rust/src/comp/middle/trans_common.rs
2011-08-26 14:03:22 -07:00

931 lines
30 KiB
Rust

/**
Code that is useful in various trans modules.
*/
import std::int;
import std::vec;
import std::str;
import std::uint;
import std::str::rustrt::sbuf;
import std::map;
import std::map::hashmap;
import std::option;
import std::option::some;
import std::option::none;
import std::fs;
import std::unsafe;
import syntax::ast;
import driver::session;
import middle::ty;
import back::link;
import back::x86;
import back::abi;
import back::upcall;
import syntax::visit;
import visit::vt;
import util::common;
import util::common::*;
import std::map::new_int_hash;
import std::map::new_str_hash;
import syntax::codemap::span;
import lib::llvm::llvm;
import lib::llvm::target_data;
import lib::llvm::type_names;
import lib::llvm::mk_target_data;
import lib::llvm::mk_type_names;
import lib::llvm::llvm::ModuleRef;
import lib::llvm::llvm::ValueRef;
import lib::llvm::llvm::TypeRef;
import lib::llvm::llvm::TypeHandleRef;
import lib::llvm::llvm::BuilderRef;
import lib::llvm::llvm::BasicBlockRef;
import lib::llvm::False;
import lib::llvm::True;
import lib::llvm::Bool;
import link::mangle_internal_name_by_type_only;
import link::mangle_internal_name_by_seq;
import link::mangle_internal_name_by_path;
import link::mangle_internal_name_by_path_and_seq;
import link::mangle_exported_name;
import metadata::creader;
import metadata::csearch;
import metadata::cstore;
import util::ppaux::ty_to_str;
import util::ppaux::ty_to_short_str;
import syntax::print::pprust::expr_to_str;
import syntax::print::pprust::path_to_str;
import bld = trans_build;
// FIXME: These should probably be pulled in here too.
import trans::type_of_fn_full;
import trans::drop_ty;
obj namegen(mutable i: int) {
fn next(prefix: str) -> str { i += 1; ret prefix + int::str(i); }
}
type derived_tydesc_info = {lltydesc: ValueRef, escapes: bool};
type glue_fns = {no_op_type_glue: ValueRef};
tag tydesc_kind {
tk_static; // Static (monomorphic) type descriptor.
tk_param; // Type parameter.
tk_derived; // Derived from a typaram or another derived tydesc.
}
type tydesc_info =
{ty: ty::t,
tydesc: ValueRef,
size: ValueRef,
align: ValueRef,
mutable take_glue: option::t<ValueRef>,
mutable drop_glue: option::t<ValueRef>,
mutable free_glue: option::t<ValueRef>,
mutable cmp_glue: option::t<ValueRef>,
mutable copy_glue: option::t<ValueRef>,
ty_params: [uint]};
/*
* A note on nomenclature of linking: "upcall", "extern" and "native".
*
* An "extern" is an LLVM symbol we wind up emitting an undefined external
* reference to. This means "we don't have the thing in this compilation unit,
* please make sure you link it in at runtime". This could be a reference to
* C code found in a C library, or rust code found in a rust crate.
*
* A "native" is an extern that references C code. Called with cdecl.
*
* An upcall is a native call generated by the compiler (not corresponding to
* any user-written call in the code) into librustrt, to perform some helper
* task such as bringing a task to life, allocating memory, etc.
*
*/
type stats =
{mutable n_static_tydescs: uint,
mutable n_derived_tydescs: uint,
mutable n_glues_created: uint,
mutable n_null_glues: uint,
mutable n_real_glues: uint,
fn_times: @mutable [{ident: str, time: int}]};
resource BuilderRef_res(B: llvm::BuilderRef) {
llvm::LLVMDisposeBuilder(B);
}
// Crate context. Every crate we compile has one of these.
type crate_ctxt =
// A mapping from the def_id of each item in this crate to the address
// of the first instruction of the item's definition in the executable
// we're generating.
// TODO: hashmap<tup(tag_id,subtys), @tag_info>
{sess: session::session,
llmod: ModuleRef,
td: target_data,
tn: type_names,
externs: hashmap<str, ValueRef>,
intrinsics: hashmap<str, ValueRef>,
item_ids: hashmap<ast::node_id, ValueRef>,
ast_map: ast_map::map,
item_symbols: hashmap<ast::node_id, str>,
mutable main_fn: option::t<ValueRef>,
link_meta: link::link_meta,
tag_sizes: hashmap<ty::t, uint>,
discrims: hashmap<ast::node_id, ValueRef>,
discrim_symbols: hashmap<ast::node_id, str>,
fn_pairs: hashmap<ast::node_id, ValueRef>,
consts: hashmap<ast::node_id, ValueRef>,
obj_methods: hashmap<ast::node_id, ()>,
tydescs: hashmap<ty::t, @tydesc_info>,
module_data: hashmap<str, ValueRef>,
lltypes: hashmap<ty::t, TypeRef>,
glues: @glue_fns,
names: namegen,
sha: std::sha1::sha1,
type_sha1s: hashmap<ty::t, str>,
type_short_names: hashmap<ty::t, str>,
tcx: ty::ctxt,
mut_map: alias::mut_map,
stats: stats,
upcalls: @upcall::upcalls,
rust_object_type: TypeRef,
tydesc_type: TypeRef,
task_type: TypeRef,
builder: BuilderRef_res,
shape_cx: shape::ctxt,
gc_cx: gc::ctxt};
type local_ctxt =
{path: [str],
module_path: [str],
obj_typarams: [ast::ty_param],
obj_fields: [ast::obj_field],
ccx: @crate_ctxt};
// Types used for llself.
type val_self_pair = {v: ValueRef, t: ty::t};
// Function context. Every LLVM function we create will have one of
// these.
type fn_ctxt =
// The ValueRef returned from a call to llvm::LLVMAddFunction; the
// address of the first instruction in the sequence of
// instructions for this function that will go in the .text
// section of the executable we're generating.
// The three implicit arguments that arrive in the function we're
// creating. For instance, foo(int, int) is really foo(ret*,
// task*, env*, int, int). These are also available via
// llvm::LLVMGetParam(llfn, uint) where uint = 1, 2, 0
// respectively, but we unpack them into these fields for
// convenience.
// Points to the current task.
// Points to the current environment (bindings of variables to
// values), if this is a regular function; points to the current
// object, if this is a method.
// Points to where the return value of this function should end
// up.
// The next three elements: "hoisted basic blocks" containing
// administrative activities that have to happen in only one place in
// the function, due to LLVM's quirks.
// A block for all the function's static allocas, so that LLVM
// will coalesce them into a single alloca call.
// A block containing code that copies incoming arguments to space
// already allocated by code in one of the llallocas blocks.
// (LLVM requires that arguments be copied to local allocas before
// allowing most any operation to be performed on them.)
// The first block containing derived tydescs received from the
// runtime. See description of derived_tydescs, below.
// The last block of the llderivedtydescs group.
// A block for all of the dynamically sized allocas. This must be
// after llderivedtydescs, because these sometimes depend on
// information computed from derived tydescs.
// FIXME: Is llcopyargs actually the block containing the allocas
// for incoming function arguments? Or is it merely the block
// containing code that copies incoming args to space already
// alloca'd by code in llallocas?
// The token used to clear the dynamic allocas at the end of this frame.
// The 'self' object currently in use in this function, if there
// is one.
// If this function is actually a iter, a block containing the
// code called whenever the iter calls 'put'.
// If this function is actually a iter, the type of the function
// that that we call when we call 'put'. Having to track this is
// pretty irritating. We have to do it because we need the type if
// we are going to put the iterbody into a closure (if it appears
// in a for-each inside of an iter).
// The next four items: hash tables mapping from AST def_ids to
// LLVM-stuff-in-the-frame.
// Maps arguments to allocas created for them in llallocas.
// Maps fields in objects to pointers into the interior of
// llself's body.
// Maps the def_ids for local variables to the allocas created for
// them in llallocas.
// The same as above, but for variables accessed via the frame
// pointer we pass into an iter, for access to the static
// environment of the iter-calling frame.
// For convenience, a vector of the incoming tydescs for each of
// this functions type parameters, fetched via llvm::LLVMGetParam.
// For example, for a function foo::<A, B, C>(), lltydescs contains
// the ValueRefs for the tydescs for A, B, and C.
// Derived tydescs are tydescs created at runtime, for types that
// involve type parameters inside type constructors. For example,
// suppose a function parameterized by T creates a vector of type
// [T]. The function doesn't know what T is until runtime, and
// the function's caller knows T but doesn't know that a vector is
// involved. So a tydesc for [T] can't be created until runtime,
// when information about both "[T]" and "T" are available. When
// such a tydesc is created, we cache it in the derived_tydescs
// table for the next time that such a tydesc is needed.
// The node_id of the function, or -1 if it doesn't correspond to
// a user-defined function.
// The source span where this function comes from, for error
// reporting.
// This function's enclosing local context.
{llfn: ValueRef,
lltaskptr: ValueRef,
llenv: ValueRef,
llretptr: ValueRef,
mutable llstaticallocas: BasicBlockRef,
mutable llcopyargs: BasicBlockRef,
mutable llderivedtydescs_first: BasicBlockRef,
mutable llderivedtydescs: BasicBlockRef,
mutable lldynamicallocas: BasicBlockRef,
mutable llreturn: BasicBlockRef,
mutable llobstacktoken: option::t<ValueRef>,
mutable llself: option::t<val_self_pair>,
mutable lliterbody: option::t<ValueRef>,
mutable iterbodyty: option::t<ty::t>,
llargs: hashmap<ast::node_id, ValueRef>,
llobjfields: hashmap<ast::node_id, ValueRef>,
lllocals: hashmap<ast::node_id, ValueRef>,
llupvars: hashmap<ast::node_id, ValueRef>,
mutable lltydescs: [ValueRef],
derived_tydescs: hashmap<ty::t, derived_tydesc_info>,
id: ast::node_id,
sp: span,
lcx: @local_ctxt};
tag cleanup {
clean(fn(&@block_ctxt) -> result);
clean_temp(ValueRef, fn(&@block_ctxt) -> result);
}
fn add_clean(cx: &@block_ctxt, val: ValueRef, ty: ty::t) {
find_scope_cx(cx).cleanups += [clean(bind drop_ty(_, val, ty))];
}
fn add_clean_temp(cx: &@block_ctxt, val: ValueRef, ty: ty::t) {
fn spill_and_drop(bcx: &@block_ctxt, val: ValueRef, ty: ty::t) -> result {
let spilled = trans::spill_if_immediate(bcx, val, ty);
ret drop_ty(bcx, spilled, ty);
}
find_scope_cx(cx).cleanups +=
[clean_temp(val, bind spill_and_drop(_, val, ty))];
}
// Note that this only works for temporaries. We should, at some point, move
// to a system where we can also cancel the cleanup on local variables, but
// this will be more involved. For now, we simply zero out the local, and the
// drop glue checks whether it is zero.
fn revoke_clean(cx: &@block_ctxt, val: ValueRef) {
let sc_cx = find_scope_cx(cx);
let found = -1;
let i = 0;
for c: cleanup in sc_cx.cleanups {
alt c {
clean_temp(v, _) {
if v as uint == val as uint { found = i; break; }
}
_ { }
}
i += 1;
}
// The value does not have a cleanup associated with it. Might be a
// constant or some immediate value.
if found == -1 { ret; }
// We found the cleanup and remove it
sc_cx.cleanups =
std::vec::slice(sc_cx.cleanups, 0u, found as uint) +
std::vec::slice(sc_cx.cleanups, (found as uint) + 1u,
std::vec::len(sc_cx.cleanups));
}
fn get_res_dtor(ccx: &@crate_ctxt, sp: &span, did: &ast::def_id,
inner_t: ty::t) -> ValueRef {
if did.crate == ast::local_crate {
alt ccx.fn_pairs.find(did.node) {
some(x) { ret x; }
_ { ccx.tcx.sess.bug("get_res_dtor: can't find resource dtor!"); }
}
}
let params = csearch::get_type_param_count(ccx.sess.get_cstore(), did);
let f_t =
trans::type_of_fn(ccx, sp, ast::proto_fn,
[{mode: ty::mo_alias(false), ty: inner_t}],
ty::mk_nil(ccx.tcx), params);
ret trans::get_extern_const(ccx.externs, ccx.llmod,
csearch::get_symbol(ccx.sess.get_cstore(),
did),
T_fn_pair(*ccx, f_t));
}
tag block_kind {
// A scope block is a basic block created by translating a block { ... }
// the the source language. Since these blocks create variable scope, any
// variables created in them that are still live at the end of the block
// must be dropped and cleaned up when the block ends.
SCOPE_BLOCK;
// A basic block created from the body of a loop. Contains pointers to
// which block to jump to in the case of "continue" or "break", with the
// "continue" block optional, because "while" and "do while" don't support
// "continue" (TODO: is this intentional?)
LOOP_SCOPE_BLOCK(option::t<@block_ctxt>, @block_ctxt);
// A non-scope block is a basic block created as a translation artifact
// from translating code that expresses conditional logic rather than by
// explicit { ... } block structure in the source language. It's called a
// non-scope block because it doesn't introduce a new variable scope.
NON_SCOPE_BLOCK;
}
// Basic block context. We create a block context for each basic block
// (single-entry, single-exit sequence of instructions) we generate from Rust
// code. Each basic block we generate is attached to a function, typically
// with many basic blocks per function. All the basic blocks attached to a
// function are organized as a directed graph.
type block_ctxt =
// The BasicBlockRef returned from a call to
// llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic
// block to the function pointed to by llfn. We insert
// instructions into that block by way of this block context.
// The llvm::builder object serving as an interface to LLVM's
// LLVMBuild* functions.
// The block pointing to this one in the function's digraph.
// The 'kind' of basic block this is.
// A list of functions that run at the end of translating this
// block, cleaning up any variables that were introduced in the
// block and need to go out of scope at the end of it.
// The source span where this block comes from, for error
// reporting.
// The function context for the function to which this block is
// attached.
{llbb: BasicBlockRef,
mutable terminated: bool,
parent: block_parent,
kind: block_kind,
mutable cleanups: [cleanup],
sp: span,
fcx: @fn_ctxt};
fn is_terminated(cx: &@block_ctxt) -> bool {
ret cx.terminated;
}
// FIXME: we should be able to use option::t<@block_parent> here but
// the infinite-tag check in rustboot gets upset.
tag block_parent { parent_none; parent_some(@block_ctxt); }
type result = {bcx: @block_ctxt, val: ValueRef};
type result_t = {bcx: @block_ctxt, val: ValueRef, ty: ty::t};
fn extend_path(cx: @local_ctxt, name: &str) -> @local_ctxt {
ret @{path: cx.path + [name] with *cx};
}
fn rslt(bcx: @block_ctxt, val: ValueRef) -> result {
ret {bcx: bcx, val: val};
}
fn ty_str(tn: type_names, t: TypeRef) -> str {
ret lib::llvm::type_to_str(tn, t);
}
fn val_ty(v: ValueRef) -> TypeRef { ret llvm::LLVMTypeOf(v); }
fn val_str(tn: type_names, v: ValueRef) -> str { ret ty_str(tn, val_ty(v)); }
// Returns the nth element of the given LLVM structure type.
fn struct_elt(llstructty: TypeRef, n: uint) -> TypeRef {
let elt_count = llvm::LLVMCountStructElementTypes(llstructty);
assert (n < elt_count);
let elt_tys = std::vec::init_elt(T_nil(), elt_count);
llvm::LLVMGetStructElementTypes(llstructty, std::vec::to_ptr(elt_tys));
ret llvm::LLVMGetElementType(elt_tys[n]);
}
fn find_scope_cx(cx: &@block_ctxt) -> @block_ctxt {
if cx.kind != NON_SCOPE_BLOCK { ret cx; }
alt cx.parent {
parent_some(b) { ret find_scope_cx(b); }
parent_none. {
cx.fcx.lcx.ccx.sess.bug("trans::find_scope_cx() " +
"called on parentless block_ctxt");
}
}
}
// Accessors
// TODO: When we have overloading, simplify these names!
fn bcx_tcx(bcx: &@block_ctxt) -> ty::ctxt { ret bcx.fcx.lcx.ccx.tcx; }
fn bcx_ccx(bcx: &@block_ctxt) -> @crate_ctxt { ret bcx.fcx.lcx.ccx; }
fn bcx_lcx(bcx: &@block_ctxt) -> @local_ctxt { ret bcx.fcx.lcx; }
fn bcx_fcx(bcx: &@block_ctxt) -> @fn_ctxt { ret bcx.fcx; }
fn fcx_ccx(fcx: &@fn_ctxt) -> @crate_ctxt { ret fcx.lcx.ccx; }
fn fcx_tcx(fcx: &@fn_ctxt) -> ty::ctxt { ret fcx.lcx.ccx.tcx; }
fn lcx_ccx(lcx: &@local_ctxt) -> @crate_ctxt { ret lcx.ccx; }
fn ccx_tcx(ccx: &@crate_ctxt) -> ty::ctxt { ret ccx.tcx; }
// LLVM type constructors.
fn T_void() -> TypeRef {
// Note: For the time being llvm is kinda busted here, it has the notion
// of a 'void' type that can only occur as part of the signature of a
// function, but no general unit type of 0-sized value. This is, afaict,
// vestigial from its C heritage, and we'll be attempting to submit a
// patch upstream to fix it. In the mean time we only model function
// outputs (Rust functions and C functions) using T_void, and model the
// Rust general purpose nil type you can construct as 1-bit (always
// zero). This makes the result incorrect for now -- things like a tuple
// of 10 nil values will have 10-bit size -- but it doesn't seem like we
// have any other options until it's fixed upstream.
ret llvm::LLVMVoidType();
}
fn T_nil() -> TypeRef {
// NB: See above in T_void().
ret llvm::LLVMInt1Type();
}
fn T_i1() -> TypeRef { ret llvm::LLVMInt1Type(); }
fn T_i8() -> TypeRef { ret llvm::LLVMInt8Type(); }
fn T_i16() -> TypeRef { ret llvm::LLVMInt16Type(); }
fn T_i32() -> TypeRef { ret llvm::LLVMInt32Type(); }
fn T_i64() -> TypeRef { ret llvm::LLVMInt64Type(); }
fn T_f32() -> TypeRef { ret llvm::LLVMFloatType(); }
fn T_f64() -> TypeRef { ret llvm::LLVMDoubleType(); }
fn T_bool() -> TypeRef { ret T_i1(); }
fn T_int() -> TypeRef {
// FIXME: switch on target type.
ret T_i32();
}
fn T_float() -> TypeRef {
// FIXME: switch on target type.
ret T_f64();
}
fn T_char() -> TypeRef { ret T_i32(); }
fn T_size_t() -> TypeRef {
// FIXME: switch on target type.
ret T_i32();
}
fn T_fn(inputs: &[TypeRef], output: TypeRef) -> TypeRef {
ret llvm::LLVMFunctionType(output, std::vec::to_ptr(inputs),
std::vec::len::<TypeRef>(inputs), False);
}
fn T_fn_pair(cx: &crate_ctxt, tfn: TypeRef) -> TypeRef {
ret T_struct([T_ptr(tfn), T_opaque_closure_ptr(cx)]);
}
fn T_ptr(t: TypeRef) -> TypeRef { ret llvm::LLVMPointerType(t, 0u); }
fn T_struct(elts: &[TypeRef]) -> TypeRef {
ret llvm::LLVMStructType(std::vec::to_ptr(elts), std::vec::len(elts),
False);
}
fn T_named_struct(name: &str) -> TypeRef {
let c = llvm::LLVMGetGlobalContext();
ret llvm::LLVMStructCreateNamed(c, str::buf(name));
}
fn set_struct_body(t: TypeRef, elts: &[TypeRef]) {
llvm::LLVMStructSetBody(t, std::vec::to_ptr(elts), std::vec::len(elts),
False);
}
fn T_empty_struct() -> TypeRef { ret T_struct([]); }
// NB: This will return something different every time it's called. If
// you need a generic object type that matches the type of your
// existing objects, use ccx.rust_object_type. Calling
// T_rust_object() again will return a different one.
fn T_rust_object() -> TypeRef {
let t = T_named_struct("rust_object");
let e = T_ptr(T_empty_struct());
set_struct_body(t, [e, e]);
ret t;
}
fn T_task() -> TypeRef {
let t = T_named_struct("task");
// Refcount
// Delegate pointer
// Stack segment pointer
// Runtime SP
// Rust SP
// GC chain
// Domain pointer
// Crate cache pointer
let elems =
[T_int(), T_int(), T_int(), T_int(), T_int(), T_int(), T_int(),
T_int()];
set_struct_body(t, elems);
ret t;
}
fn T_tydesc_field(cx: &crate_ctxt, field: int) -> TypeRef {
// Bit of a kludge: pick the fn typeref out of the tydesc..
let tydesc_elts: [TypeRef] =
std::vec::init_elt::<TypeRef>(T_nil(), abi::n_tydesc_fields as uint);
llvm::LLVMGetStructElementTypes(cx.tydesc_type,
std::vec::to_ptr::<TypeRef>(tydesc_elts));
let t = llvm::LLVMGetElementType(tydesc_elts[field]);
ret t;
}
fn T_glue_fn(cx: &crate_ctxt) -> TypeRef {
let s = "glue_fn";
if cx.tn.name_has_type(s) { ret cx.tn.get_type(s); }
let t = T_tydesc_field(cx, abi::tydesc_field_drop_glue);
cx.tn.associate(s, t);
ret t;
}
fn T_cmp_glue_fn(cx: &crate_ctxt) -> TypeRef {
let s = "cmp_glue_fn";
if cx.tn.name_has_type(s) { ret cx.tn.get_type(s); }
let t = T_tydesc_field(cx, abi::tydesc_field_cmp_glue);
cx.tn.associate(s, t);
ret t;
}
fn T_copy_glue_fn(cx: &crate_ctxt) -> TypeRef {
let s = "copy_glue_fn";
if cx.tn.name_has_type(s) { ret cx.tn.get_type(s); }
let t = T_tydesc_field(cx, abi::tydesc_field_copy_glue);
cx.tn.associate(s, t);
ret t;
}
fn T_tydesc(taskptr_type: TypeRef) -> TypeRef {
let tydesc = T_named_struct("tydesc");
let tydescpp = T_ptr(T_ptr(tydesc));
let pvoid = T_ptr(T_i8());
let glue_fn_ty =
T_ptr(T_fn([T_ptr(T_nil()), taskptr_type, T_ptr(T_nil()), tydescpp,
pvoid], T_void()));
let cmp_glue_fn_ty =
T_ptr(T_fn([T_ptr(T_i1()), taskptr_type, T_ptr(tydesc), tydescpp,
pvoid, pvoid, T_i8()], T_void()));
let copy_glue_fn_ty =
T_ptr(T_fn([T_ptr(T_nil()), taskptr_type, T_ptr(T_nil()), tydescpp,
pvoid, pvoid], T_void()));
let elems =
[tydescpp, T_int(), T_int(), glue_fn_ty, glue_fn_ty, glue_fn_ty,
copy_glue_fn_ty, glue_fn_ty, glue_fn_ty, glue_fn_ty, cmp_glue_fn_ty,
T_ptr(T_i8()), T_ptr(T_i8()), T_int(), T_int()];
set_struct_body(tydesc, elems);
ret tydesc;
}
fn T_array(t: TypeRef, n: uint) -> TypeRef { ret llvm::LLVMArrayType(t, n); }
fn T_evec(t: TypeRef) -> TypeRef {
ret T_struct([T_int(), // Refcount
T_int(), // Alloc
T_int(), // Fill
T_int(), // Pad
// Body elements
T_array(t, 0u)]);
}
fn T_opaque_vec_ptr() -> TypeRef { ret T_ptr(T_evec(T_int())); }
// Interior vector.
//
// TODO: Support user-defined vector sizes.
fn T_ivec(t: TypeRef) -> TypeRef {
ret T_struct([T_int(), // Length ("fill"; if zero, heapified)
T_int(), // Alloc
T_array(t, abi::ivec_default_length)]); // Body elements
}
// Note that the size of this one is in bytes.
fn T_opaque_ivec() -> TypeRef {
ret T_struct([T_int(), // Length ("fill"; if zero, heapified)
T_int(), // Alloc
T_array(T_i8(), 0u)]); // Body elements
}
fn T_ivec_heap_part(t: TypeRef) -> TypeRef {
ret T_struct([T_int(), // Real length
T_array(t, 0u)]); // Body elements
}
// Interior vector on the heap, also known as the "stub". Cast to this when
// the allocated length (second element of T_ivec above) is zero.
fn T_ivec_heap(t: TypeRef) -> TypeRef {
ret T_struct([T_int(), // Length (zero)
T_int(), // Alloc
T_ptr(T_ivec_heap_part(t))]); // Pointer
}
fn T_opaque_ivec_heap_part() -> TypeRef {
ret T_struct([T_int(), // Real length
T_array(T_i8(), 0u)]); // Body elements
}
fn T_opaque_ivec_heap() -> TypeRef {
ret T_struct([T_int(), // Length (zero)
T_int(), // Alloc
T_ptr(T_opaque_ivec_heap_part())]); // Pointer
}
fn T_str() -> TypeRef { ret T_evec(T_i8()); }
fn T_box(t: TypeRef) -> TypeRef { ret T_struct([T_int(), t]); }
fn T_port(_t: TypeRef) -> TypeRef {
ret T_struct([T_int()]); // Refcount
}
fn T_chan(_t: TypeRef) -> TypeRef {
ret T_struct([T_int()]); // Refcount
}
fn T_taskptr(cx: &crate_ctxt) -> TypeRef { ret T_ptr(cx.task_type); }
// This type must never be used directly; it must always be cast away.
fn T_typaram(tn: &type_names) -> TypeRef {
let s = "typaram";
if tn.name_has_type(s) { ret tn.get_type(s); }
let t = T_i8();
tn.associate(s, t);
ret t;
}
fn T_typaram_ptr(tn: &type_names) -> TypeRef { ret T_ptr(T_typaram(tn)); }
fn T_closure_ptr(cx: &crate_ctxt, llbindings_ty: TypeRef, n_ty_params: uint)
-> TypeRef {
// NB: keep this in sync with code in trans_bind; we're making
// an LLVM typeref structure that has the same "shape" as the ty::t
// it constructs.
ret T_ptr(T_box(T_struct([T_ptr(cx.tydesc_type), llbindings_ty,
T_captured_tydescs(cx, n_ty_params)])));
}
fn T_opaque_closure_ptr(cx: &crate_ctxt) -> TypeRef {
let s = "*closure";
if cx.tn.name_has_type(s) { ret cx.tn.get_type(s); }
let t = T_closure_ptr(cx, T_nil(), 0u);
cx.tn.associate(s, t);
ret t;
}
fn T_tag(tn: &type_names, size: uint) -> TypeRef {
let s = "tag_" + uint::to_str(size, 10u);
if tn.name_has_type(s) { ret tn.get_type(s); }
let t = T_struct([T_int(), T_array(T_i8(), size)]);
tn.associate(s, t);
ret t;
}
fn T_opaque_tag(tn: &type_names) -> TypeRef {
let s = "opaque_tag";
if tn.name_has_type(s) { ret tn.get_type(s); }
let t = T_struct([T_int(), T_i8()]);
tn.associate(s, t);
ret t;
}
fn T_opaque_tag_ptr(tn: &type_names) -> TypeRef {
ret T_ptr(T_opaque_tag(tn));
}
fn T_captured_tydescs(cx: &crate_ctxt, n: uint) -> TypeRef {
ret T_struct(std::vec::init_elt::<TypeRef>(T_ptr(cx.tydesc_type), n));
}
fn T_obj_ptr(cx: &crate_ctxt, n_captured_tydescs: uint) -> TypeRef {
// This function is not publicly exposed because it returns an incomplete
// type. The dynamically-sized fields follow the captured tydescs.
fn T_obj(cx: &crate_ctxt, n_captured_tydescs: uint) -> TypeRef {
ret T_struct([T_ptr(cx.tydesc_type),
T_captured_tydescs(cx, n_captured_tydescs)]);
}
ret T_ptr(T_box(T_obj(cx, n_captured_tydescs)));
}
fn T_opaque_obj_ptr(cx: &crate_ctxt) -> TypeRef { ret T_obj_ptr(cx, 0u); }
fn T_opaque_port_ptr() -> TypeRef { ret T_ptr(T_i8()); }
fn T_opaque_chan_ptr() -> TypeRef { ret T_ptr(T_i8()); }
// LLVM constant constructors.
fn C_null(t: TypeRef) -> ValueRef { ret llvm::LLVMConstNull(t); }
fn C_integral(t: TypeRef, u: uint, sign_extend: Bool) -> ValueRef {
// FIXME: We can't use LLVM::ULongLong with our existing minimal native
// API, which only knows word-sized args.
//
// ret llvm::LLVMConstInt(T_int(), t as LLVM::ULongLong, False);
//
ret llvm::LLVMRustConstSmallInt(t, u, sign_extend);
}
fn C_float(s: &str) -> ValueRef {
ret llvm::LLVMConstRealOfString(T_float(), str::buf(s));
}
fn C_floating(s: &str, t: TypeRef) -> ValueRef {
ret llvm::LLVMConstRealOfString(t, str::buf(s));
}
fn C_nil() -> ValueRef {
// NB: See comment above in T_void().
ret C_integral(T_i1(), 0u, False);
}
fn C_bool(b: bool) -> ValueRef {
if b {
ret C_integral(T_bool(), 1u, False);
} else { ret C_integral(T_bool(), 0u, False); }
}
fn C_int(i: int) -> ValueRef { ret C_integral(T_int(), i as uint, True); }
fn C_uint(i: uint) -> ValueRef { ret C_integral(T_int(), i, False); }
fn C_u8(i: uint) -> ValueRef { ret C_integral(T_i8(), i, False); }
// This is a 'c-like' raw string, which differs from
// our boxed-and-length-annotated strings.
fn C_cstr(cx: &@crate_ctxt, s: &str) -> ValueRef {
let sc = llvm::LLVMConstString(str::buf(s), str::byte_len(s), False);
let gname = cx.names.next("str");
let g =
llvm::LLVMAddGlobal(cx.llmod, val_ty(sc),
str::buf(gname));
llvm::LLVMSetInitializer(g, sc);
llvm::LLVMSetGlobalConstant(g, True);
llvm::LLVMSetLinkage(g, lib::llvm::LLVMInternalLinkage as llvm::Linkage);
ret g;
}
// A rust boxed-and-length-annotated string.
fn C_str(cx: &@crate_ctxt, s: &str) -> ValueRef {
let len =
str::byte_len(s); // 'alloc'
// 'fill'
// 'pad'
let box =
C_struct([C_int(abi::const_refcount as int), C_int(len + 1u as int),
C_int(len + 1u as int), C_int(0),
llvm::LLVMConstString(str::buf(s), len, False)]);
let gname = cx.names.next("str");
let g =
llvm::LLVMAddGlobal(cx.llmod, val_ty(box), str::buf(gname));
llvm::LLVMSetInitializer(g, box);
llvm::LLVMSetGlobalConstant(g, True);
llvm::LLVMSetLinkage(g, lib::llvm::LLVMInternalLinkage as llvm::Linkage);
ret llvm::LLVMConstPointerCast(g, T_ptr(T_str()));
}
// Returns a Plain Old LLVM String:
fn C_postr(s: &str) -> ValueRef {
ret llvm::LLVMConstString(str::buf(s), str::byte_len(s), False);
}
fn C_zero_byte_arr(size: uint) -> ValueRef {
let i = 0u;
let elts: [ValueRef] = [];
while i < size { elts += [C_u8(0u)]; i += 1u; }
ret llvm::LLVMConstArray(T_i8(), std::vec::to_ptr(elts),
std::vec::len(elts));
}
fn C_struct(elts: &[ValueRef]) -> ValueRef {
ret llvm::LLVMConstStruct(std::vec::to_ptr(elts), std::vec::len(elts),
False);
}
fn C_named_struct(T: TypeRef, elts: &[ValueRef]) -> ValueRef {
ret llvm::LLVMConstNamedStruct(T, std::vec::to_ptr(elts),
std::vec::len(elts));
}
fn C_array(ty: TypeRef, elts: &[ValueRef]) -> ValueRef {
ret llvm::LLVMConstArray(ty, std::vec::to_ptr(elts), std::vec::len(elts));
}
fn C_bytes(bytes: &[u8]) -> ValueRef {
ret llvm::LLVMConstString(unsafe::reinterpret_cast(vec::to_ptr(bytes)),
vec::len(bytes), False);
}
fn C_shape(ccx: &@crate_ctxt, bytes: &[u8]) -> ValueRef {
let llshape = C_bytes(bytes);
let gname = ccx.names.next("shape");
let llglobal =
llvm::LLVMAddGlobal(ccx.llmod, val_ty(llshape), str::buf(gname));
llvm::LLVMSetInitializer(llglobal, llshape);
llvm::LLVMSetGlobalConstant(llglobal, True);
llvm::LLVMSetLinkage(llglobal,
lib::llvm::LLVMInternalLinkage as llvm::Linkage);
ret llvm::LLVMConstPointerCast(llglobal, T_ptr(T_i8()));
}
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'";
// End:
//