rust/src/librustc_unicode/u_str.rs
Tobias Bucher 22ec5f4af7 Replace many uses of mem::transmute with more specific functions
The replacements are functions that usually use a single `mem::transmute` in
their body and restrict input and output via more concrete types than `T` and
`U`. Worth noting are the `transmute` functions for slices and the `from_utf8*`
family for mutable slices. Additionally, `mem::transmute` was often used for
casting raw pointers, when you can already cast raw pointers just fine with
`as`.
2015-08-09 22:05:22 +02:00

572 lines
18 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Unicode-intensive string manipulations.
//!
//! This module provides functionality to `str` that requires the Unicode methods provided by the
//! unicode parts of the CharExt trait.
use self::GraphemeState::*;
#[cfg(stage0)]
use core::prelude::v1::*;
use core::char;
use core::cmp;
use core::iter::Filter;
use core::slice;
use core::str::Split;
use tables::grapheme::GraphemeCat;
#[deprecated(reason = "struct Words is being replaced by struct SplitWhitespace",
since = "1.1.0")]
#[unstable(feature = "str_words",
reason = "words() will be replaced by split_whitespace() in 1.1.0")]
pub type Words<'a> = SplitWhitespace<'a>;
/// An iterator over the non-whitespace substrings of a string,
/// separated by any amount of whitespace.
#[stable(feature = "split_whitespace", since = "1.1.0")]
pub struct SplitWhitespace<'a> {
inner: Filter<Split<'a, fn(char) -> bool>, fn(&&str) -> bool>,
}
/// Methods for Unicode string slices
#[allow(missing_docs)] // docs in libcollections
pub trait UnicodeStr {
fn graphemes<'a>(&'a self, is_extended: bool) -> Graphemes<'a>;
fn grapheme_indices<'a>(&'a self, is_extended: bool) -> GraphemeIndices<'a>;
#[allow(deprecated)]
fn words<'a>(&'a self) -> Words<'a>;
fn split_whitespace<'a>(&'a self) -> SplitWhitespace<'a>;
fn is_whitespace(&self) -> bool;
fn is_alphanumeric(&self) -> bool;
fn width(&self, is_cjk: bool) -> usize;
fn trim<'a>(&'a self) -> &'a str;
fn trim_left<'a>(&'a self) -> &'a str;
fn trim_right<'a>(&'a self) -> &'a str;
}
impl UnicodeStr for str {
#[inline]
fn graphemes(&self, is_extended: bool) -> Graphemes {
Graphemes { string: self, extended: is_extended, cat: None, catb: None }
}
#[inline]
fn grapheme_indices(&self, is_extended: bool) -> GraphemeIndices {
GraphemeIndices { start_offset: self.as_ptr() as usize, iter: self.graphemes(is_extended) }
}
#[allow(deprecated)]
#[inline]
fn words(&self) -> Words {
self.split_whitespace()
}
#[inline]
fn split_whitespace(&self) -> SplitWhitespace {
fn is_not_empty(s: &&str) -> bool { !s.is_empty() }
let is_not_empty: fn(&&str) -> bool = is_not_empty; // coerce to fn pointer
fn is_whitespace(c: char) -> bool { c.is_whitespace() }
let is_whitespace: fn(char) -> bool = is_whitespace; // coerce to fn pointer
SplitWhitespace { inner: self.split(is_whitespace).filter(is_not_empty) }
}
#[inline]
fn is_whitespace(&self) -> bool { self.chars().all(|c| c.is_whitespace()) }
#[inline]
fn is_alphanumeric(&self) -> bool { self.chars().all(|c| c.is_alphanumeric()) }
#[allow(deprecated)]
#[inline]
fn width(&self, is_cjk: bool) -> usize {
self.chars().map(|c| c.width(is_cjk).unwrap_or(0)).sum()
}
#[inline]
fn trim(&self) -> &str {
self.trim_matches(|c: char| c.is_whitespace())
}
#[inline]
fn trim_left(&self) -> &str {
self.trim_left_matches(|c: char| c.is_whitespace())
}
#[inline]
fn trim_right(&self) -> &str {
self.trim_right_matches(|c: char| c.is_whitespace())
}
}
/// External iterator for grapheme clusters and byte offsets.
#[derive(Clone)]
pub struct GraphemeIndices<'a> {
start_offset: usize,
iter: Graphemes<'a>,
}
impl<'a> Iterator for GraphemeIndices<'a> {
type Item = (usize, &'a str);
#[inline]
fn next(&mut self) -> Option<(usize, &'a str)> {
self.iter.next().map(|s| (s.as_ptr() as usize - self.start_offset, s))
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<'a> DoubleEndedIterator for GraphemeIndices<'a> {
#[inline]
fn next_back(&mut self) -> Option<(usize, &'a str)> {
self.iter.next_back().map(|s| (s.as_ptr() as usize - self.start_offset, s))
}
}
/// External iterator for a string's
/// [grapheme clusters](http://www.unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries).
#[derive(Clone)]
pub struct Graphemes<'a> {
string: &'a str,
extended: bool,
cat: Option<GraphemeCat>,
catb: Option<GraphemeCat>,
}
// state machine for cluster boundary rules
#[derive(PartialEq,Eq)]
enum GraphemeState {
Start,
FindExtend,
HangulL,
HangulLV,
HangulLVT,
Regional,
}
impl<'a> Iterator for Graphemes<'a> {
type Item = &'a str;
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let slen = self.string.len();
(cmp::min(slen, 1), Some(slen))
}
#[inline]
fn next(&mut self) -> Option<&'a str> {
use tables::grapheme as gr;
if self.string.is_empty() {
return None;
}
let mut take_curr = true;
let mut idx = 0;
let mut state = Start;
let mut cat = gr::GC_Any;
for (curr, ch) in self.string.char_indices() {
idx = curr;
// retrieve cached category, if any
// We do this because most of the time we would end up
// looking up each character twice.
cat = match self.cat {
None => gr::grapheme_category(ch),
_ => self.cat.take().unwrap()
};
if match cat {
gr::GC_Extend => true,
gr::GC_SpacingMark if self.extended => true,
_ => false
} {
state = FindExtend; // rule GB9/GB9a
continue;
}
state = match state {
Start if '\r' == ch => {
let slen = self.string.len();
let nidx = idx + 1;
if nidx != slen && self.string.char_at(nidx) == '\n' {
idx = nidx; // rule GB3
}
break; // rule GB4
}
Start => match cat {
gr::GC_Control => break,
gr::GC_L => HangulL,
gr::GC_LV | gr::GC_V => HangulLV,
gr::GC_LVT | gr::GC_T => HangulLVT,
gr::GC_Regional_Indicator => Regional,
_ => FindExtend
},
FindExtend => { // found non-extending when looking for extending
take_curr = false;
break;
},
HangulL => match cat { // rule GB6: L x (L|V|LV|LVT)
gr::GC_L => continue,
gr::GC_LV | gr::GC_V => HangulLV,
gr::GC_LVT => HangulLVT,
_ => {
take_curr = false;
break;
}
},
HangulLV => match cat { // rule GB7: (LV|V) x (V|T)
gr::GC_V => continue,
gr::GC_T => HangulLVT,
_ => {
take_curr = false;
break;
}
},
HangulLVT => match cat { // rule GB8: (LVT|T) x T
gr::GC_T => continue,
_ => {
take_curr = false;
break;
}
},
Regional => match cat { // rule GB8a
gr::GC_Regional_Indicator => continue,
_ => {
take_curr = false;
break;
}
}
}
}
self.cat = if take_curr {
idx = idx + self.string.char_at(idx).len_utf8();
None
} else {
Some(cat)
};
let retstr = &self.string[..idx];
self.string = &self.string[idx..];
Some(retstr)
}
}
impl<'a> DoubleEndedIterator for Graphemes<'a> {
#[inline]
fn next_back(&mut self) -> Option<&'a str> {
use tables::grapheme as gr;
if self.string.is_empty() {
return None;
}
let mut take_curr = true;
let mut idx = self.string.len();
let mut previdx = idx;
let mut state = Start;
let mut cat = gr::GC_Any;
for (curr, ch) in self.string.char_indices().rev() {
previdx = idx;
idx = curr;
// cached category, if any
cat = match self.catb {
None => gr::grapheme_category(ch),
_ => self.catb.take().unwrap()
};
// a matching state machine that runs *backwards* across an input string
// note that this has some implications for the Hangul matching, since
// we now need to know what the rightward letter is:
//
// Right to left, we have:
// L x L
// V x (L|V|LV)
// T x (V|T|LV|LVT)
// HangulL means the letter to the right is L
// HangulLV means the letter to the right is V
// HangulLVT means the letter to the right is T
state = match state {
Start if '\n' == ch => {
if idx > 0 && '\r' == self.string.char_at_reverse(idx) {
idx -= 1; // rule GB3
}
break; // rule GB4
},
Start | FindExtend => match cat {
gr::GC_Extend => FindExtend,
gr::GC_SpacingMark if self.extended => FindExtend,
gr::GC_L | gr::GC_LV | gr::GC_LVT => HangulL,
gr::GC_V => HangulLV,
gr::GC_T => HangulLVT,
gr::GC_Regional_Indicator => Regional,
gr::GC_Control => {
take_curr = Start == state;
break;
},
_ => break
},
HangulL => match cat { // char to right is an L
gr::GC_L => continue, // L x L is the only legal match
_ => {
take_curr = false;
break;
}
},
HangulLV => match cat { // char to right is a V
gr::GC_V => continue, // V x V, right char is still V
gr::GC_L | gr::GC_LV => HangulL, // (L|V) x V, right char is now L
_ => {
take_curr = false;
break;
}
},
HangulLVT => match cat { // char to right is a T
gr::GC_T => continue, // T x T, right char is still T
gr::GC_V => HangulLV, // V x T, right char is now V
gr::GC_LV | gr::GC_LVT => HangulL, // (LV|LVT) x T, right char is now L
_ => {
take_curr = false;
break;
}
},
Regional => match cat { // rule GB8a
gr::GC_Regional_Indicator => continue,
_ => {
take_curr = false;
break;
}
}
}
}
self.catb = if take_curr {
None
} else {
idx = previdx;
Some(cat)
};
let retstr = &self.string[idx..];
self.string = &self.string[..idx];
Some(retstr)
}
}
// https://tools.ietf.org/html/rfc3629
static UTF8_CHAR_WIDTH: [u8; 256] = [
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x1F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x3F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x5F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x7F
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, // 0x9F
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, // 0xBF
0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, // 0xDF
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, // 0xEF
4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0, // 0xFF
];
/// Given a first byte, determine how many bytes are in this UTF-8 character
#[inline]
pub fn utf8_char_width(b: u8) -> usize {
return UTF8_CHAR_WIDTH[b as usize] as usize;
}
/// Determines if a vector of `u16` contains valid UTF-16
pub fn is_utf16(v: &[u16]) -> bool {
let mut it = v.iter();
macro_rules! next { ($ret:expr) => {
match it.next() { Some(u) => *u, None => return $ret }
}
}
loop {
let u = next!(true);
match char::from_u32(u as u32) {
Some(_) => {}
None => {
let u2 = next!(false);
if u < 0xD7FF || u > 0xDBFF ||
u2 < 0xDC00 || u2 > 0xDFFF { return false; }
}
}
}
}
/// An iterator that decodes UTF-16 encoded codepoints from a vector
/// of `u16`s.
#[derive(Clone)]
pub struct Utf16Items<'a> {
iter: slice::Iter<'a, u16>
}
/// The possibilities for values decoded from a `u16` stream.
#[derive(Copy, PartialEq, Eq, Clone, Debug)]
pub enum Utf16Item {
/// A valid codepoint.
ScalarValue(char),
/// An invalid surrogate without its pair.
LoneSurrogate(u16)
}
impl Utf16Item {
/// Convert `self` to a `char`, taking `LoneSurrogate`s to the
/// replacement character (U+FFFD).
#[inline]
pub fn to_char_lossy(&self) -> char {
match *self {
Utf16Item::ScalarValue(c) => c,
Utf16Item::LoneSurrogate(_) => '\u{FFFD}'
}
}
}
impl<'a> Iterator for Utf16Items<'a> {
type Item = Utf16Item;
fn next(&mut self) -> Option<Utf16Item> {
let u = match self.iter.next() {
Some(u) => *u,
None => return None
};
if u < 0xD800 || 0xDFFF < u {
// not a surrogate
Some(Utf16Item::ScalarValue(unsafe { char::from_u32_unchecked(u as u32) }))
} else if u >= 0xDC00 {
// a trailing surrogate
Some(Utf16Item::LoneSurrogate(u))
} else {
// preserve state for rewinding.
let old = self.iter.clone();
let u2 = match self.iter.next() {
Some(u2) => *u2,
// eof
None => return Some(Utf16Item::LoneSurrogate(u))
};
if u2 < 0xDC00 || u2 > 0xDFFF {
// not a trailing surrogate so we're not a valid
// surrogate pair, so rewind to redecode u2 next time.
self.iter = old.clone();
return Some(Utf16Item::LoneSurrogate(u))
}
// all ok, so lets decode it.
let c = (((u - 0xD800) as u32) << 10 | (u2 - 0xDC00) as u32) + 0x1_0000;
Some(Utf16Item::ScalarValue(unsafe { char::from_u32_unchecked(c) }))
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (low, high) = self.iter.size_hint();
// we could be entirely valid surrogates (2 elements per
// char), or entirely non-surrogates (1 element per char)
(low / 2, high)
}
}
/// Create an iterator over the UTF-16 encoded codepoints in `v`,
/// returning invalid surrogates as `LoneSurrogate`s.
///
/// # Examples
///
/// ```
/// #![feature(unicode)]
///
/// extern crate rustc_unicode;
///
/// use rustc_unicode::str::Utf16Item::{ScalarValue, LoneSurrogate};
///
/// fn main() {
/// // 𝄞mus<invalid>ic<invalid>
/// let v = [0xD834, 0xDD1E, 0x006d, 0x0075,
/// 0x0073, 0xDD1E, 0x0069, 0x0063,
/// 0xD834];
///
/// assert_eq!(rustc_unicode::str::utf16_items(&v).collect::<Vec<_>>(),
/// vec![ScalarValue('𝄞'),
/// ScalarValue('m'), ScalarValue('u'), ScalarValue('s'),
/// LoneSurrogate(0xDD1E),
/// ScalarValue('i'), ScalarValue('c'),
/// LoneSurrogate(0xD834)]);
/// }
/// ```
pub fn utf16_items<'a>(v: &'a [u16]) -> Utf16Items<'a> {
Utf16Items { iter : v.iter() }
}
/// Iterator adaptor for encoding `char`s to UTF-16.
#[derive(Clone)]
pub struct Utf16Encoder<I> {
chars: I,
extra: u16
}
impl<I> Utf16Encoder<I> {
/// Create a UTF-16 encoder from any `char` iterator.
pub fn new(chars: I) -> Utf16Encoder<I> where I: Iterator<Item=char> {
Utf16Encoder { chars: chars, extra: 0 }
}
}
impl<I> Iterator for Utf16Encoder<I> where I: Iterator<Item=char> {
type Item = u16;
#[inline]
fn next(&mut self) -> Option<u16> {
if self.extra != 0 {
let tmp = self.extra;
self.extra = 0;
return Some(tmp);
}
let mut buf = [0; 2];
self.chars.next().map(|ch| {
let n = CharExt::encode_utf16(ch, &mut buf).unwrap_or(0);
if n == 2 { self.extra = buf[1]; }
buf[0]
})
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (low, high) = self.chars.size_hint();
// every char gets either one u16 or two u16,
// so this iterator is between 1 or 2 times as
// long as the underlying iterator.
(low, high.and_then(|n| n.checked_mul(2)))
}
}
impl<'a> Iterator for SplitWhitespace<'a> {
type Item = &'a str;
fn next(&mut self) -> Option<&'a str> { self.inner.next() }
}
impl<'a> DoubleEndedIterator for SplitWhitespace<'a> {
fn next_back(&mut self) -> Option<&'a str> { self.inner.next_back() }
}