rust/src/librustc/ty/inhabitedness/def_id_forest.rs
2017-08-15 21:56:30 +02:00

134 lines
4.2 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::mem;
use rustc_data_structures::small_vec::SmallVec;
use syntax::ast::CRATE_NODE_ID;
use ty::context::TyCtxt;
use ty::{DefId, DefIdTree};
/// Represents a forest of DefIds closed under the ancestor relation. That is,
/// if a DefId representing a module is contained in the forest then all
/// DefIds defined in that module or submodules are also implicitly contained
/// in the forest.
///
/// This is used to represent a set of modules in which a type is visibly
/// uninhabited.
#[derive(Clone)]
pub struct DefIdForest {
/// The minimal set of DefIds required to represent the whole set.
/// If A and B are DefIds in the DefIdForest, and A is a descendant
/// of B, then only B will be in root_ids.
/// We use a SmallVec here because (for its use for caching inhabitedness)
/// its rare that this will contain even two ids.
root_ids: SmallVec<[DefId; 1]>,
}
impl<'a, 'gcx, 'tcx> DefIdForest {
/// Create an empty forest.
pub fn empty() -> DefIdForest {
DefIdForest {
root_ids: SmallVec::new(),
}
}
/// Create a forest consisting of a single tree representing the entire
/// crate.
#[inline]
pub fn full(tcx: TyCtxt<'a, 'gcx, 'tcx>) -> DefIdForest {
let crate_id = tcx.hir.local_def_id(CRATE_NODE_ID);
DefIdForest::from_id(crate_id)
}
/// Create a forest containing a DefId and all its descendants.
pub fn from_id(id: DefId) -> DefIdForest {
let mut root_ids = SmallVec::new();
root_ids.push(id);
DefIdForest {
root_ids,
}
}
/// Test whether the forest is empty.
pub fn is_empty(&self) -> bool {
self.root_ids.is_empty()
}
/// Test whether the forest contains a given DefId.
pub fn contains(&self,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
id: DefId) -> bool
{
for root_id in self.root_ids.iter() {
if tcx.is_descendant_of(id, *root_id) {
return true;
}
}
false
}
/// Calculate the intersection of a collection of forests.
pub fn intersection<I>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
iter: I) -> DefIdForest
where I: IntoIterator<Item=DefIdForest>
{
let mut ret = DefIdForest::full(tcx);
let mut next_ret = SmallVec::new();
let mut old_ret: SmallVec<[DefId; 1]> = SmallVec::new();
for next_forest in iter {
for id in ret.root_ids.drain(..) {
if next_forest.contains(tcx, id) {
next_ret.push(id);
} else {
old_ret.push(id);
}
}
ret.root_ids.extend(old_ret.drain(..));
for id in next_forest.root_ids {
if ret.contains(tcx, id) {
next_ret.push(id);
}
}
mem::swap(&mut next_ret, &mut ret.root_ids);
next_ret.drain(..);
}
ret
}
/// Calculate the union of a collection of forests.
pub fn union<I>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
iter: I) -> DefIdForest
where I: IntoIterator<Item=DefIdForest>
{
let mut ret = DefIdForest::empty();
let mut next_ret = SmallVec::new();
for next_forest in iter {
for id in ret.root_ids.drain(..) {
if !next_forest.contains(tcx, id) {
next_ret.push(id);
}
}
for id in next_forest.root_ids {
if !next_ret.contains(&id) {
next_ret.push(id);
}
}
mem::swap(&mut next_ret, &mut ret.root_ids);
next_ret.drain(..);
}
ret
}
}