr);
do with_cond(bcx, IsNotNull(bcx, cbox_in)) |bcx| {
// Load the size from the type descr found in the cbox
let cbox_in = PointerCast(bcx, cbox_in, llopaquecboxty);
let tydescptr = GEPi(bcx, cbox_in, [0u, abi::box_field_tydesc]);
let tydesc = Load(bcx, tydescptr);
let tydesc = PointerCast(bcx, tydesc, T_ptr(ccx.tydesc_type));
let sz = Load(bcx, GEPi(bcx, tydesc, [0u, abi::tydesc_field_size]));
// Adjust sz to account for the rust_opaque_box header fields
let sz = Add(bcx, sz, machine::llsize_of(ccx, T_box_header(ccx)));
// Allocate memory, update original ptr, and copy existing data
let opaque_tydesc = PointerCast(bcx, tydesc, T_ptr(T_i8()));
let rval = alloca(bcx, T_ptr(T_i8()));
let bcx = callee::trans_lang_call(
bcx,
bcx.tcx().lang_items.exchange_malloc_fn(),
~[opaque_tydesc, sz],
expr::SaveIn(rval));
let cbox_out = PointerCast(bcx, Load(bcx, rval), llopaquecboxty);
call_memcpy(bcx, cbox_out, cbox_in, sz);
Store(bcx, cbox_out, cboxptr);
// Take the (deeply cloned) type descriptor
let tydesc_out = GEPi(bcx, cbox_out, [0u, abi::box_field_tydesc]);
let bcx = glue::take_ty(bcx, tydesc_out, ty::mk_type(tcx));
// Take the data in the tuple
let cdata_out = GEPi(bcx, cbox_out, [0u, abi::box_field_body]);
glue::call_tydesc_glue_full(bcx, cdata_out, tydesc,
abi::tydesc_field_take_glue, None);
bcx
}
}
pub fn make_opaque_cbox_drop_glue(
bcx: block,
sigil: ast::Sigil,
cboxptr: ValueRef) // ptr to the opaque closure
-> block {
let _icx = bcx.insn_ctxt("closure::make_opaque_cbox_drop_glue");
match sigil {
ast::BorrowedSigil => bcx,
ast::ManagedSigil => {
glue::decr_refcnt_maybe_free(
bcx, Load(bcx, cboxptr),
ty::mk_opaque_closure_ptr(bcx.tcx(), sigil))
}
ast::OwnedSigil => {
glue::free_ty(
bcx, cboxptr,
ty::mk_opaque_closure_ptr(bcx.tcx(), sigil))
}
}
}
pub fn make_opaque_cbox_free_glue(
bcx: block,
sigil: ast::Sigil,
cbox: ValueRef) // ptr to ptr to the opaque closure
-> block {
let _icx = bcx.insn_ctxt("closure::make_opaque_cbox_free_glue");
match sigil {
ast::BorrowedSigil => {
return bcx;
}
ast::ManagedSigil | ast::OwnedSigil => {
/* hard cases: fallthrough to code below */
}
}
let ccx = bcx.ccx();
do with_cond(bcx, IsNotNull(bcx, cbox)) |bcx| {
// Load the type descr found in the cbox
let lltydescty = T_ptr(ccx.tydesc_type);
let cbox = Load(bcx, cbox);
let tydescptr = GEPi(bcx, cbox, [0u, abi::box_field_tydesc]);
let tydesc = Load(bcx, tydescptr);
let tydesc = PointerCast(bcx, tydesc, lltydescty);
// Drop the tuple data then free the descriptor
let cdata = GEPi(bcx, cbox, [0u, abi::box_field_body]);
glue::call_tydesc_glue_full(bcx, cdata, tydesc,
abi::tydesc_field_drop_glue, None);
// Free the ty descr (if necc) and the box itself
match sigil {
ast::ManagedSigil => glue::trans_free(bcx, cbox),
ast::OwnedSigil => glue::trans_exchange_free(bcx, cbox),
ast::BorrowedSigil => {
bcx.sess().bug(~"impossible")
}
}
}
}