rust/src/libsyntax/visit.rs
P1start bf274bc18b Implement tuple and tuple struct indexing
This allows code to access the fields of tuples and tuple structs:

    let x = (1i, 2i);
    assert_eq!(x.1, 2);

    struct Point(int, int);
    let origin = Point(0, 0);
    assert_eq!(origin.0, 0);
    assert_eq!(origin.1, 0);
2014-09-10 10:25:12 +12:00

877 lines
35 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Context-passing AST walker. Each overridden visit method has full control
//! over what happens with its node, it can do its own traversal of the node's
//! children (potentially passing in different contexts to each), call
//! `visit::visit_*` to apply the default traversal algorithm (again, it can
//! override the context), or prevent deeper traversal by doing nothing.
//!
//! Note: it is an important invariant that the default visitor walks the body
//! of a function in "execution order" (more concretely, reverse post-order
//! with respect to the CFG implied by the AST), meaning that if AST node A may
//! execute before AST node B, then A is visited first. The borrow checker in
//! particular relies on this property.
//!
//! Note: walking an AST before macro expansion is probably a bad idea. For
//! instance, a walker looking for item names in a module will miss all of
//! those that are created by the expansion of a macro.
use abi::Abi;
use ast::*;
use ast;
use ast_util;
use codemap::Span;
use parse;
use owned_slice::OwnedSlice;
use std::gc::Gc;
pub enum FnKind<'a> {
/// fn foo() or extern "Abi" fn foo()
FkItemFn(Ident, &'a Generics, FnStyle, Abi),
/// fn foo(&self)
FkMethod(Ident, &'a Generics, &'a Method),
/// |x, y| ...
/// proc(x, y) ...
FkFnBlock,
}
pub fn name_of_fn(fk: &FnKind) -> Ident {
match *fk {
FkItemFn(name, _, _, _) | FkMethod(name, _, _) => name,
FkFnBlock(..) => parse::token::special_idents::invalid
}
}
pub fn generics_of_fn(fk: &FnKind) -> Generics {
match *fk {
FkItemFn(_, generics, _, _) |
FkMethod(_, generics, _) => {
(*generics).clone()
}
FkFnBlock(..) => ast_util::empty_generics(),
}
}
/// Each method of the Visitor trait is a hook to be potentially
/// overridden. Each method's default implementation recursively visits
/// the substructure of the input via the corresponding `walk` method;
/// e.g. the `visit_mod` method by default calls `visit::walk_mod`.
///
/// If you want to ensure that your code handles every variant
/// explicitly, you need to override each method. (And you also need
/// to monitor future changes to `Visitor` in case a new method with a
/// new default implementation gets introduced.)
pub trait Visitor<E: Clone> {
fn visit_ident(&mut self, _sp: Span, _ident: Ident, _e: E) {
/*! Visit the idents */
}
fn visit_mod(&mut self, m: &Mod, _s: Span, _n: NodeId, e: E) { walk_mod(self, m, e) }
fn visit_view_item(&mut self, i: &ViewItem, e: E) { walk_view_item(self, i, e) }
fn visit_foreign_item(&mut self, i: &ForeignItem, e: E) { walk_foreign_item(self, i, e) }
fn visit_item(&mut self, i: &Item, e: E) { walk_item(self, i, e) }
fn visit_local(&mut self, l: &Local, e: E) { walk_local(self, l, e) }
fn visit_block(&mut self, b: &Block, e: E) { walk_block(self, b, e) }
fn visit_stmt(&mut self, s: &Stmt, e: E) { walk_stmt(self, s, e) }
fn visit_arm(&mut self, a: &Arm, e: E) { walk_arm(self, a, e) }
fn visit_pat(&mut self, p: &Pat, e: E) { walk_pat(self, p, e) }
fn visit_decl(&mut self, d: &Decl, e: E) { walk_decl(self, d, e) }
fn visit_expr(&mut self, ex: &Expr, e: E) { walk_expr(self, ex, e) }
fn visit_expr_post(&mut self, _ex: &Expr, _e: E) { }
fn visit_ty(&mut self, t: &Ty, e: E) { walk_ty(self, t, e) }
fn visit_generics(&mut self, g: &Generics, e: E) { walk_generics(self, g, e) }
fn visit_fn(&mut self, fk: &FnKind, fd: &FnDecl, b: &Block, s: Span, _: NodeId, e: E) {
walk_fn(self, fk, fd, b, s, e)
}
fn visit_ty_method(&mut self, t: &TypeMethod, e: E) { walk_ty_method(self, t, e) }
fn visit_trait_item(&mut self, t: &TraitItem, e: E) { walk_trait_item(self, t, e) }
fn visit_struct_def(&mut self, s: &StructDef, _: Ident, _: &Generics, _: NodeId, e: E) {
walk_struct_def(self, s, e)
}
fn visit_struct_field(&mut self, s: &StructField, e: E) { walk_struct_field(self, s, e) }
fn visit_variant(&mut self, v: &Variant, g: &Generics, e: E) { walk_variant(self, v, g, e) }
fn visit_opt_lifetime_ref(&mut self,
_span: Span,
opt_lifetime: &Option<Lifetime>,
env: E) {
/*!
* Visits an optional reference to a lifetime. The `span` is
* the span of some surrounding reference should opt_lifetime
* be None.
*/
match *opt_lifetime {
Some(ref l) => self.visit_lifetime_ref(l, env),
None => ()
}
}
fn visit_lifetime_ref(&mut self, _lifetime: &Lifetime, _e: E) {
/*! Visits a reference to a lifetime */
}
fn visit_lifetime_decl(&mut self, _lifetime: &LifetimeDef, _e: E) {
/*! Visits a declaration of a lifetime */
}
fn visit_explicit_self(&mut self, es: &ExplicitSelf, e: E) {
walk_explicit_self(self, es, e)
}
fn visit_mac(&mut self, _macro: &Mac, _e: E) {
fail!("visit_mac disabled by default");
// NB: see note about macros above.
// if you really want a visitor that
// works on macros, use this
// definition in your trait impl:
// visit::walk_mac(self, _macro, _e)
}
fn visit_path(&mut self, path: &Path, _id: ast::NodeId, e: E) {
walk_path(self, path, e)
}
fn visit_attribute(&mut self, _attr: &Attribute, _e: E) {}
}
pub fn walk_inlined_item<E: Clone, V: Visitor<E>>(visitor: &mut V,
item: &ast::InlinedItem,
env: E) {
match *item {
IIItem(i) => visitor.visit_item(&*i, env),
IIForeign(i) => visitor.visit_foreign_item(&*i, env),
IITraitItem(_, iti) => {
match iti {
ProvidedInlinedTraitItem(m) => {
walk_method_helper(visitor, &*m, env)
}
RequiredInlinedTraitItem(m) => {
walk_method_helper(visitor, &*m, env)
}
}
}
}
}
pub fn walk_crate<E: Clone, V: Visitor<E>>(visitor: &mut V, krate: &Crate, env: E) {
visitor.visit_mod(&krate.module, krate.span, CRATE_NODE_ID, env.clone());
for attr in krate.attrs.iter() {
visitor.visit_attribute(attr, env.clone());
}
}
pub fn walk_mod<E: Clone, V: Visitor<E>>(visitor: &mut V, module: &Mod, env: E) {
for view_item in module.view_items.iter() {
visitor.visit_view_item(view_item, env.clone())
}
for item in module.items.iter() {
visitor.visit_item(&**item, env.clone())
}
}
pub fn walk_view_item<E: Clone, V: Visitor<E>>(visitor: &mut V, vi: &ViewItem, env: E) {
match vi.node {
ViewItemExternCrate(name, _, _) => {
visitor.visit_ident(vi.span, name, env.clone())
}
ViewItemUse(ref vp) => {
match vp.node {
ViewPathSimple(ident, ref path, id) => {
visitor.visit_ident(vp.span, ident, env.clone());
visitor.visit_path(path, id, env.clone());
}
ViewPathGlob(ref path, id) => {
visitor.visit_path(path, id, env.clone());
}
ViewPathList(ref path, ref list, _) => {
for id in list.iter() {
match id.node {
PathListIdent { name, .. } => {
visitor.visit_ident(id.span, name, env.clone());
}
PathListMod { .. } => ()
}
}
walk_path(visitor, path, env.clone());
}
}
}
}
for attr in vi.attrs.iter() {
visitor.visit_attribute(attr, env.clone());
}
}
pub fn walk_local<E: Clone, V: Visitor<E>>(visitor: &mut V, local: &Local, env: E) {
visitor.visit_pat(&*local.pat, env.clone());
visitor.visit_ty(&*local.ty, env.clone());
match local.init {
None => {}
Some(initializer) => visitor.visit_expr(&*initializer, env),
}
}
pub fn walk_explicit_self<E: Clone, V: Visitor<E>>(visitor: &mut V,
explicit_self: &ExplicitSelf,
env: E) {
match explicit_self.node {
SelfStatic | SelfValue(_) => {},
SelfRegion(ref lifetime, _, _) => {
visitor.visit_opt_lifetime_ref(explicit_self.span, lifetime, env)
}
SelfExplicit(ref typ, _) => visitor.visit_ty(&**typ, env.clone()),
}
}
/// Like with walk_method_helper this doesn't correspond to a method
/// in Visitor, and so it gets a _helper suffix.
pub fn walk_trait_ref_helper<E: Clone, V: Visitor<E>>(visitor: &mut V,
trait_ref: &TraitRef,
env: E) {
visitor.visit_path(&trait_ref.path, trait_ref.ref_id, env)
}
pub fn walk_item<E: Clone, V: Visitor<E>>(visitor: &mut V, item: &Item, env: E) {
visitor.visit_ident(item.span, item.ident, env.clone());
match item.node {
ItemStatic(ref typ, _, ref expr) => {
visitor.visit_ty(&**typ, env.clone());
visitor.visit_expr(&**expr, env.clone());
}
ItemFn(declaration, fn_style, abi, ref generics, body) => {
visitor.visit_fn(&FkItemFn(item.ident, generics, fn_style, abi),
&*declaration,
&*body,
item.span,
item.id,
env.clone())
}
ItemMod(ref module) => {
visitor.visit_mod(module, item.span, item.id, env.clone())
}
ItemForeignMod(ref foreign_module) => {
for view_item in foreign_module.view_items.iter() {
visitor.visit_view_item(view_item, env.clone())
}
for foreign_item in foreign_module.items.iter() {
visitor.visit_foreign_item(&**foreign_item, env.clone())
}
}
ItemTy(ref typ, ref type_parameters) => {
visitor.visit_ty(&**typ, env.clone());
visitor.visit_generics(type_parameters, env.clone())
}
ItemEnum(ref enum_definition, ref type_parameters) => {
visitor.visit_generics(type_parameters, env.clone());
walk_enum_def(visitor, enum_definition, type_parameters, env.clone())
}
ItemImpl(ref type_parameters,
ref trait_reference,
typ,
ref impl_items) => {
visitor.visit_generics(type_parameters, env.clone());
match *trait_reference {
Some(ref trait_reference) => walk_trait_ref_helper(visitor,
trait_reference, env.clone()),
None => ()
}
visitor.visit_ty(&*typ, env.clone());
for impl_item in impl_items.iter() {
match *impl_item {
MethodImplItem(method) => {
walk_method_helper(visitor, &*method, env.clone())
}
}
}
}
ItemStruct(ref struct_definition, ref generics) => {
visitor.visit_generics(generics, env.clone());
visitor.visit_struct_def(&**struct_definition,
item.ident,
generics,
item.id,
env.clone())
}
ItemTrait(ref generics, _, ref bounds, ref methods) => {
visitor.visit_generics(generics, env.clone());
walk_ty_param_bounds(visitor, bounds, env.clone());
for method in methods.iter() {
visitor.visit_trait_item(method, env.clone())
}
}
ItemMac(ref macro) => visitor.visit_mac(macro, env.clone()),
}
for attr in item.attrs.iter() {
visitor.visit_attribute(attr, env.clone());
}
}
pub fn walk_enum_def<E: Clone, V:Visitor<E>>(visitor: &mut V,
enum_definition: &EnumDef,
generics: &Generics,
env: E) {
for &variant in enum_definition.variants.iter() {
visitor.visit_variant(&*variant, generics, env.clone());
}
}
pub fn walk_variant<E: Clone, V: Visitor<E>>(visitor: &mut V,
variant: &Variant,
generics: &Generics,
env: E) {
visitor.visit_ident(variant.span, variant.node.name, env.clone());
match variant.node.kind {
TupleVariantKind(ref variant_arguments) => {
for variant_argument in variant_arguments.iter() {
visitor.visit_ty(&*variant_argument.ty, env.clone())
}
}
StructVariantKind(ref struct_definition) => {
visitor.visit_struct_def(&**struct_definition,
variant.node.name,
generics,
variant.node.id,
env.clone())
}
}
match variant.node.disr_expr {
Some(ref expr) => visitor.visit_expr(&**expr, env.clone()),
None => ()
}
for attr in variant.node.attrs.iter() {
visitor.visit_attribute(attr, env.clone());
}
}
pub fn skip_ty<E, V: Visitor<E>>(_: &mut V, _: &Ty, _: E) {
// Empty!
}
pub fn walk_ty<E: Clone, V: Visitor<E>>(visitor: &mut V, typ: &Ty, env: E) {
match typ.node {
TyUniq(ty) | TyVec(ty) | TyBox(ty) | TyParen(ty) => {
visitor.visit_ty(&*ty, env)
}
TyPtr(ref mutable_type) => {
visitor.visit_ty(&*mutable_type.ty, env)
}
TyRptr(ref lifetime, ref mutable_type) => {
visitor.visit_opt_lifetime_ref(typ.span, lifetime, env.clone());
visitor.visit_ty(&*mutable_type.ty, env)
}
TyTup(ref tuple_element_types) => {
for &tuple_element_type in tuple_element_types.iter() {
visitor.visit_ty(&*tuple_element_type, env.clone())
}
}
TyClosure(ref function_declaration) => {
for argument in function_declaration.decl.inputs.iter() {
visitor.visit_ty(&*argument.ty, env.clone())
}
visitor.visit_ty(&*function_declaration.decl.output, env.clone());
walk_ty_param_bounds(visitor, &function_declaration.bounds,
env.clone());
walk_lifetime_decls(visitor, &function_declaration.lifetimes,
env.clone());
}
TyProc(ref function_declaration) => {
for argument in function_declaration.decl.inputs.iter() {
visitor.visit_ty(&*argument.ty, env.clone())
}
visitor.visit_ty(&*function_declaration.decl.output, env.clone());
walk_ty_param_bounds(visitor, &function_declaration.bounds,
env.clone());
walk_lifetime_decls(visitor, &function_declaration.lifetimes,
env.clone());
}
TyBareFn(ref function_declaration) => {
for argument in function_declaration.decl.inputs.iter() {
visitor.visit_ty(&*argument.ty, env.clone())
}
visitor.visit_ty(&*function_declaration.decl.output, env.clone());
walk_lifetime_decls(visitor, &function_declaration.lifetimes,
env.clone());
}
TyUnboxedFn(ref function_declaration) => {
for argument in function_declaration.decl.inputs.iter() {
visitor.visit_ty(&*argument.ty, env.clone())
}
visitor.visit_ty(&*function_declaration.decl.output, env.clone());
}
TyPath(ref path, ref opt_bounds, id) => {
visitor.visit_path(path, id, env.clone());
match *opt_bounds {
Some(ref bounds) => {
walk_ty_param_bounds(visitor, bounds, env.clone());
}
None => { }
}
}
TyFixedLengthVec(ref ty, ref expression) => {
visitor.visit_ty(&**ty, env.clone());
visitor.visit_expr(&**expression, env)
}
TyTypeof(ref expression) => {
visitor.visit_expr(&**expression, env)
}
TyNil | TyBot | TyInfer => {}
}
}
fn walk_lifetime_decls<E: Clone, V: Visitor<E>>(visitor: &mut V,
lifetimes: &Vec<LifetimeDef>,
env: E) {
for l in lifetimes.iter() {
visitor.visit_lifetime_decl(l, env.clone());
}
}
pub fn walk_path<E: Clone, V: Visitor<E>>(visitor: &mut V, path: &Path, env: E) {
for segment in path.segments.iter() {
visitor.visit_ident(path.span, segment.identifier, env.clone());
for typ in segment.types.iter() {
visitor.visit_ty(&**typ, env.clone());
}
for lifetime in segment.lifetimes.iter() {
visitor.visit_lifetime_ref(lifetime, env.clone());
}
}
}
pub fn walk_pat<E: Clone, V: Visitor<E>>(visitor: &mut V, pattern: &Pat, env: E) {
match pattern.node {
PatEnum(ref path, ref children) => {
visitor.visit_path(path, pattern.id, env.clone());
for children in children.iter() {
for child in children.iter() {
visitor.visit_pat(&**child, env.clone())
}
}
}
PatStruct(ref path, ref fields, _) => {
visitor.visit_path(path, pattern.id, env.clone());
for field in fields.iter() {
visitor.visit_pat(&*field.pat, env.clone())
}
}
PatTup(ref tuple_elements) => {
for tuple_element in tuple_elements.iter() {
visitor.visit_pat(&**tuple_element, env.clone())
}
}
PatBox(ref subpattern) |
PatRegion(ref subpattern) => {
visitor.visit_pat(&**subpattern, env)
}
PatIdent(_, ref pth1, ref optional_subpattern) => {
visitor.visit_ident(pth1.span, pth1.node, env.clone());
match *optional_subpattern {
None => {}
Some(ref subpattern) => visitor.visit_pat(&**subpattern, env),
}
}
PatLit(ref expression) => visitor.visit_expr(&**expression, env),
PatRange(ref lower_bound, ref upper_bound) => {
visitor.visit_expr(&**lower_bound, env.clone());
visitor.visit_expr(&**upper_bound, env)
}
PatWild(_) => (),
PatVec(ref prepattern, ref slice_pattern, ref postpatterns) => {
for prepattern in prepattern.iter() {
visitor.visit_pat(&**prepattern, env.clone())
}
for slice_pattern in slice_pattern.iter() {
visitor.visit_pat(&**slice_pattern, env.clone())
}
for postpattern in postpatterns.iter() {
visitor.visit_pat(&**postpattern, env.clone())
}
}
PatMac(ref macro) => visitor.visit_mac(macro, env),
}
}
pub fn walk_foreign_item<E: Clone, V: Visitor<E>>(visitor: &mut V,
foreign_item: &ForeignItem,
env: E) {
visitor.visit_ident(foreign_item.span, foreign_item.ident, env.clone());
match foreign_item.node {
ForeignItemFn(ref function_declaration, ref generics) => {
walk_fn_decl(visitor, &**function_declaration, env.clone());
visitor.visit_generics(generics, env.clone())
}
ForeignItemStatic(ref typ, _) => visitor.visit_ty(&**typ, env.clone()),
}
for attr in foreign_item.attrs.iter() {
visitor.visit_attribute(attr, env.clone());
}
}
pub fn walk_ty_param_bounds<E: Clone, V: Visitor<E>>(visitor: &mut V,
bounds: &OwnedSlice<TyParamBound>,
env: E) {
for bound in bounds.iter() {
match *bound {
TraitTyParamBound(ref typ) => {
walk_trait_ref_helper(visitor, typ, env.clone())
}
UnboxedFnTyParamBound(ref function_declaration) => {
for argument in function_declaration.decl.inputs.iter() {
visitor.visit_ty(&*argument.ty, env.clone())
}
visitor.visit_ty(&*function_declaration.decl.output,
env.clone());
}
RegionTyParamBound(ref lifetime) => {
visitor.visit_lifetime_ref(lifetime, env.clone());
}
}
}
}
pub fn walk_generics<E: Clone, V: Visitor<E>>(visitor: &mut V,
generics: &Generics,
env: E) {
for type_parameter in generics.ty_params.iter() {
walk_ty_param_bounds(visitor, &type_parameter.bounds, env.clone());
match type_parameter.default {
Some(ref ty) => visitor.visit_ty(&**ty, env.clone()),
None => {}
}
}
walk_lifetime_decls(visitor, &generics.lifetimes, env.clone());
for predicate in generics.where_clause.predicates.iter() {
visitor.visit_ident(predicate.span, predicate.ident, env.clone());
walk_ty_param_bounds(visitor, &predicate.bounds, env.clone());
}
}
pub fn walk_fn_decl<E: Clone, V: Visitor<E>>(visitor: &mut V,
function_declaration: &FnDecl,
env: E) {
for argument in function_declaration.inputs.iter() {
visitor.visit_pat(&*argument.pat, env.clone());
visitor.visit_ty(&*argument.ty, env.clone())
}
visitor.visit_ty(&*function_declaration.output, env)
}
// Note: there is no visit_method() method in the visitor, instead override
// visit_fn() and check for FkMethod(). I named this visit_method_helper()
// because it is not a default impl of any method, though I doubt that really
// clarifies anything. - Niko
pub fn walk_method_helper<E: Clone, V: Visitor<E>>(visitor: &mut V,
method: &Method,
env: E) {
match method.node {
MethDecl(ident, ref generics, _, _, _, decl, body, _) => {
visitor.visit_ident(method.span, ident, env.clone());
visitor.visit_fn(&FkMethod(ident, generics, method),
&*decl,
&*body,
method.span,
method.id,
env.clone());
for attr in method.attrs.iter() {
visitor.visit_attribute(attr, env.clone());
}
},
MethMac(ref mac) => visitor.visit_mac(mac, env.clone())
}
}
pub fn walk_fn<E: Clone, V: Visitor<E>>(visitor: &mut V,
function_kind: &FnKind,
function_declaration: &FnDecl,
function_body: &Block,
_span: Span,
env: E) {
walk_fn_decl(visitor, function_declaration, env.clone());
match *function_kind {
FkItemFn(_, generics, _, _) => {
visitor.visit_generics(generics, env.clone());
}
FkMethod(_, generics, method) => {
visitor.visit_generics(generics, env.clone());
match method.node {
MethDecl(_, _, _, ref explicit_self, _, _, _, _) =>
visitor.visit_explicit_self(explicit_self, env.clone()),
MethMac(ref mac) =>
visitor.visit_mac(mac, env.clone())
}
}
FkFnBlock(..) => {}
}
visitor.visit_block(function_body, env)
}
pub fn walk_ty_method<E: Clone, V: Visitor<E>>(visitor: &mut V,
method_type: &TypeMethod,
env: E) {
visitor.visit_ident(method_type.span, method_type.ident, env.clone());
visitor.visit_explicit_self(&method_type.explicit_self, env.clone());
for argument_type in method_type.decl.inputs.iter() {
visitor.visit_ty(&*argument_type.ty, env.clone())
}
visitor.visit_generics(&method_type.generics, env.clone());
visitor.visit_ty(&*method_type.decl.output, env.clone());
for attr in method_type.attrs.iter() {
visitor.visit_attribute(attr, env.clone());
}
}
pub fn walk_trait_item<E: Clone, V: Visitor<E>>(visitor: &mut V,
trait_method: &TraitItem,
env: E) {
match *trait_method {
RequiredMethod(ref method_type) => {
visitor.visit_ty_method(method_type, env)
}
ProvidedMethod(ref method) => walk_method_helper(visitor, &**method, env),
}
}
pub fn walk_struct_def<E: Clone, V: Visitor<E>>(visitor: &mut V,
struct_definition: &StructDef,
env: E) {
match struct_definition.super_struct {
Some(ref t) => visitor.visit_ty(&**t, env.clone()),
None => {},
}
for field in struct_definition.fields.iter() {
visitor.visit_struct_field(field, env.clone())
}
}
pub fn walk_struct_field<E: Clone, V: Visitor<E>>(visitor: &mut V,
struct_field: &StructField,
env: E) {
match struct_field.node.kind {
NamedField(name, _) => {
visitor.visit_ident(struct_field.span, name, env.clone())
}
_ => {}
}
visitor.visit_ty(&*struct_field.node.ty, env.clone());
for attr in struct_field.node.attrs.iter() {
visitor.visit_attribute(attr, env.clone());
}
}
pub fn walk_block<E: Clone, V: Visitor<E>>(visitor: &mut V, block: &Block, env: E) {
for view_item in block.view_items.iter() {
visitor.visit_view_item(view_item, env.clone())
}
for statement in block.stmts.iter() {
visitor.visit_stmt(&**statement, env.clone())
}
walk_expr_opt(visitor, block.expr, env)
}
pub fn walk_stmt<E: Clone, V: Visitor<E>>(visitor: &mut V, statement: &Stmt, env: E) {
match statement.node {
StmtDecl(ref declaration, _) => visitor.visit_decl(&**declaration, env),
StmtExpr(ref expression, _) | StmtSemi(ref expression, _) => {
visitor.visit_expr(&**expression, env)
}
StmtMac(ref macro, _) => visitor.visit_mac(macro, env),
}
}
pub fn walk_decl<E: Clone, V: Visitor<E>>(visitor: &mut V, declaration: &Decl, env: E) {
match declaration.node {
DeclLocal(ref local) => visitor.visit_local(&**local, env),
DeclItem(ref item) => visitor.visit_item(&**item, env),
}
}
pub fn walk_expr_opt<E: Clone, V: Visitor<E>>(visitor: &mut V,
optional_expression: Option<Gc<Expr>>,
env: E) {
match optional_expression {
None => {}
Some(ref expression) => visitor.visit_expr(&**expression, env),
}
}
pub fn walk_exprs<E: Clone, V: Visitor<E>>(visitor: &mut V,
expressions: &[Gc<Expr>],
env: E) {
for expression in expressions.iter() {
visitor.visit_expr(&**expression, env.clone())
}
}
pub fn walk_mac<E, V: Visitor<E>>(_: &mut V, _: &Mac, _: E) {
// Empty!
}
pub fn walk_expr<E: Clone, V: Visitor<E>>(visitor: &mut V, expression: &Expr, env: E) {
match expression.node {
ExprBox(ref place, ref subexpression) => {
visitor.visit_expr(&**place, env.clone());
visitor.visit_expr(&**subexpression, env.clone())
}
ExprVec(ref subexpressions) => {
walk_exprs(visitor, subexpressions.as_slice(), env.clone())
}
ExprRepeat(ref element, ref count) => {
visitor.visit_expr(&**element, env.clone());
visitor.visit_expr(&**count, env.clone())
}
ExprStruct(ref path, ref fields, optional_base) => {
visitor.visit_path(path, expression.id, env.clone());
for field in fields.iter() {
visitor.visit_expr(&*field.expr, env.clone())
}
walk_expr_opt(visitor, optional_base, env.clone())
}
ExprTup(ref subexpressions) => {
for subexpression in subexpressions.iter() {
visitor.visit_expr(&**subexpression, env.clone())
}
}
ExprCall(ref callee_expression, ref arguments) => {
for argument in arguments.iter() {
visitor.visit_expr(&**argument, env.clone())
}
visitor.visit_expr(&**callee_expression, env.clone())
}
ExprMethodCall(_, ref types, ref arguments) => {
walk_exprs(visitor, arguments.as_slice(), env.clone());
for typ in types.iter() {
visitor.visit_ty(&**typ, env.clone())
}
}
ExprBinary(_, ref left_expression, ref right_expression) => {
visitor.visit_expr(&**left_expression, env.clone());
visitor.visit_expr(&**right_expression, env.clone())
}
ExprAddrOf(_, ref subexpression) | ExprUnary(_, ref subexpression) => {
visitor.visit_expr(&**subexpression, env.clone())
}
ExprLit(_) => {}
ExprCast(ref subexpression, ref typ) => {
visitor.visit_expr(&**subexpression, env.clone());
visitor.visit_ty(&**typ, env.clone())
}
ExprIf(ref head_expression, ref if_block, optional_else) => {
visitor.visit_expr(&**head_expression, env.clone());
visitor.visit_block(&**if_block, env.clone());
walk_expr_opt(visitor, optional_else, env.clone())
}
ExprWhile(ref subexpression, ref block, _) => {
visitor.visit_expr(&**subexpression, env.clone());
visitor.visit_block(&**block, env.clone())
}
ExprForLoop(ref pattern, ref subexpression, ref block, _) => {
visitor.visit_pat(&**pattern, env.clone());
visitor.visit_expr(&**subexpression, env.clone());
visitor.visit_block(&**block, env.clone())
}
ExprLoop(ref block, _) => visitor.visit_block(&**block, env.clone()),
ExprMatch(ref subexpression, ref arms) => {
visitor.visit_expr(&**subexpression, env.clone());
for arm in arms.iter() {
visitor.visit_arm(arm, env.clone())
}
}
ExprFnBlock(_, ref function_declaration, ref body) => {
visitor.visit_fn(&FkFnBlock,
&**function_declaration,
&**body,
expression.span,
expression.id,
env.clone())
}
ExprUnboxedFn(_, _, ref function_declaration, ref body) => {
visitor.visit_fn(&FkFnBlock,
&**function_declaration,
&**body,
expression.span,
expression.id,
env.clone())
}
ExprProc(ref function_declaration, ref body) => {
visitor.visit_fn(&FkFnBlock,
&**function_declaration,
&**body,
expression.span,
expression.id,
env.clone())
}
ExprBlock(ref block) => visitor.visit_block(&**block, env.clone()),
ExprAssign(ref left_hand_expression, ref right_hand_expression) => {
visitor.visit_expr(&**right_hand_expression, env.clone());
visitor.visit_expr(&**left_hand_expression, env.clone())
}
ExprAssignOp(_, ref left_expression, ref right_expression) => {
visitor.visit_expr(&**right_expression, env.clone());
visitor.visit_expr(&**left_expression, env.clone())
}
ExprField(ref subexpression, _, ref types) => {
visitor.visit_expr(&**subexpression, env.clone());
for typ in types.iter() {
visitor.visit_ty(&**typ, env.clone())
}
}
ExprTupField(ref subexpression, _, ref types) => {
visitor.visit_expr(&**subexpression, env.clone());
for typ in types.iter() {
visitor.visit_ty(&**typ, env.clone())
}
}
ExprIndex(ref main_expression, ref index_expression) => {
visitor.visit_expr(&**main_expression, env.clone());
visitor.visit_expr(&**index_expression, env.clone())
}
ExprPath(ref path) => {
visitor.visit_path(path, expression.id, env.clone())
}
ExprBreak(_) | ExprAgain(_) => {}
ExprRet(optional_expression) => {
walk_expr_opt(visitor, optional_expression, env.clone())
}
ExprMac(ref macro) => visitor.visit_mac(macro, env.clone()),
ExprParen(ref subexpression) => {
visitor.visit_expr(&**subexpression, env.clone())
}
ExprInlineAsm(ref ia) => {
for &(_, ref input) in ia.inputs.iter() {
visitor.visit_expr(&**input, env.clone())
}
for &(_, ref output, _) in ia.outputs.iter() {
visitor.visit_expr(&**output, env.clone())
}
}
}
visitor.visit_expr_post(expression, env.clone())
}
pub fn walk_arm<E: Clone, V: Visitor<E>>(visitor: &mut V, arm: &Arm, env: E) {
for pattern in arm.pats.iter() {
visitor.visit_pat(&**pattern, env.clone())
}
walk_expr_opt(visitor, arm.guard, env.clone());
visitor.visit_expr(&*arm.body, env.clone());
for attr in arm.attrs.iter() {
visitor.visit_attribute(attr, env.clone());
}
}