245 lines
8.2 KiB
Rust
245 lines
8.2 KiB
Rust
//! This module contains functions for retrieve the original AST from lowered
|
|
//! `hir`.
|
|
|
|
#![deny(missing_docs_in_private_items)]
|
|
|
|
use rustc::{hir, ty};
|
|
use rustc::lint::LateContext;
|
|
use syntax::ast;
|
|
use utils::{is_expn_of, match_def_path, match_qpath, opt_def_id, paths, resolve_node};
|
|
|
|
/// Convert a hir binary operator to the corresponding `ast` type.
|
|
pub fn binop(op: hir::BinOp_) -> ast::BinOpKind {
|
|
match op {
|
|
hir::BiEq => ast::BinOpKind::Eq,
|
|
hir::BiGe => ast::BinOpKind::Ge,
|
|
hir::BiGt => ast::BinOpKind::Gt,
|
|
hir::BiLe => ast::BinOpKind::Le,
|
|
hir::BiLt => ast::BinOpKind::Lt,
|
|
hir::BiNe => ast::BinOpKind::Ne,
|
|
hir::BiOr => ast::BinOpKind::Or,
|
|
hir::BiAdd => ast::BinOpKind::Add,
|
|
hir::BiAnd => ast::BinOpKind::And,
|
|
hir::BiBitAnd => ast::BinOpKind::BitAnd,
|
|
hir::BiBitOr => ast::BinOpKind::BitOr,
|
|
hir::BiBitXor => ast::BinOpKind::BitXor,
|
|
hir::BiDiv => ast::BinOpKind::Div,
|
|
hir::BiMul => ast::BinOpKind::Mul,
|
|
hir::BiRem => ast::BinOpKind::Rem,
|
|
hir::BiShl => ast::BinOpKind::Shl,
|
|
hir::BiShr => ast::BinOpKind::Shr,
|
|
hir::BiSub => ast::BinOpKind::Sub,
|
|
}
|
|
}
|
|
|
|
/// Represent a range akin to `ast::ExprKind::Range`.
|
|
#[derive(Debug, Copy, Clone)]
|
|
pub struct Range<'a> {
|
|
/// The lower bound of the range, or `None` for ranges such as `..X`.
|
|
pub start: Option<&'a hir::Expr>,
|
|
/// The upper bound of the range, or `None` for ranges such as `X..`.
|
|
pub end: Option<&'a hir::Expr>,
|
|
/// Whether the interval is open or closed.
|
|
pub limits: ast::RangeLimits,
|
|
}
|
|
|
|
/// Higher a `hir` range to something similar to `ast::ExprKind::Range`.
|
|
pub fn range<'a, 'b, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'b hir::Expr) -> Option<Range<'b>> {
|
|
|
|
let def_path = match cx.tables.expr_ty(expr).sty {
|
|
ty::TyAdt(def, _) => cx.tcx.def_path(def.did),
|
|
_ => return None,
|
|
};
|
|
|
|
// sanity checks for std::ops::RangeXXXX
|
|
if def_path.data.len() != 3 {
|
|
return None;
|
|
}
|
|
if def_path.data.get(0)?.data.as_interned_str() != "ops" {
|
|
return None;
|
|
}
|
|
if def_path.data.get(1)?.data.as_interned_str() != "range" {
|
|
return None;
|
|
}
|
|
let type_name = def_path.data.get(2)?.data.as_interned_str();
|
|
let range_types = [
|
|
"RangeFrom",
|
|
"RangeFull",
|
|
"RangeInclusive",
|
|
"Range",
|
|
"RangeTo",
|
|
"RangeToInclusive",
|
|
];
|
|
if !range_types.contains(&&*type_name.as_str()) {
|
|
return None;
|
|
}
|
|
|
|
/// Find the field named `name` in the field. Always return `Some` for
|
|
/// convenience.
|
|
fn get_field<'a>(name: &str, fields: &'a [hir::Field]) -> Option<&'a hir::Expr> {
|
|
let expr = &fields.iter().find(|field| field.name.node == name)?.expr;
|
|
|
|
Some(expr)
|
|
}
|
|
|
|
// The range syntax is expanded to literal paths starting with `core` or `std`
|
|
// depending on
|
|
// `#[no_std]`. Testing both instead of resolving the paths.
|
|
|
|
match expr.node {
|
|
hir::ExprPath(ref path) => {
|
|
if match_qpath(path, &paths::RANGE_FULL_STD) || match_qpath(path, &paths::RANGE_FULL) {
|
|
Some(Range {
|
|
start: None,
|
|
end: None,
|
|
limits: ast::RangeLimits::HalfOpen,
|
|
})
|
|
} else {
|
|
None
|
|
}
|
|
},
|
|
hir::ExprCall(ref path, ref args) => if let hir::ExprPath(ref path) = path.node {
|
|
if match_qpath(path, &paths::RANGE_INCLUSIVE_STD_NEW) || match_qpath(path, &paths::RANGE_INCLUSIVE_NEW) {
|
|
Some(Range {
|
|
start: Some(&args[0]),
|
|
end: Some(&args[1]),
|
|
limits: ast::RangeLimits::Closed,
|
|
})
|
|
} else {
|
|
None
|
|
}
|
|
} else {
|
|
None
|
|
},
|
|
hir::ExprStruct(ref path, ref fields, None) => if match_qpath(path, &paths::RANGE_FROM_STD)
|
|
|| match_qpath(path, &paths::RANGE_FROM)
|
|
{
|
|
Some(Range {
|
|
start: Some(get_field("start", fields)?),
|
|
end: None,
|
|
limits: ast::RangeLimits::HalfOpen,
|
|
})
|
|
} else if match_qpath(path, &paths::RANGE_STD) || match_qpath(path, &paths::RANGE) {
|
|
Some(Range {
|
|
start: Some(get_field("start", fields)?),
|
|
end: Some(get_field("end", fields)?),
|
|
limits: ast::RangeLimits::HalfOpen,
|
|
})
|
|
} else if match_qpath(path, &paths::RANGE_TO_INCLUSIVE_STD) || match_qpath(path, &paths::RANGE_TO_INCLUSIVE) {
|
|
Some(Range {
|
|
start: None,
|
|
end: Some(get_field("end", fields)?),
|
|
limits: ast::RangeLimits::Closed,
|
|
})
|
|
} else if match_qpath(path, &paths::RANGE_TO_STD) || match_qpath(path, &paths::RANGE_TO) {
|
|
Some(Range {
|
|
start: None,
|
|
end: Some(get_field("end", fields)?),
|
|
limits: ast::RangeLimits::HalfOpen,
|
|
})
|
|
} else {
|
|
None
|
|
},
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// Checks if a `let` decl is from a `for` loop desugaring.
|
|
pub fn is_from_for_desugar(decl: &hir::Decl) -> bool {
|
|
// This will detect plain for-loops without an actual variable binding:
|
|
//
|
|
// ```
|
|
// for x in some_vec {
|
|
// // do stuff
|
|
// }
|
|
// ```
|
|
if_chain! {
|
|
if let hir::DeclLocal(ref loc) = decl.node;
|
|
if let Some(ref expr) = loc.init;
|
|
if let hir::ExprMatch(_, _, hir::MatchSource::ForLoopDesugar) = expr.node;
|
|
then {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// This detects a variable binding in for loop to avoid `let_unit_value`
|
|
// lint (see issue #1964).
|
|
//
|
|
// ```
|
|
// for _ in vec![()] {
|
|
// // anything
|
|
// }
|
|
// ```
|
|
if_chain! {
|
|
if let hir::DeclLocal(ref loc) = decl.node;
|
|
if let hir::LocalSource::ForLoopDesugar = loc.source;
|
|
then {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
false
|
|
}
|
|
|
|
/// Recover the essential nodes of a desugared for loop:
|
|
/// `for pat in arg { body }` becomes `(pat, arg, body)`.
|
|
pub fn for_loop(expr: &hir::Expr) -> Option<(&hir::Pat, &hir::Expr, &hir::Expr)> {
|
|
if_chain! {
|
|
if let hir::ExprMatch(ref iterexpr, ref arms, hir::MatchSource::ForLoopDesugar) = expr.node;
|
|
if let hir::ExprCall(_, ref iterargs) = iterexpr.node;
|
|
if iterargs.len() == 1 && arms.len() == 1 && arms[0].guard.is_none();
|
|
if let hir::ExprLoop(ref block, _, _) = arms[0].body.node;
|
|
if block.expr.is_none();
|
|
if let [ _, _, ref let_stmt, ref body ] = *block.stmts;
|
|
if let hir::StmtDecl(ref decl, _) = let_stmt.node;
|
|
if let hir::DeclLocal(ref decl) = decl.node;
|
|
if let hir::StmtExpr(ref expr, _) = body.node;
|
|
then {
|
|
return Some((&*decl.pat, &iterargs[0], expr));
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Represent the pre-expansion arguments of a `vec!` invocation.
|
|
pub enum VecArgs<'a> {
|
|
/// `vec![elem; len]`
|
|
Repeat(&'a hir::Expr, &'a hir::Expr),
|
|
/// `vec![a, b, c]`
|
|
Vec(&'a [hir::Expr]),
|
|
}
|
|
|
|
/// Returns the arguments of the `vec!` macro if this expression was expanded
|
|
/// from `vec!`.
|
|
pub fn vec_macro<'e>(cx: &LateContext, expr: &'e hir::Expr) -> Option<VecArgs<'e>> {
|
|
if_chain! {
|
|
if let hir::ExprCall(ref fun, ref args) = expr.node;
|
|
if let hir::ExprPath(ref path) = fun.node;
|
|
if is_expn_of(fun.span, "vec").is_some();
|
|
if let Some(fun_def_id) = opt_def_id(resolve_node(cx, path, fun.hir_id));
|
|
then {
|
|
return if match_def_path(cx.tcx, fun_def_id, &paths::VEC_FROM_ELEM) && args.len() == 2 {
|
|
// `vec![elem; size]` case
|
|
Some(VecArgs::Repeat(&args[0], &args[1]))
|
|
}
|
|
else if match_def_path(cx.tcx, fun_def_id, &paths::SLICE_INTO_VEC) && args.len() == 1 {
|
|
// `vec![a, b, c]` case
|
|
if_chain! {
|
|
if let hir::ExprBox(ref boxed) = args[0].node;
|
|
if let hir::ExprArray(ref args) = boxed.node;
|
|
then {
|
|
return Some(VecArgs::Vec(&*args));
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
else {
|
|
None
|
|
};
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|