rust/src/helpers.rs
2020-02-22 09:02:29 -05:00

547 lines
22 KiB
Rust

use std::ffi::OsStr;
use std::{iter, mem};
use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX};
use rustc::mir;
use rustc::ty::{
self,
layout::{self, LayoutOf, Size, TyLayout},
List, TyCtxt,
};
use rustc_span::source_map::DUMMY_SP;
use rand::RngCore;
use crate::*;
impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
/// Gets an instance for a path.
fn resolve_did<'mir, 'tcx>(tcx: TyCtxt<'tcx>, path: &[&str]) -> InterpResult<'tcx, DefId> {
tcx.crates()
.iter()
.find(|&&krate| tcx.original_crate_name(krate).as_str() == path[0])
.and_then(|krate| {
let krate = DefId { krate: *krate, index: CRATE_DEF_INDEX };
let mut items = tcx.item_children(krate);
let mut path_it = path.iter().skip(1).peekable();
while let Some(segment) = path_it.next() {
for item in mem::replace(&mut items, Default::default()).iter() {
if item.ident.name.as_str() == *segment {
if path_it.peek().is_none() {
return Some(item.res.def_id());
}
items = tcx.item_children(item.res.def_id());
break;
}
}
}
None
})
.ok_or_else(|| {
let path = path.iter().map(|&s| s.to_owned()).collect();
err_unsup!(PathNotFound(path)).into()
})
}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
/// Gets an instance for a path.
fn resolve_path(&self, path: &[&str]) -> InterpResult<'tcx, ty::Instance<'tcx>> {
Ok(ty::Instance::mono(
self.eval_context_ref().tcx.tcx,
resolve_did(self.eval_context_ref().tcx.tcx, path)?,
))
}
/// Write a 0 of the appropriate size to `dest`.
fn write_null(&mut self, dest: PlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
self.eval_context_mut().write_scalar(Scalar::from_int(0, dest.layout.size), dest)
}
/// Test if this immediate equals 0.
fn is_null(&self, val: Scalar<Tag>) -> InterpResult<'tcx, bool> {
let this = self.eval_context_ref();
let null = Scalar::from_int(0, this.memory.pointer_size());
this.ptr_eq(val, null)
}
/// Turn a Scalar into an Option<NonNullScalar>
fn test_null(&self, val: Scalar<Tag>) -> InterpResult<'tcx, Option<Scalar<Tag>>> {
let this = self.eval_context_ref();
Ok(if this.is_null(val)? { None } else { Some(val) })
}
/// Get the `Place` for a local
fn local_place(&mut self, local: mir::Local) -> InterpResult<'tcx, PlaceTy<'tcx, Tag>> {
let this = self.eval_context_mut();
let place = mir::Place { local: local, projection: List::empty() };
this.eval_place(&place)
}
/// Generate some random bytes, and write them to `dest`.
fn gen_random(&mut self, ptr: Scalar<Tag>, len: usize) -> InterpResult<'tcx> {
// Some programs pass in a null pointer and a length of 0
// to their platform's random-generation function (e.g. getrandom())
// on Linux. For compatibility with these programs, we don't perform
// any additional checks - it's okay if the pointer is invalid,
// since we wouldn't actually be writing to it.
if len == 0 {
return Ok(());
}
let this = self.eval_context_mut();
let mut data = vec![0; len];
if this.machine.communicate {
// Fill the buffer using the host's rng.
getrandom::getrandom(&mut data)
.map_err(|err| err_unsup_format!("getrandom failed: {}", err))?;
} else {
let rng = this.memory.extra.rng.get_mut();
rng.fill_bytes(&mut data);
}
this.memory.write_bytes(ptr, data.iter().copied())
}
/// Call a function: Push the stack frame and pass the arguments.
/// For now, arguments must be scalars (so that the caller does not have to know the layout).
fn call_function(
&mut self,
f: ty::Instance<'tcx>,
args: &[Immediate<Tag>],
dest: Option<PlaceTy<'tcx, Tag>>,
stack_pop: StackPopCleanup,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
// Push frame.
let mir = &*this.load_mir(f.def, None)?;
let span = this
.stack()
.last()
.and_then(Frame::current_source_info)
.map(|si| si.span)
.unwrap_or(DUMMY_SP);
this.push_stack_frame(f, span, mir, dest, stack_pop)?;
// Initialize arguments.
let mut callee_args = this.frame().body.args_iter();
for arg in args {
let callee_arg = this.local_place(
callee_args.next().expect("callee has fewer arguments than expected"),
)?;
this.write_immediate(*arg, callee_arg)?;
}
callee_args.next().expect_none("callee has more arguments than expected");
Ok(())
}
/// Visits the memory covered by `place`, sensitive to freezing: the 3rd parameter
/// will be true if this is frozen, false if this is in an `UnsafeCell`.
fn visit_freeze_sensitive(
&self,
place: MPlaceTy<'tcx, Tag>,
size: Size,
mut action: impl FnMut(Pointer<Tag>, Size, bool) -> InterpResult<'tcx>,
) -> InterpResult<'tcx> {
let this = self.eval_context_ref();
trace!("visit_frozen(place={:?}, size={:?})", *place, size);
debug_assert_eq!(
size,
this.size_and_align_of_mplace(place)?
.map(|(size, _)| size)
.unwrap_or_else(|| place.layout.size)
);
// Store how far we proceeded into the place so far. Everything to the left of
// this offset has already been handled, in the sense that the frozen parts
// have had `action` called on them.
let mut end_ptr = place.ptr.assert_ptr();
// Called when we detected an `UnsafeCell` at the given offset and size.
// Calls `action` and advances `end_ptr`.
let mut unsafe_cell_action = |unsafe_cell_ptr: Scalar<Tag>, unsafe_cell_size: Size| {
let unsafe_cell_ptr = unsafe_cell_ptr.assert_ptr();
debug_assert_eq!(unsafe_cell_ptr.alloc_id, end_ptr.alloc_id);
debug_assert_eq!(unsafe_cell_ptr.tag, end_ptr.tag);
// We assume that we are given the fields in increasing offset order,
// and nothing else changes.
let unsafe_cell_offset = unsafe_cell_ptr.offset;
let end_offset = end_ptr.offset;
assert!(unsafe_cell_offset >= end_offset);
let frozen_size = unsafe_cell_offset - end_offset;
// Everything between the end_ptr and this `UnsafeCell` is frozen.
if frozen_size != Size::ZERO {
action(end_ptr, frozen_size, /*frozen*/ true)?;
}
// This `UnsafeCell` is NOT frozen.
if unsafe_cell_size != Size::ZERO {
action(unsafe_cell_ptr, unsafe_cell_size, /*frozen*/ false)?;
}
// Update end end_ptr.
end_ptr = unsafe_cell_ptr.wrapping_offset(unsafe_cell_size, this);
// Done
Ok(())
};
// Run a visitor
{
let mut visitor = UnsafeCellVisitor {
ecx: this,
unsafe_cell_action: |place| {
trace!("unsafe_cell_action on {:?}", place.ptr);
// We need a size to go on.
let unsafe_cell_size = this
.size_and_align_of_mplace(place)?
.map(|(size, _)| size)
// for extern types, just cover what we can
.unwrap_or_else(|| place.layout.size);
// Now handle this `UnsafeCell`, unless it is empty.
if unsafe_cell_size != Size::ZERO {
unsafe_cell_action(place.ptr, unsafe_cell_size)
} else {
Ok(())
}
},
};
visitor.visit_value(place)?;
}
// The part between the end_ptr and the end of the place is also frozen.
// So pretend there is a 0-sized `UnsafeCell` at the end.
unsafe_cell_action(place.ptr.ptr_wrapping_offset(size, this), Size::ZERO)?;
// Done!
return Ok(());
/// Visiting the memory covered by a `MemPlace`, being aware of
/// whether we are inside an `UnsafeCell` or not.
struct UnsafeCellVisitor<'ecx, 'mir, 'tcx, F>
where
F: FnMut(MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>,
{
ecx: &'ecx MiriEvalContext<'mir, 'tcx>,
unsafe_cell_action: F,
}
impl<'ecx, 'mir, 'tcx, F> ValueVisitor<'mir, 'tcx, Evaluator<'tcx>>
for UnsafeCellVisitor<'ecx, 'mir, 'tcx, F>
where
F: FnMut(MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>,
{
type V = MPlaceTy<'tcx, Tag>;
#[inline(always)]
fn ecx(&self) -> &MiriEvalContext<'mir, 'tcx> {
&self.ecx
}
// Hook to detect `UnsafeCell`.
fn visit_value(&mut self, v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
trace!("UnsafeCellVisitor: {:?} {:?}", *v, v.layout.ty);
let is_unsafe_cell = match v.layout.ty.kind {
ty::Adt(adt, _) =>
Some(adt.did) == self.ecx.tcx.lang_items().unsafe_cell_type(),
_ => false,
};
if is_unsafe_cell {
// We do not have to recurse further, this is an `UnsafeCell`.
(self.unsafe_cell_action)(v)
} else if self.ecx.type_is_freeze(v.layout.ty) {
// This is `Freeze`, there cannot be an `UnsafeCell`
Ok(())
} else {
// We want to not actually read from memory for this visit. So, before
// walking this value, we have to make sure it is not a
// `Variants::Multiple`.
match v.layout.variants {
layout::Variants::Multiple { .. } => {
// A multi-variant enum, or generator, or so.
// Treat this like a union: without reading from memory,
// we cannot determine the variant we are in. Reading from
// memory would be subject to Stacked Borrows rules, leading
// to all sorts of "funny" recursion.
// We only end up here if the type is *not* freeze, so we just call the
// `UnsafeCell` action.
(self.unsafe_cell_action)(v)
}
layout::Variants::Single { .. } => {
// Proceed further, try to find where exactly that `UnsafeCell`
// is hiding.
self.walk_value(v)
}
}
}
}
// Make sure we visit aggregrates in increasing offset order.
fn visit_aggregate(
&mut self,
place: MPlaceTy<'tcx, Tag>,
fields: impl Iterator<Item = InterpResult<'tcx, MPlaceTy<'tcx, Tag>>>,
) -> InterpResult<'tcx> {
match place.layout.fields {
layout::FieldPlacement::Array { .. } => {
// For the array layout, we know the iterator will yield sorted elements so
// we can avoid the allocation.
self.walk_aggregate(place, fields)
}
layout::FieldPlacement::Arbitrary { .. } => {
// Gather the subplaces and sort them before visiting.
let mut places =
fields.collect::<InterpResult<'tcx, Vec<MPlaceTy<'tcx, Tag>>>>()?;
places.sort_by_key(|place| place.ptr.assert_ptr().offset);
self.walk_aggregate(place, places.into_iter().map(Ok))
}
layout::FieldPlacement::Union { .. } => {
// Uh, what?
bug!("a union is not an aggregate we should ever visit")
}
}
}
// We have to do *something* for unions.
fn visit_union(&mut self, v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
// With unions, we fall back to whatever the type says, to hopefully be consistent
// with LLVM IR.
// FIXME: are we consistent, and is this really the behavior we want?
let frozen = self.ecx.type_is_freeze(v.layout.ty);
if frozen { Ok(()) } else { (self.unsafe_cell_action)(v) }
}
// We should never get to a primitive, but always short-circuit somewhere above.
fn visit_primitive(&mut self, _v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
bug!("we should always short-circuit before coming to a primitive")
}
}
}
/// Helper function to get a `libc` constant as a `Scalar`.
fn eval_libc(&mut self, name: &str) -> InterpResult<'tcx, Scalar<Tag>> {
self.eval_context_mut()
.eval_path_scalar(&["libc", name])?
.ok_or_else(|| err_unsup_format!("Path libc::{} cannot be resolved.", name))?
.not_undef()
}
/// Helper function to get a `libc` constant as an `i32`.
fn eval_libc_i32(&mut self, name: &str) -> InterpResult<'tcx, i32> {
self.eval_libc(name)?.to_i32()
}
/// Helper function to get the `TyLayout` of a `libc` type
fn libc_ty_layout(&mut self, name: &str) -> InterpResult<'tcx, TyLayout<'tcx>> {
let this = self.eval_context_mut();
let ty = this.resolve_path(&["libc", name])?.monomorphic_ty(*this.tcx);
this.layout_of(ty)
}
// Writes several `ImmTy`s contiguosly into memory. This is useful when you have to pack
// different values into a struct.
fn write_packed_immediates(
&mut self,
place: MPlaceTy<'tcx, Tag>,
imms: &[ImmTy<'tcx, Tag>],
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let mut offset = Size::from_bytes(0);
for &imm in imms {
this.write_immediate_to_mplace(
*imm,
place.offset(offset, MemPlaceMeta::None, imm.layout, &*this.tcx)?,
)?;
offset += imm.layout.size;
}
Ok(())
}
/// Helper function used inside the shims of foreign functions to check that isolation is
/// disabled. It returns an error using the `name` of the foreign function if this is not the
/// case.
fn check_no_isolation(&mut self, name: &str) -> InterpResult<'tcx> {
if !self.eval_context_mut().machine.communicate {
throw_unsup_format!(
"`{}` not available when isolation is enabled. Pass the flag `-Zmiri-disable-isolation` to disable it.",
name
)
}
Ok(())
}
/// Helper function used inside the shims of foreign functions to assert that the target
/// platform is `platform`. It panics showing a message with the `name` of the foreign function
/// if this is not the case.
fn assert_platform(&mut self, platform: &str, name: &str) {
assert_eq!(
self.eval_context_mut().tcx.sess.target.target.target_os.to_lowercase(),
platform,
"`{}` is only available on the `{}` platform",
name,
platform
)
}
/// Sets the last error variable.
fn set_last_error(&mut self, scalar: Scalar<Tag>) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let errno_place = this.machine.last_error.unwrap();
this.write_scalar(scalar, errno_place.into())
}
/// Gets the last error variable.
fn get_last_error(&mut self) -> InterpResult<'tcx, Scalar<Tag>> {
let this = self.eval_context_mut();
let errno_place = this.machine.last_error.unwrap();
this.read_scalar(errno_place.into())?.not_undef()
}
/// Sets the last OS error using a `std::io::Error`. This function tries to produce the most
/// similar OS error from the `std::io::ErrorKind` and sets it as the last OS error.
fn set_last_error_from_io_error(&mut self, e: std::io::Error) -> InterpResult<'tcx> {
use std::io::ErrorKind::*;
let this = self.eval_context_mut();
let target = &this.tcx.tcx.sess.target.target;
let last_error = if target.options.target_family == Some("unix".to_owned()) {
this.eval_libc(match e.kind() {
ConnectionRefused => "ECONNREFUSED",
ConnectionReset => "ECONNRESET",
PermissionDenied => "EPERM",
BrokenPipe => "EPIPE",
NotConnected => "ENOTCONN",
ConnectionAborted => "ECONNABORTED",
AddrNotAvailable => "EADDRNOTAVAIL",
AddrInUse => "EADDRINUSE",
NotFound => "ENOENT",
Interrupted => "EINTR",
InvalidInput => "EINVAL",
TimedOut => "ETIMEDOUT",
AlreadyExists => "EEXIST",
WouldBlock => "EWOULDBLOCK",
_ => {
throw_unsup_format!("The {} error cannot be transformed into a raw os error", e)
}
})?
} else {
// FIXME: we have to implement the Windows equivalent of this.
throw_unsup_format!(
"Setting the last OS error from an io::Error is unsupported for {}.",
target.target_os
)
};
this.set_last_error(last_error)
}
/// Helper function that consumes an `std::io::Result<T>` and returns an
/// `InterpResult<'tcx,T>::Ok` instead. In case the result is an error, this function returns
/// `Ok(-1)` and sets the last OS error accordingly.
///
/// This function uses `T: From<i32>` instead of `i32` directly because some IO related
/// functions return different integer types (like `read`, that returns an `i64`).
fn try_unwrap_io_result<T: From<i32>>(
&mut self,
result: std::io::Result<T>,
) -> InterpResult<'tcx, T> {
match result {
Ok(ok) => Ok(ok),
Err(e) => {
self.eval_context_mut().set_last_error_from_io_error(e)?;
Ok((-1).into())
}
}
}
/// Helper function to read an OsString from a null-terminated sequence of bytes, which is what
/// the Unix APIs usually handle.
fn read_os_str_from_c_str<'a>(&'a self, scalar: Scalar<Tag>) -> InterpResult<'tcx, &'a OsStr>
where
'tcx: 'a,
'mir: 'a,
{
#[cfg(target_os = "unix")]
fn bytes_to_os_str<'tcx, 'a>(bytes: &'a [u8]) -> InterpResult<'tcx, &'a OsStr> {
Ok(std::os::unix::ffi::OsStringExt::from_bytes(bytes))
}
#[cfg(not(target_os = "unix"))]
fn bytes_to_os_str<'tcx, 'a>(bytes: &'a [u8]) -> InterpResult<'tcx, &'a OsStr> {
let s = std::str::from_utf8(bytes)
.map_err(|_| err_unsup_format!("{:?} is not a valid utf-8 string", bytes))?;
Ok(&OsStr::new(s))
}
let this = self.eval_context_ref();
let bytes = this.memory.read_c_str(scalar)?;
bytes_to_os_str(bytes)
}
/// Helper function to write an OsStr as a null-terminated sequence of bytes, which is what
/// the Unix APIs usually handle. This function returns `Ok(false)` without trying to write if
/// `size` is not large enough to fit the contents of `os_string` plus a null terminator. It
/// returns `Ok(true)` if the writing process was successful.
fn write_os_str_to_c_str(
&mut self,
os_str: &OsStr,
scalar: Scalar<Tag>,
size: u64,
) -> InterpResult<'tcx, bool> {
#[cfg(target_os = "unix")]
fn os_str_to_bytes<'tcx, 'a>(os_str: &'a OsStr) -> InterpResult<'tcx, &'a [u8]> {
std::os::unix::ffi::OsStringExt::into_bytes(os_str)
}
#[cfg(not(target_os = "unix"))]
fn os_str_to_bytes<'tcx, 'a>(os_str: &'a OsStr) -> InterpResult<'tcx, &'a [u8]> {
// On non-unix platforms the best we can do to transform bytes from/to OS strings is to do the
// intermediate transformation into strings. Which invalidates non-utf8 paths that are actually
// valid.
os_str
.to_str()
.map(|s| s.as_bytes())
.ok_or_else(|| err_unsup_format!("{:?} is not a valid utf-8 string", os_str).into())
}
let bytes = os_str_to_bytes(os_str)?;
// If `size` is smaller or equal than `bytes.len()`, writing `bytes` plus the required null
// terminator to memory using the `ptr` pointer would cause an out-of-bounds access.
if size <= bytes.len() as u64 {
return Ok(false);
}
self.eval_context_mut()
.memory
.write_bytes(scalar, bytes.iter().copied().chain(iter::once(0u8)))?;
Ok(true)
}
fn alloc_os_str_as_c_str(
&mut self,
os_str: &OsStr,
memkind: MemoryKind<MiriMemoryKind>
) -> Pointer<Tag> {
let size = os_str.len() as u64 + 1; // Make space for `0` terminator.
let this = self.eval_context_mut();
let arg_type = this.tcx.mk_array(this.tcx.types.u8, size);
let arg_place = this.allocate(this.layout_of(arg_type).unwrap(), memkind);
self.write_os_str_to_c_str(os_str, arg_place.ptr, size).unwrap();
arg_place.ptr.assert_ptr()
}
}
pub fn immty_from_int_checked<'tcx>(
int: impl Into<i128>,
layout: TyLayout<'tcx>,
) -> InterpResult<'tcx, ImmTy<'tcx, Tag>> {
let int = int.into();
Ok(ImmTy::try_from_int(int, layout).ok_or_else(||
err_unsup_format!("Signed value {:#x} does not fit in {} bits", int, layout.size.bits())
)?)
}
pub fn immty_from_uint_checked<'tcx>(
int: impl Into<u128>,
layout: TyLayout<'tcx>,
) -> InterpResult<'tcx, ImmTy<'tcx, Tag>> {
let int = int.into();
Ok(ImmTy::try_from_uint(int, layout).ok_or_else(||
err_unsup_format!("Signed value {:#x} does not fit in {} bits", int, layout.size.bits())
)?)
}