rust/src/libstd/num/int_macros.rs

941 lines
26 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// FIXME(#4375): this shouldn't have to be a nested module named 'generated'
#[macro_escape];
macro_rules! int_module (($T:ty, $bits:expr) => (mod generated {
use num::{ToStrRadix, FromStrRadix};
use num::{Zero, One, strconv};
use prelude::*;
pub use cmp::{min, max};
pub static bits : uint = $bits;
pub static bytes : uint = ($bits / 8);
pub static min_value: $T = (-1 as $T) << (bits - 1);
pub static max_value: $T = min_value - 1 as $T;
#[inline(always)]
pub fn add(x: $T, y: $T) -> $T { x + y }
#[inline(always)]
pub fn sub(x: $T, y: $T) -> $T { x - y }
#[inline(always)]
pub fn mul(x: $T, y: $T) -> $T { x * y }
#[inline(always)]
pub fn div(x: $T, y: $T) -> $T { x / y }
///
/// Returns the remainder of y / x.
///
/// # Examples
/// ~~~
/// assert!(int::rem(5 / 2) == 1);
/// ~~~
///
/// When faced with negative numbers, the result copies the sign of the
/// dividend.
///
/// ~~~
/// assert!(int::rem(2 / -3) == 2);
/// ~~~
///
/// ~~~
/// assert!(int::rem(-2 / 3) == -2);
/// ~~~
///
///
#[inline(always)]
pub fn rem(x: $T, y: $T) -> $T { x % y }
#[inline(always)]
pub fn lt(x: $T, y: $T) -> bool { x < y }
#[inline(always)]
pub fn le(x: $T, y: $T) -> bool { x <= y }
#[inline(always)]
pub fn eq(x: $T, y: $T) -> bool { x == y }
#[inline(always)]
pub fn ne(x: $T, y: $T) -> bool { x != y }
#[inline(always)]
pub fn ge(x: $T, y: $T) -> bool { x >= y }
#[inline(always)]
pub fn gt(x: $T, y: $T) -> bool { x > y }
///
/// Iterate over the range [`lo`..`hi`)
///
/// # Arguments
///
/// * `lo` - lower bound, inclusive
/// * `hi` - higher bound, exclusive
///
/// # Examples
/// ~~~
/// let mut sum = 0;
/// for int::range(1, 5) |i| {
/// sum += i;
/// }
/// assert!(sum == 10);
/// ~~~
///
#[inline(always)]
pub fn range_step(start: $T, stop: $T, step: $T, it: &fn($T) -> bool) -> bool {
let mut i = start;
if step == 0 {
fail!(~"range_step called with step == 0");
} else if step > 0 { // ascending
while i < stop {
if !it(i) { return false; }
// avoiding overflow. break if i + step > max_value
if i > max_value - step { return true; }
i += step;
}
} else { // descending
while i > stop {
if !it(i) { return false; }
// avoiding underflow. break if i + step < min_value
if i < min_value - step { return true; }
i += step;
}
}
return true;
}
#[inline(always)]
/// Iterate over the range [`lo`..`hi`)
pub fn range(lo: $T, hi: $T, it: &fn($T) -> bool) -> bool {
range_step(lo, hi, 1 as $T, it)
}
#[inline(always)]
/// Iterate over the range [`hi`..`lo`)
pub fn range_rev(hi: $T, lo: $T, it: &fn($T) -> bool) -> bool {
range_step(hi, lo, -1 as $T, it)
}
/// Computes the bitwise complement
#[inline(always)]
pub fn compl(i: $T) -> $T {
-1 as $T ^ i
}
/// Computes the absolute value
#[inline(always)]
pub fn abs(i: $T) -> $T { i.abs() }
impl Num for $T {}
#[cfg(not(test))]
impl Ord for $T {
#[inline(always)]
fn lt(&self, other: &$T) -> bool { return (*self) < (*other); }
#[inline(always)]
fn le(&self, other: &$T) -> bool { return (*self) <= (*other); }
#[inline(always)]
fn ge(&self, other: &$T) -> bool { return (*self) >= (*other); }
#[inline(always)]
fn gt(&self, other: &$T) -> bool { return (*self) > (*other); }
}
#[cfg(not(test))]
impl Eq for $T {
#[inline(always)]
fn eq(&self, other: &$T) -> bool { return (*self) == (*other); }
#[inline(always)]
fn ne(&self, other: &$T) -> bool { return (*self) != (*other); }
}
impl Orderable for $T {
#[inline(always)]
fn min(&self, other: &$T) -> $T {
if *self < *other { *self } else { *other }
}
#[inline(always)]
fn max(&self, other: &$T) -> $T {
if *self > *other { *self } else { *other }
}
#[inline(always)]
fn clamp(&self, mn: &$T, mx: &$T) -> $T {
if *self > *mx { *mx } else
if *self < *mn { *mn } else { *self }
}
}
impl Zero for $T {
#[inline(always)]
fn zero() -> $T { 0 }
#[inline(always)]
fn is_zero(&self) -> bool { *self == 0 }
}
impl One for $T {
#[inline(always)]
fn one() -> $T { 1 }
}
#[cfg(not(test))]
impl Add<$T,$T> for $T {
#[inline(always)]
fn add(&self, other: &$T) -> $T { *self + *other }
}
#[cfg(not(test))]
impl Sub<$T,$T> for $T {
#[inline(always)]
fn sub(&self, other: &$T) -> $T { *self - *other }
}
#[cfg(not(test))]
impl Mul<$T,$T> for $T {
#[inline(always)]
fn mul(&self, other: &$T) -> $T { *self * *other }
}
#[cfg(not(test))]
impl Div<$T,$T> for $T {
///
/// Integer division, truncated towards 0. As this behaviour reflects the underlying
/// machine implementation it is more efficient than `Integer::div_floor`.
///
/// # Examples
///
/// ~~~
/// assert!( 8 / 3 == 2);
/// assert!( 8 / -3 == -2);
/// assert!(-8 / 3 == -2);
/// assert!(-8 / -3 == 2);
/// assert!( 1 / 2 == 0);
/// assert!( 1 / -2 == 0);
/// assert!(-1 / 2 == 0);
/// assert!(-1 / -2 == 0);
/// ~~~
///
#[inline(always)]
fn div(&self, other: &$T) -> $T { *self / *other }
}
#[cfg(not(test))]
impl Rem<$T,$T> for $T {
///
/// Returns the integer remainder after division, satisfying:
///
/// ~~~
/// assert!((n / d) * d + (n % d) == n)
/// ~~~
///
/// # Examples
///
/// ~~~
/// assert!( 8 % 3 == 2);
/// assert!( 8 % -3 == 2);
/// assert!(-8 % 3 == -2);
/// assert!(-8 % -3 == -2);
/// assert!( 1 % 2 == 1);
/// assert!( 1 % -2 == 1);
/// assert!(-1 % 2 == -1);
/// assert!(-1 % -2 == -1);
/// ~~~
///
#[inline(always)]
fn rem(&self, other: &$T) -> $T { *self % *other }
}
#[cfg(not(test))]
impl Neg<$T> for $T {
#[inline(always)]
fn neg(&self) -> $T { -*self }
}
impl Signed for $T {
/// Computes the absolute value
#[inline(always)]
fn abs(&self) -> $T {
if self.is_negative() { -*self } else { *self }
}
///
/// The positive difference of two numbers. Returns `0` if the number is less than or
/// equal to `other`, otherwise the difference between`self` and `other` is returned.
///
#[inline(always)]
fn abs_sub(&self, other: &$T) -> $T {
if *self <= *other { 0 } else { *self - *other }
}
///
/// # Returns
///
/// - `0` if the number is zero
/// - `1` if the number is positive
/// - `-1` if the number is negative
///
#[inline(always)]
fn signum(&self) -> $T {
match *self {
n if n > 0 => 1,
0 => 0,
_ => -1,
}
}
/// Returns true if the number is positive
#[inline(always)]
fn is_positive(&self) -> bool { *self > 0 }
/// Returns true if the number is negative
#[inline(always)]
fn is_negative(&self) -> bool { *self < 0 }
}
impl Integer for $T {
///
/// Floored integer division
///
/// # Examples
///
/// ~~~
/// assert!(( 8).div_floor( 3) == 2);
/// assert!(( 8).div_floor(-3) == -3);
/// assert!((-8).div_floor( 3) == -3);
/// assert!((-8).div_floor(-3) == 2);
///
/// assert!(( 1).div_floor( 2) == 0);
/// assert!(( 1).div_floor(-2) == -1);
/// assert!((-1).div_floor( 2) == -1);
/// assert!((-1).div_floor(-2) == 0);
/// ~~~
///
#[inline(always)]
fn div_floor(&self, other: &$T) -> $T {
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
match self.div_rem(other) {
(d, r) if (r > 0 && *other < 0)
|| (r < 0 && *other > 0) => d - 1,
(d, _) => d,
}
}
///
/// Integer modulo, satisfying:
///
/// ~~~
/// assert!(n.div_floor(d) * d + n.mod_floor(d) == n)
/// ~~~
///
/// # Examples
///
/// ~~~
/// assert!(( 8).mod_floor( 3) == 2);
/// assert!(( 8).mod_floor(-3) == -1);
/// assert!((-8).mod_floor( 3) == 1);
/// assert!((-8).mod_floor(-3) == -2);
///
/// assert!(( 1).mod_floor( 2) == 1);
/// assert!(( 1).mod_floor(-2) == -1);
/// assert!((-1).mod_floor( 2) == 1);
/// assert!((-1).mod_floor(-2) == -1);
/// ~~~
///
#[inline(always)]
fn mod_floor(&self, other: &$T) -> $T {
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
match *self % *other {
r if (r > 0 && *other < 0)
|| (r < 0 && *other > 0) => r + *other,
r => r,
}
}
/// Calculates `div_floor` and `mod_floor` simultaneously
#[inline(always)]
fn div_mod_floor(&self, other: &$T) -> ($T,$T) {
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
match self.div_rem(other) {
(d, r) if (r > 0 && *other < 0)
|| (r < 0 && *other > 0) => (d - 1, r + *other),
(d, r) => (d, r),
}
}
/// Calculates `div` (`\`) and `rem` (`%`) simultaneously
#[inline(always)]
fn div_rem(&self, other: &$T) -> ($T,$T) {
(*self / *other, *self % *other)
}
///
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`
///
/// The result is always positive
///
#[inline(always)]
fn gcd(&self, other: &$T) -> $T {
// Use Euclid's algorithm
let mut m = *self, n = *other;
while m != 0 {
let temp = m;
m = n % temp;
n = temp;
}
n.abs()
}
///
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`
///
#[inline(always)]
fn lcm(&self, other: &$T) -> $T {
((*self * *other) / self.gcd(other)).abs() // should not have to recaluculate abs
}
/// Returns `true` if the number can be divided by `other` without leaving a remainder
#[inline(always)]
fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 }
/// Returns `true` if the number is divisible by `2`
#[inline(always)]
fn is_even(&self) -> bool { self.is_multiple_of(&2) }
/// Returns `true` if the number is not divisible by `2`
#[inline(always)]
fn is_odd(&self) -> bool { !self.is_even() }
}
impl Bitwise for $T {}
#[cfg(not(test))]
impl BitOr<$T,$T> for $T {
#[inline(always)]
fn bitor(&self, other: &$T) -> $T { *self | *other }
}
#[cfg(not(test))]
impl BitAnd<$T,$T> for $T {
#[inline(always)]
fn bitand(&self, other: &$T) -> $T { *self & *other }
}
#[cfg(not(test))]
impl BitXor<$T,$T> for $T {
#[inline(always)]
fn bitxor(&self, other: &$T) -> $T { *self ^ *other }
}
#[cfg(not(test))]
impl Shl<$T,$T> for $T {
#[inline(always)]
fn shl(&self, other: &$T) -> $T { *self << *other }
}
#[cfg(not(test))]
impl Shr<$T,$T> for $T {
#[inline(always)]
fn shr(&self, other: &$T) -> $T { *self >> *other }
}
#[cfg(not(test))]
impl Not<$T> for $T {
#[inline(always)]
fn not(&self) -> $T { !*self }
}
impl Bounded for $T {
#[inline(always)]
fn min_value() -> $T { min_value }
#[inline(always)]
fn max_value() -> $T { max_value }
}
impl Int for $T {}
impl Primitive for $T {
#[inline(always)]
fn bits() -> uint { bits }
#[inline(always)]
fn bytes() -> uint { bits / 8 }
}
// String conversion functions and impl str -> num
/// Parse a string as a number in base 10.
#[inline(always)]
pub fn from_str(s: &str) -> Option<$T> {
strconv::from_str_common(s, 10u, true, false, false,
strconv::ExpNone, false, false)
}
/// Parse a string as a number in the given base.
#[inline(always)]
pub fn from_str_radix(s: &str, radix: uint) -> Option<$T> {
strconv::from_str_common(s, radix, true, false, false,
strconv::ExpNone, false, false)
}
/// Parse a byte slice as a number in the given base.
#[inline(always)]
pub fn parse_bytes(buf: &[u8], radix: uint) -> Option<$T> {
strconv::from_str_bytes_common(buf, radix, true, false, false,
strconv::ExpNone, false, false)
}
impl FromStr for $T {
#[inline(always)]
fn from_str(s: &str) -> Option<$T> {
from_str(s)
}
}
impl FromStrRadix for $T {
#[inline(always)]
fn from_str_radix(s: &str, radix: uint) -> Option<$T> {
from_str_radix(s, radix)
}
}
// String conversion functions and impl num -> str
/// Convert to a string as a byte slice in a given base.
#[inline(always)]
pub fn to_str_bytes<U>(n: $T, radix: uint, f: &fn(v: &[u8]) -> U) -> U {
let (buf, _) = strconv::to_str_bytes_common(&n, radix, false,
strconv::SignNeg, strconv::DigAll);
f(buf)
}
/// Convert to a string in base 10.
#[inline(always)]
pub fn to_str(num: $T) -> ~str {
let (buf, _) = strconv::to_str_common(&num, 10u, false,
strconv::SignNeg, strconv::DigAll);
buf
}
/// Convert to a string in a given base.
#[inline(always)]
pub fn to_str_radix(num: $T, radix: uint) -> ~str {
let (buf, _) = strconv::to_str_common(&num, radix, false,
strconv::SignNeg, strconv::DigAll);
buf
}
impl ToStr for $T {
#[inline(always)]
fn to_str(&self) -> ~str {
to_str(*self)
}
}
impl ToStrRadix for $T {
#[inline(always)]
fn to_str_radix(&self, radix: uint) -> ~str {
to_str_radix(*self, radix)
}
}
#[cfg(test)]
mod tests {
use super::*;
use prelude::*;
use i16;
use i32;
use i64;
use i8;
use num;
use sys;
#[test]
fn test_num() {
num::test_num(10 as $T, 2 as $T);
}
#[test]
fn test_orderable() {
assert_eq!((1 as $T).min(&(2 as $T)), 1 as $T);
assert_eq!((2 as $T).min(&(1 as $T)), 1 as $T);
assert_eq!((1 as $T).max(&(2 as $T)), 2 as $T);
assert_eq!((2 as $T).max(&(1 as $T)), 2 as $T);
assert_eq!((1 as $T).clamp(&(2 as $T), &(4 as $T)), 2 as $T);
assert_eq!((8 as $T).clamp(&(2 as $T), &(4 as $T)), 4 as $T);
assert_eq!((3 as $T).clamp(&(2 as $T), &(4 as $T)), 3 as $T);
}
#[test]
pub fn test_abs() {
assert_eq!((1 as $T).abs(), 1 as $T);
assert_eq!((0 as $T).abs(), 0 as $T);
assert_eq!((-1 as $T).abs(), 1 as $T);
}
#[test]
fn test_abs_sub() {
assert_eq!((-1 as $T).abs_sub(&(1 as $T)), 0 as $T);
assert_eq!((1 as $T).abs_sub(&(1 as $T)), 0 as $T);
assert_eq!((1 as $T).abs_sub(&(0 as $T)), 1 as $T);
assert_eq!((1 as $T).abs_sub(&(-1 as $T)), 2 as $T);
}
#[test]
fn test_signum() {
assert_eq!((1 as $T).signum(), 1 as $T);
assert_eq!((0 as $T).signum(), 0 as $T);
assert_eq!((-0 as $T).signum(), 0 as $T);
assert_eq!((-1 as $T).signum(), -1 as $T);
}
#[test]
fn test_is_positive() {
assert!((1 as $T).is_positive());
assert!(!(0 as $T).is_positive());
assert!(!(-0 as $T).is_positive());
assert!(!(-1 as $T).is_positive());
}
#[test]
fn test_is_negative() {
assert!(!(1 as $T).is_negative());
assert!(!(0 as $T).is_negative());
assert!(!(-0 as $T).is_negative());
assert!((-1 as $T).is_negative());
}
///
/// Checks that the division rule holds for:
///
/// - `n`: numerator (dividend)
/// - `d`: denominator (divisor)
/// - `qr`: quotient and remainder
///
#[cfg(test)]
fn test_division_rule((n,d): ($T,$T), (q,r): ($T,$T)) {
assert_eq!(d * q + r, n);
}
#[test]
fn test_div_rem() {
fn test_nd_dr(nd: ($T,$T), qr: ($T,$T)) {
let (n,d) = nd;
let separate_div_rem = (n / d, n % d);
let combined_div_rem = n.div_rem(&d);
assert_eq!(separate_div_rem, qr);
assert_eq!(combined_div_rem, qr);
test_division_rule(nd, separate_div_rem);
test_division_rule(nd, combined_div_rem);
}
test_nd_dr(( 8, 3), ( 2, 2));
test_nd_dr(( 8, -3), (-2, 2));
test_nd_dr((-8, 3), (-2, -2));
test_nd_dr((-8, -3), ( 2, -2));
test_nd_dr(( 1, 2), ( 0, 1));
test_nd_dr(( 1, -2), ( 0, 1));
test_nd_dr((-1, 2), ( 0, -1));
test_nd_dr((-1, -2), ( 0, -1));
}
#[test]
fn test_div_mod_floor() {
fn test_nd_dm(nd: ($T,$T), dm: ($T,$T)) {
let (n,d) = nd;
let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d));
let combined_div_mod_floor = n.div_mod_floor(&d);
assert_eq!(separate_div_mod_floor, dm);
assert_eq!(combined_div_mod_floor, dm);
test_division_rule(nd, separate_div_mod_floor);
test_division_rule(nd, combined_div_mod_floor);
}
test_nd_dm(( 8, 3), ( 2, 2));
test_nd_dm(( 8, -3), (-3, -1));
test_nd_dm((-8, 3), (-3, 1));
test_nd_dm((-8, -3), ( 2, -2));
test_nd_dm(( 1, 2), ( 0, 1));
test_nd_dm(( 1, -2), (-1, -1));
test_nd_dm((-1, 2), (-1, 1));
test_nd_dm((-1, -2), ( 0, -1));
}
#[test]
fn test_gcd() {
assert_eq!((10 as $T).gcd(&2), 2 as $T);
assert_eq!((10 as $T).gcd(&3), 1 as $T);
assert_eq!((0 as $T).gcd(&3), 3 as $T);
assert_eq!((3 as $T).gcd(&3), 3 as $T);
assert_eq!((56 as $T).gcd(&42), 14 as $T);
assert_eq!((3 as $T).gcd(&-3), 3 as $T);
assert_eq!((-6 as $T).gcd(&3), 3 as $T);
assert_eq!((-4 as $T).gcd(&-2), 2 as $T);
}
#[test]
fn test_lcm() {
assert_eq!((1 as $T).lcm(&0), 0 as $T);
assert_eq!((0 as $T).lcm(&1), 0 as $T);
assert_eq!((1 as $T).lcm(&1), 1 as $T);
assert_eq!((-1 as $T).lcm(&1), 1 as $T);
assert_eq!((1 as $T).lcm(&-1), 1 as $T);
assert_eq!((-1 as $T).lcm(&-1), 1 as $T);
assert_eq!((8 as $T).lcm(&9), 72 as $T);
assert_eq!((11 as $T).lcm(&5), 55 as $T);
}
#[test]
fn test_bitwise() {
assert_eq!(0b1110 as $T, (0b1100 as $T).bitor(&(0b1010 as $T)));
assert_eq!(0b1000 as $T, (0b1100 as $T).bitand(&(0b1010 as $T)));
assert_eq!(0b0110 as $T, (0b1100 as $T).bitxor(&(0b1010 as $T)));
assert_eq!(0b1110 as $T, (0b0111 as $T).shl(&(1 as $T)));
assert_eq!(0b0111 as $T, (0b1110 as $T).shr(&(1 as $T)));
assert_eq!(-(0b11 as $T) - (1 as $T), (0b11 as $T).not());
}
#[test]
fn test_multiple_of() {
assert!((6 as $T).is_multiple_of(&(6 as $T)));
assert!((6 as $T).is_multiple_of(&(3 as $T)));
assert!((6 as $T).is_multiple_of(&(1 as $T)));
assert!((-8 as $T).is_multiple_of(&(4 as $T)));
assert!((8 as $T).is_multiple_of(&(-1 as $T)));
assert!((-8 as $T).is_multiple_of(&(-2 as $T)));
}
#[test]
fn test_even() {
assert_eq!((-4 as $T).is_even(), true);
assert_eq!((-3 as $T).is_even(), false);
assert_eq!((-2 as $T).is_even(), true);
assert_eq!((-1 as $T).is_even(), false);
assert_eq!((0 as $T).is_even(), true);
assert_eq!((1 as $T).is_even(), false);
assert_eq!((2 as $T).is_even(), true);
assert_eq!((3 as $T).is_even(), false);
assert_eq!((4 as $T).is_even(), true);
}
#[test]
fn test_odd() {
assert_eq!((-4 as $T).is_odd(), false);
assert_eq!((-3 as $T).is_odd(), true);
assert_eq!((-2 as $T).is_odd(), false);
assert_eq!((-1 as $T).is_odd(), true);
assert_eq!((0 as $T).is_odd(), false);
assert_eq!((1 as $T).is_odd(), true);
assert_eq!((2 as $T).is_odd(), false);
assert_eq!((3 as $T).is_odd(), true);
assert_eq!((4 as $T).is_odd(), false);
}
#[test]
fn test_bitcount() {
assert_eq!((0b010101 as $T).population_count(), 3);
}
#[test]
fn test_primitive() {
assert_eq!(Primitive::bits::<$T>(), sys::size_of::<$T>() * 8);
assert_eq!(Primitive::bytes::<$T>(), sys::size_of::<$T>());
}
#[test]
fn test_from_str() {
assert_eq!(from_str("0"), Some(0 as $T));
assert_eq!(from_str("3"), Some(3 as $T));
assert_eq!(from_str("10"), Some(10 as $T));
assert_eq!(i32::from_str("123456789"), Some(123456789 as i32));
assert_eq!(from_str("00100"), Some(100 as $T));
assert_eq!(from_str("-1"), Some(-1 as $T));
assert_eq!(from_str("-3"), Some(-3 as $T));
assert_eq!(from_str("-10"), Some(-10 as $T));
assert_eq!(i32::from_str("-123456789"), Some(-123456789 as i32));
assert_eq!(from_str("-00100"), Some(-100 as $T));
assert!(from_str(" ").is_none());
assert!(from_str("x").is_none());
}
#[test]
fn test_parse_bytes() {
use str::to_bytes;
assert_eq!(parse_bytes(to_bytes("123"), 10u), Some(123 as $T));
assert_eq!(parse_bytes(to_bytes("1001"), 2u), Some(9 as $T));
assert_eq!(parse_bytes(to_bytes("123"), 8u), Some(83 as $T));
assert_eq!(i32::parse_bytes(to_bytes("123"), 16u), Some(291 as i32));
assert_eq!(i32::parse_bytes(to_bytes("ffff"), 16u), Some(65535 as i32));
assert_eq!(i32::parse_bytes(to_bytes("FFFF"), 16u), Some(65535 as i32));
assert_eq!(parse_bytes(to_bytes("z"), 36u), Some(35 as $T));
assert_eq!(parse_bytes(to_bytes("Z"), 36u), Some(35 as $T));
assert_eq!(parse_bytes(to_bytes("-123"), 10u), Some(-123 as $T));
assert_eq!(parse_bytes(to_bytes("-1001"), 2u), Some(-9 as $T));
assert_eq!(parse_bytes(to_bytes("-123"), 8u), Some(-83 as $T));
assert_eq!(i32::parse_bytes(to_bytes("-123"), 16u), Some(-291 as i32));
assert_eq!(i32::parse_bytes(to_bytes("-ffff"), 16u), Some(-65535 as i32));
assert_eq!(i32::parse_bytes(to_bytes("-FFFF"), 16u), Some(-65535 as i32));
assert_eq!(parse_bytes(to_bytes("-z"), 36u), Some(-35 as $T));
assert_eq!(parse_bytes(to_bytes("-Z"), 36u), Some(-35 as $T));
assert!(parse_bytes(to_bytes("Z"), 35u).is_none());
assert!(parse_bytes(to_bytes("-9"), 2u).is_none());
}
#[test]
fn test_to_str() {
assert_eq!(to_str_radix(0 as $T, 10u), ~"0");
assert_eq!(to_str_radix(1 as $T, 10u), ~"1");
assert_eq!(to_str_radix(-1 as $T, 10u), ~"-1");
assert_eq!(to_str_radix(127 as $T, 16u), ~"7f");
assert_eq!(to_str_radix(100 as $T, 10u), ~"100");
}
#[test]
fn test_int_to_str_overflow() {
let mut i8_val: i8 = 127_i8;
assert_eq!(i8::to_str(i8_val), ~"127");
i8_val += 1 as i8;
assert_eq!(i8::to_str(i8_val), ~"-128");
let mut i16_val: i16 = 32_767_i16;
assert_eq!(i16::to_str(i16_val), ~"32767");
i16_val += 1 as i16;
assert_eq!(i16::to_str(i16_val), ~"-32768");
let mut i32_val: i32 = 2_147_483_647_i32;
assert_eq!(i32::to_str(i32_val), ~"2147483647");
i32_val += 1 as i32;
assert_eq!(i32::to_str(i32_val), ~"-2147483648");
let mut i64_val: i64 = 9_223_372_036_854_775_807_i64;
assert_eq!(i64::to_str(i64_val), ~"9223372036854775807");
i64_val += 1 as i64;
assert_eq!(i64::to_str(i64_val), ~"-9223372036854775808");
}
#[test]
fn test_int_from_str_overflow() {
let mut i8_val: i8 = 127_i8;
assert_eq!(i8::from_str("127"), Some(i8_val));
assert!(i8::from_str("128").is_none());
i8_val += 1 as i8;
assert_eq!(i8::from_str("-128"), Some(i8_val));
assert!(i8::from_str("-129").is_none());
let mut i16_val: i16 = 32_767_i16;
assert_eq!(i16::from_str("32767"), Some(i16_val));
assert!(i16::from_str("32768").is_none());
i16_val += 1 as i16;
assert_eq!(i16::from_str("-32768"), Some(i16_val));
assert!(i16::from_str("-32769").is_none());
let mut i32_val: i32 = 2_147_483_647_i32;
assert_eq!(i32::from_str("2147483647"), Some(i32_val));
assert!(i32::from_str("2147483648").is_none());
i32_val += 1 as i32;
assert_eq!(i32::from_str("-2147483648"), Some(i32_val));
assert!(i32::from_str("-2147483649").is_none());
let mut i64_val: i64 = 9_223_372_036_854_775_807_i64;
assert_eq!(i64::from_str("9223372036854775807"), Some(i64_val));
assert!(i64::from_str("9223372036854775808").is_none());
i64_val += 1 as i64;
assert_eq!(i64::from_str("-9223372036854775808"), Some(i64_val));
assert!(i64::from_str("-9223372036854775809").is_none());
}
#[test]
fn test_ranges() {
let mut l = ~[];
for range(0,3) |i| {
l.push(i);
}
for range_rev(13,10) |i| {
l.push(i);
}
for range_step(20,26,2) |i| {
l.push(i);
}
for range_step(36,30,-2) |i| {
l.push(i);
}
for range_step(max_value - 2, max_value, 2) |i| {
l.push(i);
}
for range_step(max_value - 3, max_value, 2) |i| {
l.push(i);
}
for range_step(min_value + 2, min_value, -2) |i| {
l.push(i);
}
for range_step(min_value + 3, min_value, -2) |i| {
l.push(i);
}
assert_eq!(l, ~[0,1,2,
13,12,11,
20,22,24,
36,34,32,
max_value-2,
max_value-3,max_value-1,
min_value+2,
min_value+3,min_value+1]);
// None of the `fail`s should execute.
for range(10,0) |_i| {
fail!(~"unreachable");
}
for range_rev(0,10) |_i| {
fail!(~"unreachable");
}
for range_step(10,0,1) |_i| {
fail!(~"unreachable");
}
for range_step(0,10,-1) |_i| {
fail!(~"unreachable");
}
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_range_step_zero_step() {
for range_step(0,10,0) |_i| {}
}
}
}))