2015-08-15 18:09:17 -07:00

1118 lines
36 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A dynamically-sized view into a contiguous sequence, `[T]`.
//!
//! Slices are a view into a block of memory represented as a pointer and a
//! length.
//!
//! ```
//! // slicing a Vec
//! let vec = vec![1, 2, 3];
//! let int_slice = &vec[..];
//! // coercing an array to a slice
//! let str_slice: &[&str] = &["one", "two", "three"];
//! ```
//!
//! Slices are either mutable or shared. The shared slice type is `&[T]`,
//! while the mutable slice type is `&mut [T]`, where `T` represents the element
//! type. For example, you can mutate the block of memory that a mutable slice
//! points to:
//!
//! ```
//! let x = &mut [1, 2, 3];
//! x[1] = 7;
//! assert_eq!(x, &[1, 7, 3]);
//! ```
//!
//! Here are some of the things this module contains:
//!
//! ## Structs
//!
//! There are several structs that are useful for slices, such as `Iter`, which
//! represents iteration over a slice.
//!
//! ## Trait Implementations
//!
//! There are several implementations of common traits for slices. Some examples
//! include:
//!
//! * `Clone`
//! * `Eq`, `Ord` - for slices whose element type are `Eq` or `Ord`.
//! * `Hash` - for slices whose element type is `Hash`
//!
//! ## Iteration
//!
//! The slices implement `IntoIterator`. The iterator yields references to the
//! slice elements.
//!
//! ```
//! let numbers = &[0, 1, 2];
//! for n in numbers {
//! println!("{} is a number!", n);
//! }
//! ```
//!
//! The mutable slice yields mutable references to the elements:
//!
//! ```
//! let mut scores = [7, 8, 9];
//! for score in &mut scores[..] {
//! *score += 1;
//! }
//! ```
//!
//! This iterator yields mutable references to the slice's elements, so while
//! the element type of the slice is `i32`, the element type of the iterator is
//! `&mut i32`.
//!
//! * `.iter()` and `.iter_mut()` are the explicit methods to return the default
//! iterators.
//! * Further methods that return iterators are `.split()`, `.splitn()`,
//! `.chunks()`, `.windows()` and more.
//!
//! *[See also the slice primitive type](../primitive.slice.html).*
#![stable(feature = "rust1", since = "1.0.0")]
// Many of the usings in this module are only used in the test configuration.
// It's cleaner to just turn off the unused_imports warning than to fix them.
#![allow(unused_imports)]
use alloc::boxed::Box;
use core::clone::Clone;
use core::cmp::Ordering::{self, Greater, Less};
use core::cmp::{self, Ord, PartialEq};
use core::iter::Iterator;
use core::marker::Sized;
use core::mem::size_of;
use core::mem;
use core::ops::FnMut;
use core::option::Option::{self, Some, None};
use core::ptr;
use core::result::Result;
use core::slice as core_slice;
use borrow::{Borrow, BorrowMut, ToOwned};
use vec::Vec;
pub use core::slice::{Chunks, Windows};
pub use core::slice::{Iter, IterMut};
pub use core::slice::{SplitMut, ChunksMut, Split};
pub use core::slice::{SplitN, RSplitN, SplitNMut, RSplitNMut};
pub use core::slice::{bytes, mut_ref_slice, ref_slice};
pub use core::slice::{from_raw_parts, from_raw_parts_mut};
////////////////////////////////////////////////////////////////////////////////
// Basic slice extension methods
////////////////////////////////////////////////////////////////////////////////
// HACK(japaric) needed for the implementation of `vec!` macro during testing
// NB see the hack module in this file for more details
#[cfg(test)]
pub use self::hack::into_vec;
// HACK(japaric) needed for the implementation of `Vec::clone` during testing
// NB see the hack module in this file for more details
#[cfg(test)]
pub use self::hack::to_vec;
// HACK(japaric): With cfg(test) `impl [T]` is not available, these three
// functions are actually methods that are in `impl [T]` but not in
// `core::slice::SliceExt` - we need to supply these functions for the
// `test_permutations` test
mod hack {
use alloc::boxed::Box;
use core::clone::Clone;
#[cfg(test)]
use core::iter::Iterator;
use core::mem;
#[cfg(test)]
use core::option::Option::{Some, None};
#[cfg(test)]
use string::ToString;
use vec::Vec;
pub fn into_vec<T>(mut b: Box<[T]>) -> Vec<T> {
unsafe {
let xs = Vec::from_raw_parts(b.as_mut_ptr(), b.len(), b.len());
mem::forget(b);
xs
}
}
#[inline]
pub fn to_vec<T>(s: &[T]) -> Vec<T> where T: Clone {
let mut vector = Vec::with_capacity(s.len());
vector.push_all(s);
vector
}
}
/// Allocating extension methods for slices.
#[lang = "slice"]
#[cfg(not(test))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> [T] {
/// Returns the number of elements in the slice.
///
/// # Example
///
/// ```
/// let a = [1, 2, 3];
/// assert_eq!(a.len(), 3);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn len(&self) -> usize {
core_slice::SliceExt::len(self)
}
/// Returns true if the slice has a length of 0
///
/// # Example
///
/// ```
/// let a = [1, 2, 3];
/// assert!(!a.is_empty());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn is_empty(&self) -> bool {
core_slice::SliceExt::is_empty(self)
}
/// Returns the first element of a slice, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// let v = [10, 40, 30];
/// assert_eq!(Some(&10), v.first());
///
/// let w: &[i32] = &[];
/// assert_eq!(None, w.first());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn first(&self) -> Option<&T> {
core_slice::SliceExt::first(self)
}
/// Returns a mutable pointer to the first element of a slice, or `None` if it is empty
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn first_mut(&mut self) -> Option<&mut T> {
core_slice::SliceExt::first_mut(self)
}
/// Returns the first and all the rest of the elements of a slice.
#[unstable(feature = "slice_splits", reason = "new API", issue = "27742")]
#[inline]
pub fn split_first(&self) -> Option<(&T, &[T])> {
core_slice::SliceExt::split_first(self)
}
/// Returns the first and all the rest of the elements of a slice.
#[unstable(feature = "slice_splits", reason = "new API", issue = "27742")]
#[inline]
pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
core_slice::SliceExt::split_first_mut(self)
}
/// Returns the last and all the rest of the elements of a slice.
#[unstable(feature = "slice_splits", reason = "new API", issue = "27742")]
#[inline]
pub fn split_last(&self) -> Option<(&T, &[T])> {
core_slice::SliceExt::split_last(self)
}
/// Returns the last and all the rest of the elements of a slice.
#[unstable(feature = "slice_splits", reason = "new API", issue = "27742")]
#[inline]
pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
core_slice::SliceExt::split_last_mut(self)
}
/// Returns the last element of a slice, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// let v = [10, 40, 30];
/// assert_eq!(Some(&30), v.last());
///
/// let w: &[i32] = &[];
/// assert_eq!(None, w.last());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn last(&self) -> Option<&T> {
core_slice::SliceExt::last(self)
}
/// Returns a mutable pointer to the last item in the slice.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn last_mut(&mut self) -> Option<&mut T> {
core_slice::SliceExt::last_mut(self)
}
/// Returns the element of a slice at the given index, or `None` if the
/// index is out of bounds.
///
/// # Examples
///
/// ```
/// let v = [10, 40, 30];
/// assert_eq!(Some(&40), v.get(1));
/// assert_eq!(None, v.get(3));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn get(&self, index: usize) -> Option<&T> {
core_slice::SliceExt::get(self, index)
}
/// Returns a mutable reference to the element at the given index,
/// or `None` if the index is out of bounds
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn get_mut(&mut self, index: usize) -> Option<&mut T> {
core_slice::SliceExt::get_mut(self, index)
}
/// Returns a pointer to the element at the given index, without doing
/// bounds checking.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub unsafe fn get_unchecked(&self, index: usize) -> &T {
core_slice::SliceExt::get_unchecked(self, index)
}
/// Returns an unsafe mutable pointer to the element in index
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T {
core_slice::SliceExt::get_unchecked_mut(self, index)
}
/// Returns an raw pointer to the slice's buffer
///
/// The caller must ensure that the slice outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
///
/// Modifying the slice may cause its buffer to be reallocated, which
/// would also make any pointers to it invalid.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn as_ptr(&self) -> *const T {
core_slice::SliceExt::as_ptr(self)
}
/// Returns an unsafe mutable pointer to the slice's buffer.
///
/// The caller must ensure that the slice outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
///
/// Modifying the slice may cause its buffer to be reallocated, which
/// would also make any pointers to it invalid.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut T {
core_slice::SliceExt::as_mut_ptr(self)
}
/// Swaps two elements in a slice.
///
/// # Arguments
///
/// * a - The index of the first element
/// * b - The index of the second element
///
/// # Panics
///
/// Panics if `a` or `b` are out of bounds.
///
/// # Example
///
/// ```rust
/// let mut v = ["a", "b", "c", "d"];
/// v.swap(1, 3);
/// assert!(v == ["a", "d", "c", "b"]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn swap(&mut self, a: usize, b: usize) {
core_slice::SliceExt::swap(self, a, b)
}
/// Reverse the order of elements in a slice, in place.
///
/// # Example
///
/// ```rust
/// let mut v = [1, 2, 3];
/// v.reverse();
/// assert!(v == [3, 2, 1]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn reverse(&mut self) {
core_slice::SliceExt::reverse(self)
}
/// Returns an iterator over the slice.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn iter(&self) -> Iter<T> {
core_slice::SliceExt::iter(self)
}
/// Returns an iterator that allows modifying each value
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn iter_mut(&mut self) -> IterMut<T> {
core_slice::SliceExt::iter_mut(self)
}
/// Returns an iterator over all contiguous windows of length
/// `size`. The windows overlap. If the slice is shorter than
/// `size`, the iterator returns no values.
///
/// # Panics
///
/// Panics if `size` is 0.
///
/// # Example
///
/// Print the adjacent pairs of a slice (i.e. `[1,2]`, `[2,3]`,
/// `[3,4]`):
///
/// ```rust
/// let v = &[1, 2, 3, 4];
/// for win in v.windows(2) {
/// println!("{:?}", win);
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn windows(&self, size: usize) -> Windows<T> {
core_slice::SliceExt::windows(self, size)
}
/// Returns an iterator over `size` elements of the slice at a
/// time. The chunks do not overlap. If `size` does not divide the
/// length of the slice, then the last chunk will not have length
/// `size`.
///
/// # Panics
///
/// Panics if `size` is 0.
///
/// # Example
///
/// Print the slice two elements at a time (i.e. `[1,2]`,
/// `[3,4]`, `[5]`):
///
/// ```rust
/// let v = &[1, 2, 3, 4, 5];
/// for win in v.chunks(2) {
/// println!("{:?}", win);
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn chunks(&self, size: usize) -> Chunks<T> {
core_slice::SliceExt::chunks(self, size)
}
/// Returns an iterator over `chunk_size` elements of the slice at a time.
/// The chunks are mutable and do not overlap. If `chunk_size` does
/// not divide the length of the slice, then the last chunk will not
/// have length `chunk_size`.
///
/// # Panics
///
/// Panics if `chunk_size` is 0.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T> {
core_slice::SliceExt::chunks_mut(self, chunk_size)
}
/// Divides one slice into two at an index.
///
/// The first will contain all indices from `[0, mid)` (excluding
/// the index `mid` itself) and the second will contain all
/// indices from `[mid, len)` (excluding the index `len` itself).
///
/// Panics if `mid > len`.
///
/// # Examples
///
/// ```
/// let v = [10, 40, 30, 20, 50];
/// let (v1, v2) = v.split_at(2);
/// assert_eq!([10, 40], v1);
/// assert_eq!([30, 20, 50], v2);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn split_at(&self, mid: usize) -> (&[T], &[T]) {
core_slice::SliceExt::split_at(self, mid)
}
/// Divides one `&mut` into two at an index.
///
/// The first will contain all indices from `[0, mid)` (excluding
/// the index `mid` itself) and the second will contain all
/// indices from `[mid, len)` (excluding the index `len` itself).
///
/// # Panics
///
/// Panics if `mid > len`.
///
/// # Example
///
/// ```rust
/// let mut v = [1, 2, 3, 4, 5, 6];
///
/// // scoped to restrict the lifetime of the borrows
/// {
/// let (left, right) = v.split_at_mut(0);
/// assert!(left == []);
/// assert!(right == [1, 2, 3, 4, 5, 6]);
/// }
///
/// {
/// let (left, right) = v.split_at_mut(2);
/// assert!(left == [1, 2]);
/// assert!(right == [3, 4, 5, 6]);
/// }
///
/// {
/// let (left, right) = v.split_at_mut(6);
/// assert!(left == [1, 2, 3, 4, 5, 6]);
/// assert!(right == []);
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
core_slice::SliceExt::split_at_mut(self, mid)
}
/// Returns an iterator over subslices separated by elements that match
/// `pred`. The matched element is not contained in the subslices.
///
/// # Examples
///
/// Print the slice split by numbers divisible by 3 (i.e. `[10, 40]`,
/// `[20]`, `[50]`):
///
/// ```
/// let v = [10, 40, 30, 20, 60, 50];
/// for group in v.split(|num| *num % 3 == 0) {
/// println!("{:?}", group);
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn split<F>(&self, pred: F) -> Split<T, F> where F: FnMut(&T) -> bool {
core_slice::SliceExt::split(self, pred)
}
/// Returns an iterator over mutable subslices separated by elements that
/// match `pred`. The matched element is not contained in the subslices.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where F: FnMut(&T) -> bool {
core_slice::SliceExt::split_mut(self, pred)
}
/// Returns an iterator over subslices separated by elements that match
/// `pred`, limited to returning at most `n` items. The matched element is
/// not contained in the subslices.
///
/// The last element returned, if any, will contain the remainder of the
/// slice.
///
/// # Examples
///
/// Print the slice split once by numbers divisible by 3 (i.e. `[10, 40]`,
/// `[20, 60, 50]`):
///
/// ```
/// let v = [10, 40, 30, 20, 60, 50];
/// for group in v.splitn(2, |num| *num % 3 == 0) {
/// println!("{:?}", group);
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where F: FnMut(&T) -> bool {
core_slice::SliceExt::splitn(self, n, pred)
}
/// Returns an iterator over subslices separated by elements that match
/// `pred`, limited to returning at most `n` items. The matched element is
/// not contained in the subslices.
///
/// The last element returned, if any, will contain the remainder of the
/// slice.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F>
where F: FnMut(&T) -> bool {
core_slice::SliceExt::splitn_mut(self, n, pred)
}
/// Returns an iterator over subslices separated by elements that match
/// `pred` limited to returning at most `n` items. This starts at the end of
/// the slice and works backwards. The matched element is not contained in
/// the subslices.
///
/// The last element returned, if any, will contain the remainder of the
/// slice.
///
/// # Examples
///
/// Print the slice split once, starting from the end, by numbers divisible
/// by 3 (i.e. `[50]`, `[10, 40, 30, 20]`):
///
/// ```
/// let v = [10, 40, 30, 20, 60, 50];
/// for group in v.rsplitn(2, |num| *num % 3 == 0) {
/// println!("{:?}", group);
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where F: FnMut(&T) -> bool {
core_slice::SliceExt::rsplitn(self, n, pred)
}
/// Returns an iterator over subslices separated by elements that match
/// `pred` limited to returning at most `n` items. This starts at the end of
/// the slice and works backwards. The matched element is not contained in
/// the subslices.
///
/// The last element returned, if any, will contain the remainder of the
/// slice.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F>
where F: FnMut(&T) -> bool {
core_slice::SliceExt::rsplitn_mut(self, n, pred)
}
/// Returns true if the slice contains an element with the given value.
///
/// # Examples
///
/// ```
/// let v = [10, 40, 30];
/// assert!(v.contains(&30));
/// assert!(!v.contains(&50));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn contains(&self, x: &T) -> bool where T: PartialEq {
core_slice::SliceExt::contains(self, x)
}
/// Returns true if `needle` is a prefix of the slice.
///
/// # Examples
///
/// ```
/// let v = [10, 40, 30];
/// assert!(v.starts_with(&[10]));
/// assert!(v.starts_with(&[10, 40]));
/// assert!(!v.starts_with(&[50]));
/// assert!(!v.starts_with(&[10, 50]));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq {
core_slice::SliceExt::starts_with(self, needle)
}
/// Returns true if `needle` is a suffix of the slice.
///
/// # Examples
///
/// ```
/// let v = [10, 40, 30];
/// assert!(v.ends_with(&[30]));
/// assert!(v.ends_with(&[40, 30]));
/// assert!(!v.ends_with(&[50]));
/// assert!(!v.ends_with(&[50, 30]));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq {
core_slice::SliceExt::ends_with(self, needle)
}
/// Binary search a sorted slice for a given element.
///
/// If the value is found then `Ok` is returned, containing the
/// index of the matching element; if the value is not found then
/// `Err` is returned, containing the index where a matching
/// element could be inserted while maintaining sorted order.
///
/// # Example
///
/// Looks up a series of four elements. The first is found, with a
/// uniquely determined position; the second and third are not
/// found; the fourth could match any position in `[1,4]`.
///
/// ```rust
/// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
///
/// assert_eq!(s.binary_search(&13), Ok(9));
/// assert_eq!(s.binary_search(&4), Err(7));
/// assert_eq!(s.binary_search(&100), Err(13));
/// let r = s.binary_search(&1);
/// assert!(match r { Ok(1...4) => true, _ => false, });
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn binary_search(&self, x: &T) -> Result<usize, usize> where T: Ord {
core_slice::SliceExt::binary_search(self, x)
}
/// Binary search a sorted slice with a comparator function.
///
/// The comparator function should implement an order consistent
/// with the sort order of the underlying slice, returning an
/// order code that indicates whether its argument is `Less`,
/// `Equal` or `Greater` the desired target.
///
/// If a matching value is found then returns `Ok`, containing
/// the index for the matched element; if no match is found then
/// `Err` is returned, containing the index where a matching
/// element could be inserted while maintaining sorted order.
///
/// # Example
///
/// Looks up a series of four elements. The first is found, with a
/// uniquely determined position; the second and third are not
/// found; the fourth could match any position in `[1,4]`.
///
/// ```rust
/// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
///
/// let seek = 13;
/// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
/// let seek = 4;
/// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
/// let seek = 100;
/// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
/// let seek = 1;
/// let r = s.binary_search_by(|probe| probe.cmp(&seek));
/// assert!(match r { Ok(1...4) => true, _ => false, });
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn binary_search_by<F>(&self, f: F) -> Result<usize, usize> where F: FnMut(&T) -> Ordering {
core_slice::SliceExt::binary_search_by(self, f)
}
/// Sorts the slice, in place.
///
/// This is equivalent to `self.sort_by(|a, b| a.cmp(b))`.
///
/// # Examples
///
/// ```rust
/// let mut v = [-5, 4, 1, -3, 2];
///
/// v.sort();
/// assert!(v == [-5, -3, 1, 2, 4]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn sort(&mut self) where T: Ord {
self.sort_by(|a, b| a.cmp(b))
}
/// Sorts the slice, in place, using `compare` to compare
/// elements.
///
/// This sort is `O(n log n)` worst-case and stable, but allocates
/// approximately `2 * n`, where `n` is the length of `self`.
///
/// # Examples
///
/// ```rust
/// let mut v = [5, 4, 1, 3, 2];
/// v.sort_by(|a, b| a.cmp(b));
/// assert!(v == [1, 2, 3, 4, 5]);
///
/// // reverse sorting
/// v.sort_by(|a, b| b.cmp(a));
/// assert!(v == [5, 4, 3, 2, 1]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn sort_by<F>(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering {
merge_sort(self, compare)
}
/// Copies as many elements from `src` as it can into `self` (the
/// shorter of `self.len()` and `src.len()`). Returns the number
/// of elements copied.
///
/// # Example
///
/// ```rust
/// #![feature(clone_from_slice)]
///
/// let mut dst = [0, 0, 0];
/// let src = [1, 2];
///
/// assert!(dst.clone_from_slice(&src) == 2);
/// assert!(dst == [1, 2, 0]);
///
/// let src2 = [3, 4, 5, 6];
/// assert!(dst.clone_from_slice(&src2) == 3);
/// assert!(dst == [3, 4, 5]);
/// ```
#[unstable(feature = "clone_from_slice", issue = "27750")]
pub fn clone_from_slice(&mut self, src: &[T]) -> usize where T: Clone {
core_slice::SliceExt::clone_from_slice(self, src)
}
/// Copies `self` into a new `Vec`.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn to_vec(&self) -> Vec<T> where T: Clone {
// NB see hack module in this file
hack::to_vec(self)
}
/// Converts `self` into a vector without clones or allocation.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn into_vec(self: Box<Self>) -> Vec<T> {
// NB see hack module in this file
hack::into_vec(self)
}
}
////////////////////////////////////////////////////////////////////////////////
// Extension traits for slices over specific kinds of data
////////////////////////////////////////////////////////////////////////////////
#[unstable(feature = "slice_concat_ext",
reason = "trait should not have to exist",
issue = "27747")]
/// An extension trait for concatenating slices
pub trait SliceConcatExt<T: ?Sized> {
#[unstable(feature = "slice_concat_ext",
reason = "trait should not have to exist",
issue = "27747")]
/// The resulting type after concatenation
type Output;
/// Flattens a slice of `T` into a single value `Self::Output`.
///
/// # Examples
///
/// ```
/// assert_eq!(["hello", "world"].concat(), "helloworld");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn concat(&self) -> Self::Output;
/// Flattens a slice of `T` into a single value `Self::Output`, placing a
/// given separator between each.
///
/// # Examples
///
/// ```
/// assert_eq!(["hello", "world"].join(" "), "hello world");
/// ```
#[stable(feature = "rename_connect_to_join", since = "1.3.0")]
fn join(&self, sep: &T) -> Self::Output;
/// Flattens a slice of `T` into a single value `Self::Output`, placing a
/// given separator between each.
///
/// # Examples
///
/// ```
/// assert_eq!(["hello", "world"].connect(" "), "hello world");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(since = "1.3.0", reason = "renamed to join")]
fn connect(&self, sep: &T) -> Self::Output;
}
impl<T: Clone, V: Borrow<[T]>> SliceConcatExt<T> for [V] {
type Output = Vec<T>;
fn concat(&self) -> Vec<T> {
let size = self.iter().fold(0, |acc, v| acc + v.borrow().len());
let mut result = Vec::with_capacity(size);
for v in self {
result.push_all(v.borrow())
}
result
}
fn join(&self, sep: &T) -> Vec<T> {
let size = self.iter().fold(0, |acc, v| acc + v.borrow().len());
let mut result = Vec::with_capacity(size + self.len());
let mut first = true;
for v in self {
if first { first = false } else { result.push(sep.clone()) }
result.push_all(v.borrow())
}
result
}
fn connect(&self, sep: &T) -> Vec<T> {
self.join(sep)
}
}
////////////////////////////////////////////////////////////////////////////////
// Standard trait implementations for slices
////////////////////////////////////////////////////////////////////////////////
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Borrow<[T]> for Vec<T> {
fn borrow(&self) -> &[T] { &self[..] }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> BorrowMut<[T]> for Vec<T> {
fn borrow_mut(&mut self) -> &mut [T] { &mut self[..] }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> ToOwned for [T] {
type Owned = Vec<T>;
#[cfg(not(test))]
fn to_owned(&self) -> Vec<T> { self.to_vec() }
// HACK(japaric): with cfg(test) the inherent `[T]::to_vec`, which is required for this method
// definition, is not available. Since we don't require this method for testing purposes, I'll
// just stub it
// NB see the slice::hack module in slice.rs for more information
#[cfg(test)]
fn to_owned(&self) -> Vec<T> { panic!("not available with cfg(test)") }
}
////////////////////////////////////////////////////////////////////////////////
// Sorting
////////////////////////////////////////////////////////////////////////////////
fn insertion_sort<T, F>(v: &mut [T], mut compare: F) where F: FnMut(&T, &T) -> Ordering {
let len = v.len() as isize;
let buf_v = v.as_mut_ptr();
// 1 <= i < len;
for i in 1..len {
// j satisfies: 0 <= j <= i;
let mut j = i;
unsafe {
// `i` is in bounds.
let read_ptr = buf_v.offset(i) as *const T;
// find where to insert, we need to do strict <,
// rather than <=, to maintain stability.
// 0 <= j - 1 < len, so .offset(j - 1) is in bounds.
while j > 0 &&
compare(&*read_ptr, &*buf_v.offset(j - 1)) == Less {
j -= 1;
}
// shift everything to the right, to make space to
// insert this value.
// j + 1 could be `len` (for the last `i`), but in
// that case, `i == j` so we don't copy. The
// `.offset(j)` is always in bounds.
if i != j {
let tmp = ptr::read(read_ptr);
ptr::copy(&*buf_v.offset(j),
buf_v.offset(j + 1),
(i - j) as usize);
ptr::copy_nonoverlapping(&tmp, buf_v.offset(j), 1);
mem::forget(tmp);
}
}
}
}
fn merge_sort<T, F>(v: &mut [T], mut compare: F) where F: FnMut(&T, &T) -> Ordering {
// warning: this wildly uses unsafe.
const BASE_INSERTION: usize = 32;
const LARGE_INSERTION: usize = 16;
// FIXME #12092: smaller insertion runs seems to make sorting
// vectors of large elements a little faster on some platforms,
// but hasn't been tested/tuned extensively
let insertion = if size_of::<T>() <= 16 {
BASE_INSERTION
} else {
LARGE_INSERTION
};
let len = v.len();
// short vectors get sorted in-place via insertion sort to avoid allocations
if len <= insertion {
insertion_sort(v, compare);
return;
}
// allocate some memory to use as scratch memory, we keep the
// length 0 so we can keep shallow copies of the contents of `v`
// without risking the dtors running on an object twice if
// `compare` panics.
let mut working_space = Vec::with_capacity(2 * len);
// these both are buffers of length `len`.
let mut buf_dat = working_space.as_mut_ptr();
let mut buf_tmp = unsafe {buf_dat.offset(len as isize)};
// length `len`.
let buf_v = v.as_ptr();
// step 1. sort short runs with insertion sort. This takes the
// values from `v` and sorts them into `buf_dat`, leaving that
// with sorted runs of length INSERTION.
// We could hardcode the sorting comparisons here, and we could
// manipulate/step the pointers themselves, rather than repeatedly
// .offset-ing.
for start in (0.. len).step_by(insertion) {
// start <= i < len;
for i in start..cmp::min(start + insertion, len) {
// j satisfies: start <= j <= i;
let mut j = i as isize;
unsafe {
// `i` is in bounds.
let read_ptr = buf_v.offset(i as isize);
// find where to insert, we need to do strict <,
// rather than <=, to maintain stability.
// start <= j - 1 < len, so .offset(j - 1) is in
// bounds.
while j > start as isize &&
compare(&*read_ptr, &*buf_dat.offset(j - 1)) == Less {
j -= 1;
}
// shift everything to the right, to make space to
// insert this value.
// j + 1 could be `len` (for the last `i`), but in
// that case, `i == j` so we don't copy. The
// `.offset(j)` is always in bounds.
ptr::copy(&*buf_dat.offset(j),
buf_dat.offset(j + 1),
i - j as usize);
ptr::copy_nonoverlapping(read_ptr, buf_dat.offset(j), 1);
}
}
}
// step 2. merge the sorted runs.
let mut width = insertion;
while width < len {
// merge the sorted runs of length `width` in `buf_dat` two at
// a time, placing the result in `buf_tmp`.
// 0 <= start <= len.
for start in (0..len).step_by(2 * width) {
// manipulate pointers directly for speed (rather than
// using a `for` loop with `range` and `.offset` inside
// that loop).
unsafe {
// the end of the first run & start of the
// second. Offset of `len` is defined, since this is
// precisely one byte past the end of the object.
let right_start = buf_dat.offset(cmp::min(start + width, len) as isize);
// end of the second. Similar reasoning to the above re safety.
let right_end_idx = cmp::min(start + 2 * width, len);
let right_end = buf_dat.offset(right_end_idx as isize);
// the pointers to the elements under consideration
// from the two runs.
// both of these are in bounds.
let mut left = buf_dat.offset(start as isize);
let mut right = right_start;
// where we're putting the results, it is a run of
// length `2*width`, so we step it once for each step
// of either `left` or `right`. `buf_tmp` has length
// `len`, so these are in bounds.
let mut out = buf_tmp.offset(start as isize);
let out_end = buf_tmp.offset(right_end_idx as isize);
while out < out_end {
// Either the left or the right run are exhausted,
// so just copy the remainder from the other run
// and move on; this gives a huge speed-up (order
// of 25%) for mostly sorted vectors (the best
// case).
if left == right_start {
// the number remaining in this run.
let elems = (right_end as usize - right as usize) / mem::size_of::<T>();
ptr::copy_nonoverlapping(&*right, out, elems);
break;
} else if right == right_end {
let elems = (right_start as usize - left as usize) / mem::size_of::<T>();
ptr::copy_nonoverlapping(&*left, out, elems);
break;
}
// check which side is smaller, and that's the
// next element for the new run.
// `left < right_start` and `right < right_end`,
// so these are valid.
let to_copy = if compare(&*left, &*right) == Greater {
step(&mut right)
} else {
step(&mut left)
};
ptr::copy_nonoverlapping(&*to_copy, out, 1);
step(&mut out);
}
}
}
mem::swap(&mut buf_dat, &mut buf_tmp);
width *= 2;
}
// write the result to `v` in one go, so that there are never two copies
// of the same object in `v`.
unsafe {
ptr::copy_nonoverlapping(&*buf_dat, v.as_mut_ptr(), len);
}
// increment the pointer, returning the old pointer.
#[inline(always)]
unsafe fn step<T>(ptr: &mut *mut T) -> *mut T {
let old = *ptr;
*ptr = ptr.offset(1);
old
}
}