1123 lines
44 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* # Representation of Algebraic Data Types
*
* This module determines how to represent enums, structs, and tuples
* based on their monomorphized types; it is responsible both for
* choosing a representation and translating basic operations on
* values of those types. (Note: exporting the representations for
* debuggers is handled in debuginfo.rs, not here.)
*
* Note that the interface treats everything as a general case of an
* enum, so structs/tuples/etc. have one pseudo-variant with
* discriminant 0; i.e., as if they were a univariant enum.
*
* Having everything in one place will enable improvements to data
* structure representation; possibilities include:
*
* - User-specified alignment (e.g., cacheline-aligning parts of
* concurrently accessed data structures); LLVM can't represent this
* directly, so we'd have to insert padding fields in any structure
* that might contain one and adjust GEP indices accordingly. See
* issue #4578.
*
* - Store nested enums' discriminants in the same word. Rather, if
* some variants start with enums, and those enums representations
* have unused alignment padding between discriminant and body, the
* outer enum's discriminant can be stored there and those variants
* can start at offset 0. Kind of fancy, and might need work to
* make copies of the inner enum type cooperate, but it could help
* with `Option` or `Result` wrapped around another enum.
*
* - Tagged pointers would be neat, but given that any type can be
* used unboxed and any field can have pointers (including mutable)
* taken to it, implementing them for Rust seems difficult.
*/
#![allow(unsigned_negate)]
use libc::c_ulonglong;
use std::collections::Map;
use std::num::Int;
use std::rc::Rc;
use llvm::{ValueRef, True, IntEQ, IntNE};
use middle::subst;
use middle::subst::Subst;
use middle::trans::_match;
use middle::trans::build::*;
use middle::trans::cleanup;
use middle::trans::cleanup::CleanupMethods;
use middle::trans::common::*;
use middle::trans::datum;
use middle::trans::machine;
use middle::trans::type_::Type;
use middle::trans::type_of;
use middle::ty;
use middle::ty::Disr;
use syntax::abi::{X86, X86_64, Arm, Mips, Mipsel};
use syntax::ast;
use syntax::attr;
use syntax::attr::IntType;
use util::ppaux::ty_to_string;
type Hint = attr::ReprAttr;
/// Representations.
#[deriving(Eq, PartialEq)]
pub enum Repr {
/// C-like enums; basically an int.
CEnum(IntType, Disr, Disr), // discriminant range (signedness based on the IntType)
/**
* Single-case variants, and structs/tuples/records.
*
* Structs with destructors need a dynamic destroyedness flag to
* avoid running the destructor too many times; this is included
* in the `Struct` if present.
*/
Univariant(Struct, bool),
/**
* General-case enums: for each case there is a struct, and they
* all start with a field for the discriminant.
*
* Types with destructors need a dynamic destroyedness flag to
* avoid running the destructor too many times; the last argument
* indicates whether such a flag is present.
*/
General(IntType, Vec<Struct>, bool),
/**
* Two cases distinguished by a nullable pointer: the case with discriminant
* `nndiscr` must have single field which is known to be nonnull due to its type.
* The other case is known to be zero sized. Hence we represent the enum
* as simply a nullable pointer: if not null it indicates the `nndiscr` variant,
* otherwise it indicates the other case.
*/
RawNullablePointer {
pub nndiscr: Disr,
pub nnty: ty::t,
pub nullfields: Vec<ty::t>
},
/**
* Two cases distinguished by a nullable pointer: the case with discriminant
* `nndiscr` is represented by the struct `nonnull`, where the `ptrfield`th
* field is known to be nonnull due to its type; if that field is null, then
* it represents the other case, which is inhabited by at most one value
* (and all other fields are undefined/unused).
*
* For example, `std::option::Option` instantiated at a safe pointer type
* is represented such that `None` is a null pointer and `Some` is the
* identity function.
*/
StructWrappedNullablePointer {
pub nonnull: Struct,
pub nndiscr: Disr,
pub ptrfield: PointerField,
pub nullfields: Vec<ty::t>,
}
}
/// For structs, and struct-like parts of anything fancier.
#[deriving(Eq, PartialEq)]
pub struct Struct {
// If the struct is DST, then the size and alignment do not take into
// account the unsized fields of the struct.
pub size: u64,
pub align: u64,
pub sized: bool,
pub packed: bool,
pub fields: Vec<ty::t>
}
/**
* Convenience for `represent_type`. There should probably be more or
* these, for places in trans where the `ty::t` isn't directly
* available.
*/
pub fn represent_node(bcx: Block, node: ast::NodeId) -> Rc<Repr> {
represent_type(bcx.ccx(), node_id_type(bcx, node))
}
/// Decides how to represent a given type.
pub fn represent_type(cx: &CrateContext, t: ty::t) -> Rc<Repr> {
debug!("Representing: {}", ty_to_string(cx.tcx(), t));
match cx.adt_reprs().borrow().find(&t) {
Some(repr) => return repr.clone(),
None => {}
}
let repr = Rc::new(represent_type_uncached(cx, t));
debug!("Represented as: {:?}", repr)
cx.adt_reprs().borrow_mut().insert(t, repr.clone());
repr
}
fn represent_type_uncached(cx: &CrateContext, t: ty::t) -> Repr {
match ty::get(t).sty {
ty::ty_tup(ref elems) => {
return Univariant(mk_struct(cx, elems.as_slice(), false), false)
}
ty::ty_struct(def_id, ref substs) => {
let fields = ty::lookup_struct_fields(cx.tcx(), def_id);
let mut ftys = fields.iter().map(|field| {
ty::lookup_field_type(cx.tcx(), def_id, field.id, substs)
}).collect::<Vec<_>>();
let packed = ty::lookup_packed(cx.tcx(), def_id);
let dtor = ty::ty_dtor(cx.tcx(), def_id).has_drop_flag();
if dtor { ftys.push(ty::mk_bool()); }
return Univariant(mk_struct(cx, ftys.as_slice(), packed), dtor)
}
ty::ty_unboxed_closure(def_id, _) => {
let upvars = ty::unboxed_closure_upvars(cx.tcx(), def_id);
let upvar_types = upvars.iter().map(|u| u.ty).collect::<Vec<_>>();
return Univariant(mk_struct(cx, upvar_types.as_slice(), false),
false)
}
ty::ty_enum(def_id, ref substs) => {
let cases = get_cases(cx.tcx(), def_id, substs);
let hint = *ty::lookup_repr_hints(cx.tcx(), def_id).as_slice().get(0)
.unwrap_or(&attr::ReprAny);
let dtor = ty::ty_dtor(cx.tcx(), def_id).has_drop_flag();
if cases.len() == 0 {
// Uninhabitable; represent as unit
// (Typechecking will reject discriminant-sizing attrs.)
assert_eq!(hint, attr::ReprAny);
let ftys = if dtor { vec!(ty::mk_bool()) } else { vec!() };
return Univariant(mk_struct(cx, ftys.as_slice(), false), dtor);
}
if !dtor && cases.iter().all(|c| c.tys.len() == 0) {
// All bodies empty -> intlike
let discrs: Vec<u64> = cases.iter().map(|c| c.discr).collect();
let bounds = IntBounds {
ulo: *discrs.iter().min().unwrap(),
uhi: *discrs.iter().max().unwrap(),
slo: discrs.iter().map(|n| *n as i64).min().unwrap(),
shi: discrs.iter().map(|n| *n as i64).max().unwrap()
};
return mk_cenum(cx, hint, &bounds);
}
// Since there's at least one
// non-empty body, explicit discriminants should have
// been rejected by a checker before this point.
if !cases.iter().enumerate().all(|(i,c)| c.discr == (i as Disr)) {
cx.sess().bug(format!("non-C-like enum {} with specified \
discriminants",
ty::item_path_str(cx.tcx(),
def_id)).as_slice());
}
if cases.len() == 1 {
// Equivalent to a struct/tuple/newtype.
// (Typechecking will reject discriminant-sizing attrs.)
assert_eq!(hint, attr::ReprAny);
let mut ftys = cases.get(0).tys.clone();
if dtor { ftys.push(ty::mk_bool()); }
return Univariant(mk_struct(cx, ftys.as_slice(), false), dtor);
}
if !dtor && cases.len() == 2 && hint == attr::ReprAny {
// Nullable pointer optimization
let mut discr = 0;
while discr < 2 {
if cases.get(1 - discr).is_zerolen(cx) {
let st = mk_struct(cx, cases.get(discr).tys.as_slice(), false);
match cases.get(discr).find_ptr() {
Some(ThinPointer(_)) if st.fields.len() == 1 => {
return RawNullablePointer {
nndiscr: discr as Disr,
nnty: *st.fields.get(0),
nullfields: cases.get(1 - discr).tys.clone()
};
}
Some(ptrfield) => {
return StructWrappedNullablePointer {
nndiscr: discr as Disr,
nonnull: st,
ptrfield: ptrfield,
nullfields: cases.get(1 - discr).tys.clone()
};
}
None => { }
}
}
discr += 1;
}
}
// The general case.
assert!((cases.len() - 1) as i64 >= 0);
let bounds = IntBounds { ulo: 0, uhi: (cases.len() - 1) as u64,
slo: 0, shi: (cases.len() - 1) as i64 };
let ity = range_to_inttype(cx, hint, &bounds);
return General(ity, cases.iter().map(|c| {
let mut ftys = vec!(ty_of_inttype(ity)).append(c.tys.as_slice());
if dtor { ftys.push(ty::mk_bool()); }
mk_struct(cx, ftys.as_slice(), false)
}).collect(), dtor);
}
_ => cx.sess().bug(format!("adt::represent_type called on non-ADT type: {}",
ty_to_string(cx.tcx(), t)).as_slice())
}
}
// this should probably all be in ty
struct Case {
discr: Disr,
tys: Vec<ty::t>
}
#[deriving(Eq, PartialEq, Show)]
pub enum PointerField {
ThinPointer(uint),
FatPointer(uint, uint)
}
impl Case {
fn is_zerolen(&self, cx: &CrateContext) -> bool {
mk_struct(cx, self.tys.as_slice(), false).size == 0
}
fn find_ptr(&self) -> Option<PointerField> {
use back::abi::{fn_field_code, slice_elt_base, trt_field_box};
for (i, &ty) in self.tys.iter().enumerate() {
match ty::get(ty).sty {
// &T/&mut T could either be a thin or fat pointer depending on T
ty::ty_rptr(_, ty::mt { ty, .. }) => match ty::get(ty).sty {
// &[T] and &str are a pointer and length pair
ty::ty_vec(_, None) | ty::ty_str => return Some(FatPointer(i, slice_elt_base)),
// &Trait/&mut Trait are a pair of pointers: the actual object and a vtable
ty::ty_trait(..) => return Some(FatPointer(i, trt_field_box)),
// Any other &T/&mut T is just a pointer
_ => return Some(ThinPointer(i))
},
// Box<T> could either be a thin or fat pointer depending on T
ty::ty_uniq(t) => match ty::get(t).sty {
ty::ty_vec(_, None) => return Some(FatPointer(i, slice_elt_base)),
// Box<Trait> is a pair of pointers: the actual object and a vtable
ty::ty_trait(..) => return Some(FatPointer(i, trt_field_box)),
// Any other Box<T> is just a pointer
_ => return Some(ThinPointer(i))
},
// Gc<T> is just a pointer
ty::ty_box(..) => return Some(ThinPointer(i)),
// Functions are just pointers
ty::ty_bare_fn(..) => return Some(ThinPointer(i)),
// Closures are a pair of pointers: the code and environment
ty::ty_closure(..) => return Some(FatPointer(i, fn_field_code)),
// Anything else is not a pointer
_ => continue
}
}
None
}
}
fn get_cases(tcx: &ty::ctxt, def_id: ast::DefId, substs: &subst::Substs) -> Vec<Case> {
ty::enum_variants(tcx, def_id).iter().map(|vi| {
let arg_tys = vi.args.iter().map(|&raw_ty| {
raw_ty.subst(tcx, substs)
}).collect();
Case { discr: vi.disr_val, tys: arg_tys }
}).collect()
}
fn mk_struct(cx: &CrateContext, tys: &[ty::t], packed: bool) -> Struct {
if tys.iter().all(|&ty| ty::type_is_sized(cx.tcx(), ty)) {
let lltys = tys.iter().map(|&ty| type_of::sizing_type_of(cx, ty)).collect::<Vec<_>>();
let llty_rec = Type::struct_(cx, lltys.as_slice(), packed);
Struct {
size: machine::llsize_of_alloc(cx, llty_rec),
align: machine::llalign_of_min(cx, llty_rec),
sized: true,
packed: packed,
fields: Vec::from_slice(tys),
}
} else {
// Ignore any dynamically sized fields.
let lltys = tys.iter().filter(|&ty| ty::type_is_sized(cx.tcx(), *ty))
.map(|&ty| type_of::sizing_type_of(cx, ty)).collect::<Vec<_>>();
let llty_rec = Type::struct_(cx, lltys.as_slice(), packed);
Struct {
size: machine::llsize_of_alloc(cx, llty_rec),
align: machine::llalign_of_min(cx, llty_rec),
sized: false,
packed: packed,
fields: Vec::from_slice(tys),
}
}
}
struct IntBounds {
slo: i64,
shi: i64,
ulo: u64,
uhi: u64
}
fn mk_cenum(cx: &CrateContext, hint: Hint, bounds: &IntBounds) -> Repr {
let it = range_to_inttype(cx, hint, bounds);
match it {
attr::SignedInt(_) => CEnum(it, bounds.slo as Disr, bounds.shi as Disr),
attr::UnsignedInt(_) => CEnum(it, bounds.ulo, bounds.uhi)
}
}
fn range_to_inttype(cx: &CrateContext, hint: Hint, bounds: &IntBounds) -> IntType {
debug!("range_to_inttype: {:?} {:?}", hint, bounds);
// Lists of sizes to try. u64 is always allowed as a fallback.
static choose_shortest: &'static[IntType] = &[
attr::UnsignedInt(ast::TyU8), attr::SignedInt(ast::TyI8),
attr::UnsignedInt(ast::TyU16), attr::SignedInt(ast::TyI16),
attr::UnsignedInt(ast::TyU32), attr::SignedInt(ast::TyI32)];
static at_least_32: &'static[IntType] = &[
attr::UnsignedInt(ast::TyU32), attr::SignedInt(ast::TyI32)];
let attempts;
match hint {
attr::ReprInt(span, ity) => {
if !bounds_usable(cx, ity, bounds) {
cx.sess().span_bug(span, "representation hint insufficient for discriminant range")
}
return ity;
}
attr::ReprExtern => {
attempts = match cx.sess().targ_cfg.arch {
X86 | X86_64 => at_least_32,
// WARNING: the ARM EABI has two variants; the one corresponding to `at_least_32`
// appears to be used on Linux and NetBSD, but some systems may use the variant
// corresponding to `choose_shortest`. However, we don't run on those yet...?
Arm => at_least_32,
Mips => at_least_32,
Mipsel => at_least_32,
}
}
attr::ReprAny => {
attempts = choose_shortest;
},
attr::ReprPacked => {
cx.tcx().sess.bug("range_to_inttype: found ReprPacked on an enum");
}
}
for &ity in attempts.iter() {
if bounds_usable(cx, ity, bounds) {
return ity;
}
}
return attr::UnsignedInt(ast::TyU64);
}
pub fn ll_inttype(cx: &CrateContext, ity: IntType) -> Type {
match ity {
attr::SignedInt(t) => Type::int_from_ty(cx, t),
attr::UnsignedInt(t) => Type::uint_from_ty(cx, t)
}
}
fn bounds_usable(cx: &CrateContext, ity: IntType, bounds: &IntBounds) -> bool {
debug!("bounds_usable: {:?} {:?}", ity, bounds);
match ity {
attr::SignedInt(_) => {
let lllo = C_integral(ll_inttype(cx, ity), bounds.slo as u64, true);
let llhi = C_integral(ll_inttype(cx, ity), bounds.shi as u64, true);
bounds.slo == const_to_int(lllo) as i64 && bounds.shi == const_to_int(llhi) as i64
}
attr::UnsignedInt(_) => {
let lllo = C_integral(ll_inttype(cx, ity), bounds.ulo, false);
let llhi = C_integral(ll_inttype(cx, ity), bounds.uhi, false);
bounds.ulo == const_to_uint(lllo) as u64 && bounds.uhi == const_to_uint(llhi) as u64
}
}
}
pub fn ty_of_inttype(ity: IntType) -> ty::t {
match ity {
attr::SignedInt(t) => ty::mk_mach_int(t),
attr::UnsignedInt(t) => ty::mk_mach_uint(t)
}
}
/**
* LLVM-level types are a little complicated.
*
* C-like enums need to be actual ints, not wrapped in a struct,
* because that changes the ABI on some platforms (see issue #10308).
*
* For nominal types, in some cases, we need to use LLVM named structs
* and fill in the actual contents in a second pass to prevent
* unbounded recursion; see also the comments in `trans::type_of`.
*/
pub fn type_of(cx: &CrateContext, r: &Repr) -> Type {
generic_type_of(cx, r, None, false, false)
}
// Pass dst=true if the type you are passing is a DST. Yes, we could figure
// this out, but if you call this on an unsized type without realising it, you
// are going to get the wrong type (it will not include the unsized parts of it).
pub fn sizing_type_of(cx: &CrateContext, r: &Repr, dst: bool) -> Type {
generic_type_of(cx, r, None, true, dst)
}
pub fn incomplete_type_of(cx: &CrateContext, r: &Repr, name: &str) -> Type {
generic_type_of(cx, r, Some(name), false, false)
}
pub fn finish_type_of(cx: &CrateContext, r: &Repr, llty: &mut Type) {
match *r {
CEnum(..) | General(..) | RawNullablePointer { .. } => { }
Univariant(ref st, _) | StructWrappedNullablePointer { nonnull: ref st, .. } =>
llty.set_struct_body(struct_llfields(cx, st, false, false).as_slice(),
st.packed)
}
}
fn generic_type_of(cx: &CrateContext,
r: &Repr,
name: Option<&str>,
sizing: bool,
dst: bool) -> Type {
match *r {
CEnum(ity, _, _) => ll_inttype(cx, ity),
RawNullablePointer { nnty, .. } => type_of::sizing_type_of(cx, nnty),
Univariant(ref st, _) | StructWrappedNullablePointer { nonnull: ref st, .. } => {
match name {
None => {
Type::struct_(cx, struct_llfields(cx, st, sizing, dst).as_slice(),
st.packed)
}
Some(name) => { assert_eq!(sizing, false); Type::named_struct(cx, name) }
}
}
General(ity, ref sts, _) => {
// We need a representation that has:
// * The alignment of the most-aligned field
// * The size of the largest variant (rounded up to that alignment)
// * No alignment padding anywhere any variant has actual data
// (currently matters only for enums small enough to be immediate)
// * The discriminant in an obvious place.
//
// So we start with the discriminant, pad it up to the alignment with
// more of its own type, then use alignment-sized ints to get the rest
// of the size.
//
// FIXME #10604: this breaks when vector types are present.
let size = sts.iter().map(|st| st.size).max().unwrap();
let most_aligned = sts.iter().max_by(|st| st.align).unwrap();
let align = most_aligned.align;
let discr_ty = ll_inttype(cx, ity);
let discr_size = machine::llsize_of_alloc(cx, discr_ty) as u64;
let align_units = (size + align - 1) / align - 1;
let pad_ty = match align {
1 => Type::array(&Type::i8(cx), align_units),
2 => Type::array(&Type::i16(cx), align_units),
4 => Type::array(&Type::i32(cx), align_units),
8 if machine::llalign_of_min(cx, Type::i64(cx)) == 8 =>
Type::array(&Type::i64(cx), align_units),
a if a.count_ones() == 1 => Type::array(&Type::vector(&Type::i32(cx), a / 4),
align_units),
_ => fail!("unsupported enum alignment: {:?}", align)
};
assert_eq!(machine::llalign_of_min(cx, pad_ty) as u64, align);
assert_eq!(align % discr_size, 0);
let fields = vec!(discr_ty,
Type::array(&discr_ty, align / discr_size - 1),
pad_ty);
match name {
None => Type::struct_(cx, fields.as_slice(), false),
Some(name) => {
let mut llty = Type::named_struct(cx, name);
llty.set_struct_body(fields.as_slice(), false);
llty
}
}
}
}
}
fn struct_llfields(cx: &CrateContext, st: &Struct, sizing: bool, dst: bool) -> Vec<Type> {
if sizing {
st.fields.iter().filter(|&ty| !dst || ty::type_is_sized(cx.tcx(), *ty))
.map(|&ty| type_of::sizing_type_of(cx, ty)).collect()
} else {
st.fields.iter().map(|&ty| type_of::type_of(cx, ty)).collect()
}
}
/**
* Obtain a representation of the discriminant sufficient to translate
* destructuring; this may or may not involve the actual discriminant.
*
* This should ideally be less tightly tied to `_match`.
*/
pub fn trans_switch(bcx: Block, r: &Repr, scrutinee: ValueRef)
-> (_match::BranchKind, Option<ValueRef>) {
match *r {
CEnum(..) | General(..) |
RawNullablePointer { .. } | StructWrappedNullablePointer { .. } => {
(_match::Switch, Some(trans_get_discr(bcx, r, scrutinee, None)))
}
Univariant(..) => {
(_match::Single, None)
}
}
}
/// Obtain the actual discriminant of a value.
pub fn trans_get_discr(bcx: Block, r: &Repr, scrutinee: ValueRef, cast_to: Option<Type>)
-> ValueRef {
let signed;
let val;
match *r {
CEnum(ity, min, max) => {
val = load_discr(bcx, ity, scrutinee, min, max);
signed = ity.is_signed();
}
General(ity, ref cases, _) => {
let ptr = GEPi(bcx, scrutinee, [0, 0]);
val = load_discr(bcx, ity, ptr, 0, (cases.len() - 1) as Disr);
signed = ity.is_signed();
}
Univariant(..) => {
val = C_u8(bcx.ccx(), 0);
signed = false;
}
RawNullablePointer { nndiscr, nnty, .. } => {
let cmp = if nndiscr == 0 { IntEQ } else { IntNE };
let llptrty = type_of::sizing_type_of(bcx.ccx(), nnty);
val = ICmp(bcx, cmp, Load(bcx, scrutinee), C_null(llptrty));
signed = false;
}
StructWrappedNullablePointer { nndiscr, ptrfield, .. } => {
val = struct_wrapped_nullable_bitdiscr(bcx, nndiscr, ptrfield, scrutinee);
signed = false;
}
}
match cast_to {
None => val,
Some(llty) => if signed { SExt(bcx, val, llty) } else { ZExt(bcx, val, llty) }
}
}
fn struct_wrapped_nullable_bitdiscr(bcx: Block, nndiscr: Disr, ptrfield: PointerField,
scrutinee: ValueRef) -> ValueRef {
let llptrptr = match ptrfield {
ThinPointer(field) => GEPi(bcx, scrutinee, [0, field]),
FatPointer(field, pair) => GEPi(bcx, scrutinee, [0, field, pair])
};
let llptr = Load(bcx, llptrptr);
let cmp = if nndiscr == 0 { IntEQ } else { IntNE };
ICmp(bcx, cmp, llptr, C_null(val_ty(llptr)))
}
/// Helper for cases where the discriminant is simply loaded.
fn load_discr(bcx: Block, ity: IntType, ptr: ValueRef, min: Disr, max: Disr)
-> ValueRef {
let llty = ll_inttype(bcx.ccx(), ity);
assert_eq!(val_ty(ptr), llty.ptr_to());
let bits = machine::llbitsize_of_real(bcx.ccx(), llty);
assert!(bits <= 64);
let bits = bits as uint;
let mask = (-1u64 >> (64 - bits)) as Disr;
if (max + 1) & mask == min & mask {
// i.e., if the range is everything. The lo==hi case would be
// rejected by the LLVM verifier (it would mean either an
// empty set, which is impossible, or the entire range of the
// type, which is pointless).
Load(bcx, ptr)
} else {
// llvm::ConstantRange can deal with ranges that wrap around,
// so an overflow on (max + 1) is fine.
LoadRangeAssert(bcx, ptr, min as c_ulonglong,
(max + 1) as c_ulonglong,
/* signed: */ True)
}
}
/**
* Yield information about how to dispatch a case of the
* discriminant-like value returned by `trans_switch`.
*
* This should ideally be less tightly tied to `_match`.
*/
pub fn trans_case<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, r: &Repr, discr: Disr)
-> _match::OptResult<'blk, 'tcx> {
match *r {
CEnum(ity, _, _) => {
_match::SingleResult(Result::new(bcx, C_integral(ll_inttype(bcx.ccx(), ity),
discr as u64, true)))
}
General(ity, _, _) => {
_match::SingleResult(Result::new(bcx, C_integral(ll_inttype(bcx.ccx(), ity),
discr as u64, true)))
}
Univariant(..) => {
bcx.ccx().sess().bug("no cases for univariants or structs")
}
RawNullablePointer { .. } |
StructWrappedNullablePointer { .. } => {
assert!(discr == 0 || discr == 1);
_match::SingleResult(Result::new(bcx, C_bool(bcx.ccx(), discr != 0)))
}
}
}
/**
* Set the discriminant for a new value of the given case of the given
* representation.
*/
pub fn trans_set_discr(bcx: Block, r: &Repr, val: ValueRef, discr: Disr) {
match *r {
CEnum(ity, min, max) => {
assert_discr_in_range(ity, min, max, discr);
Store(bcx, C_integral(ll_inttype(bcx.ccx(), ity), discr as u64, true),
val)
}
General(ity, ref cases, dtor) => {
if dtor {
let ptr = trans_field_ptr(bcx, r, val, discr,
cases.get(discr as uint).fields.len() - 2);
Store(bcx, C_u8(bcx.ccx(), 1), ptr);
}
Store(bcx, C_integral(ll_inttype(bcx.ccx(), ity), discr as u64, true),
GEPi(bcx, val, [0, 0]))
}
Univariant(ref st, dtor) => {
assert_eq!(discr, 0);
if dtor {
Store(bcx, C_u8(bcx.ccx(), 1),
GEPi(bcx, val, [0, st.fields.len() - 1]));
}
}
RawNullablePointer { nndiscr, nnty, ..} => {
if discr != nndiscr {
let llptrty = type_of::sizing_type_of(bcx.ccx(), nnty);
Store(bcx, C_null(llptrty), val)
}
}
StructWrappedNullablePointer { nonnull: ref nonnull, nndiscr, ptrfield, .. } => {
if discr != nndiscr {
let (llptrptr, llptrty) = match ptrfield {
ThinPointer(field) =>
(GEPi(bcx, val, [0, field]),
type_of::type_of(bcx.ccx(), *nonnull.fields.get(field))),
FatPointer(field, pair) => {
let v = GEPi(bcx, val, [0, field, pair]);
(v, val_ty(v).element_type())
}
};
Store(bcx, C_null(llptrty), llptrptr)
}
}
}
}
fn assert_discr_in_range(ity: IntType, min: Disr, max: Disr, discr: Disr) {
match ity {
attr::UnsignedInt(_) => assert!(min <= discr && discr <= max),
attr::SignedInt(_) => assert!(min as i64 <= discr as i64 && discr as i64 <= max as i64)
}
}
/**
* The number of fields in a given case; for use when obtaining this
* information from the type or definition is less convenient.
*/
pub fn num_args(r: &Repr, discr: Disr) -> uint {
match *r {
CEnum(..) => 0,
Univariant(ref st, dtor) => {
assert_eq!(discr, 0);
st.fields.len() - (if dtor { 1 } else { 0 })
}
General(_, ref cases, dtor) => {
cases.get(discr as uint).fields.len() - 1 - (if dtor { 1 } else { 0 })
}
RawNullablePointer { nndiscr, ref nullfields, .. } => {
if discr == nndiscr { 1 } else { nullfields.len() }
}
StructWrappedNullablePointer { nonnull: ref nonnull, nndiscr,
nullfields: ref nullfields, .. } => {
if discr == nndiscr { nonnull.fields.len() } else { nullfields.len() }
}
}
}
/// Access a field, at a point when the value's case is known.
pub fn trans_field_ptr(bcx: Block, r: &Repr, val: ValueRef, discr: Disr,
ix: uint) -> ValueRef {
// Note: if this ever needs to generate conditionals (e.g., if we
// decide to do some kind of cdr-coding-like non-unique repr
// someday), it will need to return a possibly-new bcx as well.
match *r {
CEnum(..) => {
bcx.ccx().sess().bug("element access in C-like enum")
}
Univariant(ref st, _dtor) => {
assert_eq!(discr, 0);
struct_field_ptr(bcx, st, val, ix, false)
}
General(_, ref cases, _) => {
struct_field_ptr(bcx, cases.get(discr as uint), val, ix + 1, true)
}
RawNullablePointer { nndiscr, ref nullfields, .. } |
StructWrappedNullablePointer { nndiscr, ref nullfields, .. } if discr != nndiscr => {
// The unit-like case might have a nonzero number of unit-like fields.
// (e.d., Result of Either with (), as one side.)
let ty = type_of::type_of(bcx.ccx(), *nullfields.get(ix));
assert_eq!(machine::llsize_of_alloc(bcx.ccx(), ty), 0);
// The contents of memory at this pointer can't matter, but use
// the value that's "reasonable" in case of pointer comparison.
PointerCast(bcx, val, ty.ptr_to())
}
RawNullablePointer { nndiscr, nnty, .. } => {
assert_eq!(ix, 0);
assert_eq!(discr, nndiscr);
let ty = type_of::type_of(bcx.ccx(), nnty);
PointerCast(bcx, val, ty.ptr_to())
}
StructWrappedNullablePointer { ref nonnull, nndiscr, .. } => {
assert_eq!(discr, nndiscr);
struct_field_ptr(bcx, nonnull, val, ix, false)
}
}
}
pub fn struct_field_ptr(bcx: Block, st: &Struct, val: ValueRef,
ix: uint, needs_cast: bool) -> ValueRef {
let val = if needs_cast {
let ccx = bcx.ccx();
let fields = st.fields.iter().map(|&ty| type_of::type_of(ccx, ty)).collect::<Vec<_>>();
let real_ty = Type::struct_(ccx, fields.as_slice(), st.packed);
PointerCast(bcx, val, real_ty.ptr_to())
} else {
val
};
GEPi(bcx, val, [0, ix])
}
pub fn fold_variants<'blk, 'tcx>(
bcx: Block<'blk, 'tcx>, r: &Repr, value: ValueRef,
f: |Block<'blk, 'tcx>, &Struct, ValueRef| -> Block<'blk, 'tcx>)
-> Block<'blk, 'tcx> {
let fcx = bcx.fcx;
match *r {
Univariant(ref st, _) => {
f(bcx, st, value)
}
General(ity, ref cases, _) => {
let ccx = bcx.ccx();
let unr_cx = fcx.new_temp_block("enum-variant-iter-unr");
Unreachable(unr_cx);
let discr_val = trans_get_discr(bcx, r, value, None);
let llswitch = Switch(bcx, discr_val, unr_cx.llbb, cases.len());
let bcx_next = fcx.new_temp_block("enum-variant-iter-next");
for (discr, case) in cases.iter().enumerate() {
let mut variant_cx = fcx.new_temp_block(
format!("enum-variant-iter-{}", discr.to_string()).as_slice()
);
let rhs_val = C_integral(ll_inttype(ccx, ity), discr as u64, true);
AddCase(llswitch, rhs_val, variant_cx.llbb);
let fields = case.fields.iter().map(|&ty|
type_of::type_of(bcx.ccx(), ty)).collect::<Vec<_>>();
let real_ty = Type::struct_(ccx, fields.as_slice(), case.packed);
let variant_value = PointerCast(variant_cx, value, real_ty.ptr_to());
variant_cx = f(variant_cx, case, variant_value);
Br(variant_cx, bcx_next.llbb);
}
bcx_next
}
_ => unreachable!()
}
}
/// Access the struct drop flag, if present.
pub fn trans_drop_flag_ptr<'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>, r: &Repr, val: ValueRef)
-> datum::DatumBlock<'blk, 'tcx, datum::Expr> {
let ptr_ty = ty::mk_imm_ptr(bcx.tcx(), ty::mk_bool());
match *r {
Univariant(ref st, true) => {
let flag_ptr = GEPi(bcx, val, [0, st.fields.len() - 1]);
datum::immediate_rvalue_bcx(bcx, flag_ptr, ptr_ty).to_expr_datumblock()
}
General(_, _, true) => {
let fcx = bcx.fcx;
let custom_cleanup_scope = fcx.push_custom_cleanup_scope();
let scratch = unpack_datum!(bcx, datum::lvalue_scratch_datum(
bcx, ty::mk_bool(), "drop_flag", false,
cleanup::CustomScope(custom_cleanup_scope), (), |_, bcx, _| bcx
));
bcx = fold_variants(bcx, r, val, |variant_cx, st, value| {
let ptr = struct_field_ptr(variant_cx, st, value, (st.fields.len() - 1), false);
datum::Datum::new(ptr, ptr_ty, datum::Rvalue::new(datum::ByRef))
.store_to(variant_cx, scratch.val)
});
let expr_datum = scratch.to_expr_datum();
fcx.pop_custom_cleanup_scope(custom_cleanup_scope);
datum::DatumBlock::new(bcx, expr_datum)
}
_ => bcx.ccx().sess().bug("tried to get drop flag of non-droppable type")
}
}
/**
* Construct a constant value, suitable for initializing a
* GlobalVariable, given a case and constant values for its fields.
* Note that this may have a different LLVM type (and different
* alignment!) from the representation's `type_of`, so it needs a
* pointer cast before use.
*
* The LLVM type system does not directly support unions, and only
* pointers can be bitcast, so a constant (and, by extension, the
* GlobalVariable initialized by it) will have a type that can vary
* depending on which case of an enum it is.
*
* To understand the alignment situation, consider `enum E { V64(u64),
* V32(u32, u32) }` on Windows. The type has 8-byte alignment to
* accommodate the u64, but `V32(x, y)` would have LLVM type `{i32,
* i32, i32}`, which is 4-byte aligned.
*
* Currently the returned value has the same size as the type, but
* this could be changed in the future to avoid allocating unnecessary
* space after values of shorter-than-maximum cases.
*/
pub fn trans_const(ccx: &CrateContext, r: &Repr, discr: Disr,
vals: &[ValueRef]) -> ValueRef {
match *r {
CEnum(ity, min, max) => {
assert_eq!(vals.len(), 0);
assert_discr_in_range(ity, min, max, discr);
C_integral(ll_inttype(ccx, ity), discr as u64, true)
}
General(ity, ref cases, _) => {
let case = cases.get(discr as uint);
let max_sz = cases.iter().map(|x| x.size).max().unwrap();
let lldiscr = C_integral(ll_inttype(ccx, ity), discr as u64, true);
let contents = build_const_struct(ccx,
case,
(vec!(lldiscr)).append(vals).as_slice());
C_struct(ccx, contents.append([padding(ccx, max_sz - case.size)]).as_slice(),
false)
}
Univariant(ref st, _dro) => {
assert!(discr == 0);
let contents = build_const_struct(ccx, st, vals);
C_struct(ccx, contents.as_slice(), st.packed)
}
RawNullablePointer { nndiscr, nnty, .. } => {
if discr == nndiscr {
assert_eq!(vals.len(), 1);
vals[0]
} else {
C_null(type_of::sizing_type_of(ccx, nnty))
}
}
StructWrappedNullablePointer { nonnull: ref nonnull, nndiscr, .. } => {
if discr == nndiscr {
C_struct(ccx, build_const_struct(ccx,
nonnull,
vals).as_slice(),
false)
} else {
let vals = nonnull.fields.iter().map(|&ty| {
// Always use null even if it's not the `ptrfield`th
// field; see #8506.
C_null(type_of::sizing_type_of(ccx, ty))
}).collect::<Vec<ValueRef>>();
C_struct(ccx, build_const_struct(ccx,
nonnull,
vals.as_slice()).as_slice(),
false)
}
}
}
}
/**
* Compute struct field offsets relative to struct begin.
*/
fn compute_struct_field_offsets(ccx: &CrateContext, st: &Struct) -> Vec<u64> {
let mut offsets = vec!();
let mut offset = 0;
for &ty in st.fields.iter() {
let llty = type_of::sizing_type_of(ccx, ty);
if !st.packed {
let type_align = type_of::align_of(ccx, ty) as u64;
offset = roundup(offset, type_align);
}
offsets.push(offset);
offset += machine::llsize_of_alloc(ccx, llty) as u64;
}
assert_eq!(st.fields.len(), offsets.len());
offsets
}
/**
* Building structs is a little complicated, because we might need to
* insert padding if a field's value is less aligned than its type.
*
* Continuing the example from `trans_const`, a value of type `(u32,
* E)` should have the `E` at offset 8, but if that field's
* initializer is 4-byte aligned then simply translating the tuple as
* a two-element struct will locate it at offset 4, and accesses to it
* will read the wrong memory.
*/
fn build_const_struct(ccx: &CrateContext, st: &Struct, vals: &[ValueRef])
-> Vec<ValueRef> {
assert_eq!(vals.len(), st.fields.len());
let target_offsets = compute_struct_field_offsets(ccx, st);
// offset of current value
let mut offset = 0;
let mut cfields = Vec::new();
for (&val, &target_offset) in vals.iter().zip(target_offsets.iter()) {
if !st.packed {
let val_align = machine::llalign_of_min(ccx, val_ty(val))
/*bad*/as u64;
offset = roundup(offset, val_align);
}
if offset != target_offset {
cfields.push(padding(ccx, target_offset - offset));
offset = target_offset;
}
assert!(!is_undef(val));
cfields.push(val);
offset += machine::llsize_of_alloc(ccx, val_ty(val)) as u64;
}
assert!(st.sized && offset <= st.size);
if offset != st.size {
cfields.push(padding(ccx, st.size - offset));
}
cfields
}
fn padding(ccx: &CrateContext, size: u64) -> ValueRef {
C_undef(Type::array(&Type::i8(ccx), size))
}
// FIXME this utility routine should be somewhere more general
#[inline]
fn roundup(x: u64, a: u64) -> u64 { ((x + (a - 1)) / a) * a }
/// Get the discriminant of a constant value. (Not currently used.)
pub fn const_get_discrim(ccx: &CrateContext, r: &Repr, val: ValueRef)
-> Disr {
match *r {
CEnum(ity, _, _) => {
match ity {
attr::SignedInt(..) => const_to_int(val) as Disr,
attr::UnsignedInt(..) => const_to_uint(val) as Disr
}
}
General(ity, _, _) => {
match ity {
attr::SignedInt(..) => const_to_int(const_get_elt(ccx, val, [0])) as Disr,
attr::UnsignedInt(..) => const_to_uint(const_get_elt(ccx, val, [0])) as Disr
}
}
Univariant(..) => 0,
RawNullablePointer { nndiscr, .. } => {
if is_null(val) {
/* subtraction as uint is ok because nndiscr is either 0 or 1 */
(1 - nndiscr) as Disr
} else {
nndiscr
}
}
StructWrappedNullablePointer { nndiscr, ptrfield, .. } => {
let (idx, sub_idx) = match ptrfield {
ThinPointer(field) => (field, None),
FatPointer(field, pair) => (field, Some(pair))
};
if is_null(const_struct_field(ccx, val, idx, sub_idx)) {
/* subtraction as uint is ok because nndiscr is either 0 or 1 */
(1 - nndiscr) as Disr
} else {
nndiscr
}
}
}
}
/**
* Extract a field of a constant value, as appropriate for its
* representation.
*
* (Not to be confused with `common::const_get_elt`, which operates on
* raw LLVM-level structs and arrays.)
*/
pub fn const_get_field(ccx: &CrateContext, r: &Repr, val: ValueRef,
_discr: Disr, ix: uint) -> ValueRef {
match *r {
CEnum(..) => ccx.sess().bug("element access in C-like enum const"),
Univariant(..) => const_struct_field(ccx, val, ix, None),
General(..) => const_struct_field(ccx, val, ix + 1, None),
RawNullablePointer { .. } => {
assert_eq!(ix, 0);
val
}
StructWrappedNullablePointer{ .. } => const_struct_field(ccx, val, ix, None)
}
}
/// Extract field of struct-like const, skipping our alignment padding.
fn const_struct_field(ccx: &CrateContext, val: ValueRef, ix: uint, sub_idx: Option<uint>)
-> ValueRef {
// Get the ix-th non-undef element of the struct.
let mut real_ix = 0; // actual position in the struct
let mut ix = ix; // logical index relative to real_ix
let mut field;
loop {
loop {
field = match sub_idx {
Some(si) => const_get_elt(ccx, val, [real_ix, si as u32]),
None => const_get_elt(ccx, val, [real_ix])
};
if !is_undef(field) {
break;
}
real_ix = real_ix + 1;
}
if ix == 0 {
return field;
}
ix = ix - 1;
real_ix = real_ix + 1;
}
}