rust/src/librustc/middle/resolve.rs

5296 lines
206 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use core::prelude::*;
use driver::session;
use driver::session::Session;
use metadata::csearch::{each_path, get_method_names_if_trait};
use metadata::csearch::{get_static_methods_if_impl, get_struct_fields};
use metadata::csearch::{get_type_name_if_impl};
use metadata::cstore::find_extern_mod_stmt_cnum;
use metadata::decoder::{def_like, dl_def, dl_field, dl_impl};
use middle::lang_items::LanguageItems;
use middle::lint::{deny, allow, forbid, level, unused_imports, warn};
use middle::lint::{get_lint_level, get_lint_settings_level};
use middle::pat_util::{pat_bindings};
use core::str;
use core::vec;
use syntax::ast::{RegionTyParamBound, TraitTyParamBound, _mod, add, arm};
use syntax::ast::{binding_mode, bitand, bitor, bitxor, blk};
use syntax::ast::{bind_infer, bind_by_ref, bind_by_copy};
use syntax::ast::{crate, crate_num, decl_item, def, def_arg, def_binding};
use syntax::ast::{def_const, def_foreign_mod, def_fn, def_id, def_label};
use syntax::ast::{def_local, def_mod, def_prim_ty, def_region, def_self};
use syntax::ast::{def_self_ty, def_static_method, def_struct, def_ty};
use syntax::ast::{def_ty_param, def_typaram_binder};
use syntax::ast::{def_upvar, def_use, def_variant, expr, expr_assign_op};
use syntax::ast::{expr_binary, expr_break, expr_cast, expr_field};
use syntax::ast::{expr_fn_block, expr_index, expr_method_call, expr_path};
use syntax::ast::{def_prim_ty, def_region, def_self, def_ty, def_ty_param};
use syntax::ast::{def_upvar, def_use, def_variant, div, eq};
use syntax::ast::{enum_variant_kind, expr, expr_again, expr_assign_op};
use syntax::ast::{expr_index, expr_loop};
use syntax::ast::{expr_path, expr_struct, expr_unary, fn_decl};
use syntax::ast::{foreign_item, foreign_item_const, foreign_item_fn, ge};
use syntax::ast::{Generics};
use syntax::ast::{gt, ident, impure_fn, inherited, item, item_struct};
use syntax::ast::{item_const, item_enum, item_fn, item_foreign_mod};
use syntax::ast::{item_impl, item_mac, item_mod, item_trait, item_ty, le};
use syntax::ast::{local, local_crate, lt, method, mode, module_ns, mul};
use syntax::ast::{named_field, ne, neg, node_id, pat, pat_enum, pat_ident};
use syntax::ast::{path, pat_box, pat_lit, pat_range, pat_struct};
use syntax::ast::{pat_tup, pat_uniq, pat_wild, prim_ty, private, provided};
use syntax::ast::{public, required, rem, self_ty_, shl, shr, stmt_decl};
use syntax::ast::{struct_dtor, struct_field, struct_variant_kind};
use syntax::ast::{sty_static, subtract, trait_ref, tuple_variant_kind, Ty};
use syntax::ast::{ty_bool, ty_char, ty_f, ty_f32, ty_f64, ty_float, ty_i};
use syntax::ast::{ty_i16, ty_i32, ty_i64, ty_i8, ty_int, TyParam, ty_path};
use syntax::ast::{ty_str, ty_u, ty_u16, ty_u32, ty_u64, ty_u8, ty_uint};
use syntax::ast::{type_value_ns, unnamed_field};
use syntax::ast::{variant, view_item, view_item_extern_mod};
use syntax::ast::{view_item_use, view_path_glob, view_path_list};
use syntax::ast::{view_path_simple, visibility, anonymous, named, not};
use syntax::ast::{unsafe_fn};
use syntax::ast_util::{def_id_of_def, local_def};
use syntax::ast_util::{path_to_ident, walk_pat, trait_method_to_ty_method};
use syntax::ast_util::{Privacy, Public, Private};
use syntax::ast_util::{variant_visibility_to_privacy, visibility_to_privacy};
use syntax::attr::{attr_metas, contains_name, attrs_contains_name};
use syntax::parse::token::ident_interner;
use syntax::parse::token::special_idents;
use syntax::print::pprust::{pat_to_str, path_to_str};
use syntax::codemap::{span, dummy_sp};
use syntax::visit::{default_visitor, fk_method, mk_vt, Visitor, visit_block};
use syntax::visit::{visit_crate, visit_expr, visit_expr_opt, visit_fn};
use syntax::visit::{visit_foreign_item, visit_item, visit_method_helper};
use syntax::visit::{visit_mod, visit_ty, vt};
use syntax::opt_vec::OptVec;
use core::str::{connect, each_split_str};
use core::hashmap::linear::{LinearMap, LinearSet};
// Definition mapping
pub type DefMap = @mut LinearMap<node_id,def>;
pub struct binding_info {
span: span,
binding_mode: binding_mode,
}
// Map from the name in a pattern to its binding mode.
pub type BindingMap = LinearMap<ident,binding_info>;
// Implementation resolution
//
// FIXME #4946: This kind of duplicates information kept in
// ty::method. Maybe it should go away.
pub struct MethodInfo {
did: def_id,
n_tps: uint,
ident: ident,
self_type: self_ty_
}
pub struct Impl {
did: def_id,
ident: ident,
methods: ~[@MethodInfo]
}
// Trait method resolution
pub type TraitMap = LinearMap<node_id,@mut ~[def_id]>;
// This is the replacement export map. It maps a module to all of the exports
// within.
pub type ExportMap2 = @mut LinearMap<node_id, ~[Export2]>;
pub struct Export2 {
name: @~str, // The name of the target.
def_id: def_id, // The definition of the target.
reexport: bool, // Whether this is a reexport.
}
#[deriving(Eq)]
pub enum PatternBindingMode {
RefutableMode,
LocalIrrefutableMode,
ArgumentIrrefutableMode(mode)
}
#[deriving(Eq)]
pub enum Namespace {
TypeNS,
ValueNS
}
/// A NamespaceResult represents the result of resolving an import in
/// a particular namespace. The result is either definitely-resolved,
/// definitely- unresolved, or unknown.
pub enum NamespaceResult {
/// Means that resolve hasn't gathered enough information yet to determine
/// whether the name is bound in this namespace. (That is, it hasn't
/// resolved all `use` directives yet.)
UnknownResult,
/// Means that resolve has determined that the name is definitely
/// not bound in the namespace.
UnboundResult,
/// Means that resolve has determined that the name is bound in the Module
/// argument, and specified by the NameBindings argument.
BoundResult(@mut Module, @mut NameBindings)
}
pub impl NamespaceResult {
fn is_unknown(&self) -> bool {
match *self {
UnknownResult => true,
_ => false
}
}
}
pub enum NameDefinition {
NoNameDefinition, //< The name was unbound.
ChildNameDefinition(def), //< The name identifies an immediate child.
ImportNameDefinition(def) //< The name identifies an import.
}
#[deriving(Eq)]
pub enum Mutability {
Mutable,
Immutable
}
pub enum SelfBinding {
NoSelfBinding,
HasSelfBinding(node_id, bool /* is implicit */)
}
pub type ResolveVisitor = vt<()>;
/// Contains data for specific types of import directives.
pub enum ImportDirectiveSubclass {
SingleImport(ident /* target */, ident /* source */),
GlobImport
}
/// The context that we thread through while building the reduced graph.
pub enum ReducedGraphParent {
ModuleReducedGraphParent(@mut Module)
}
pub enum ResolveResult<T> {
Failed, // Failed to resolve the name.
Indeterminate, // Couldn't determine due to unresolved globs.
Success(T) // Successfully resolved the import.
}
pub impl<T> ResolveResult<T> {
fn failed(&self) -> bool {
match *self { Failed => true, _ => false }
}
fn indeterminate(&self) -> bool {
match *self { Indeterminate => true, _ => false }
}
}
pub enum TypeParameters<'self> {
NoTypeParameters, //< No type parameters.
HasTypeParameters(&'self Generics, //< Type parameters.
node_id, //< ID of the enclosing item
// The index to start numbering the type parameters at.
// This is zero if this is the outermost set of type
// parameters, or equal to the number of outer type
// parameters. For example, if we have:
//
// impl I<T> {
// fn method<U>() { ... }
// }
//
// The index at the method site will be 1, because the
// outer T had index 0.
uint,
// The kind of the rib used for type parameters.
RibKind)
}
// The rib kind controls the translation of argument or local definitions
// (`def_arg` or `def_local`) to upvars (`def_upvar`).
pub enum RibKind {
// No translation needs to be applied.
NormalRibKind,
// We passed through a function scope at the given node ID. Translate
// upvars as appropriate.
FunctionRibKind(node_id /* func id */, node_id /* body id */),
// We passed through an impl or trait and are now in one of its
// methods. Allow references to ty params that that impl or trait
// binds. Disallow any other upvars (including other ty params that are
// upvars).
// parent; method itself
MethodRibKind(node_id, MethodSort),
// We passed through a function *item* scope. Disallow upvars.
OpaqueFunctionRibKind,
// We're in a constant item. Can't refer to dynamic stuff.
ConstantItemRibKind
}
// Methods can be required or provided. Required methods only occur in traits.
pub enum MethodSort {
Required,
Provided(node_id)
}
// The X-ray flag indicates that a context has the X-ray privilege, which
// allows it to reference private names. Currently, this is used for the test
// runner.
//
// FIXME #4947: The X-ray flag is kind of questionable in the first
// place. It might be better to introduce an expr_xray_path instead.
#[deriving(Eq)]
pub enum XrayFlag {
NoXray, //< Private items cannot be accessed.
Xray //< Private items can be accessed.
}
pub enum UseLexicalScopeFlag {
DontUseLexicalScope,
UseLexicalScope
}
pub enum SearchThroughModulesFlag {
DontSearchThroughModules,
SearchThroughModules
}
pub enum ModulePrefixResult {
NoPrefixFound,
PrefixFound(@mut Module, uint)
}
#[deriving(Eq)]
pub enum AllowCapturingSelfFlag {
AllowCapturingSelf, //< The "self" definition can be captured.
DontAllowCapturingSelf, //< The "self" definition cannot be captured.
}
#[deriving(Eq)]
enum NameSearchType {
SearchItemsAndPublicImports, //< Search items and public imports.
SearchItemsAndAllImports, //< Search items and all imports.
}
pub enum BareIdentifierPatternResolution {
FoundStructOrEnumVariant(def),
FoundConst(def),
BareIdentifierPatternUnresolved
}
// Specifies how duplicates should be handled when adding a child item if
// another item exists with the same name in some namespace.
#[deriving(Eq)]
pub enum DuplicateCheckingMode {
ForbidDuplicateModules,
ForbidDuplicateTypes,
ForbidDuplicateValues,
ForbidDuplicateTypesAndValues,
OverwriteDuplicates
}
// Returns the namespace associated with the given duplicate checking mode,
// or fails for OverwriteDuplicates. This is used for error messages.
pub fn namespace_for_duplicate_checking_mode(mode: DuplicateCheckingMode)
-> Namespace {
match mode {
ForbidDuplicateModules | ForbidDuplicateTypes |
ForbidDuplicateTypesAndValues => TypeNS,
ForbidDuplicateValues => ValueNS,
OverwriteDuplicates => fail!(~"OverwriteDuplicates has no namespace")
}
}
/// One local scope.
pub struct Rib {
bindings: @mut LinearMap<ident,def_like>,
kind: RibKind,
}
pub fn Rib(kind: RibKind) -> Rib {
Rib {
bindings: @mut LinearMap::new(),
kind: kind
}
}
/// One import directive.
pub struct ImportDirective {
privacy: Privacy,
module_path: ~[ident],
subclass: @ImportDirectiveSubclass,
span: span,
}
pub fn ImportDirective(privacy: Privacy,
+module_path: ~[ident],
subclass: @ImportDirectiveSubclass,
span: span)
-> ImportDirective {
ImportDirective {
privacy: privacy,
module_path: module_path,
subclass: subclass,
span: span
}
}
/// The item that an import resolves to.
pub struct Target {
target_module: @mut Module,
bindings: @mut NameBindings,
}
pub fn Target(target_module: @mut Module,
bindings: @mut NameBindings)
-> Target {
Target {
target_module: target_module,
bindings: bindings
}
}
/// An ImportResolution represents a particular `use` directive.
pub struct ImportResolution {
/// The privacy of this `use` directive (whether it's `use` or
/// `pub use`.
privacy: Privacy,
span: span,
// The number of outstanding references to this name. When this reaches
// zero, outside modules can count on the targets being correct. Before
// then, all bets are off; future imports could override this name.
outstanding_references: uint,
/// The value that this `use` directive names, if there is one.
value_target: Option<Target>,
/// The type that this `use` directive names, if there is one.
type_target: Option<Target>,
/// There exists one state per import statement
state: @mut ImportState,
}
pub fn ImportResolution(privacy: Privacy,
+span: span,
state: @mut ImportState) -> ImportResolution {
ImportResolution {
privacy: privacy,
span: span,
outstanding_references: 0,
value_target: None,
type_target: None,
state: state,
}
}
pub impl ImportResolution {
fn target_for_namespace(&self, namespace: Namespace) -> Option<Target> {
match namespace {
TypeNS => return copy self.type_target,
ValueNS => return copy self.value_target
}
}
}
pub struct ImportState {
used: bool,
warned: bool
}
pub fn ImportState() -> ImportState {
ImportState{ used: false, warned: false }
}
/// The link from a module up to its nearest parent node.
pub enum ParentLink {
NoParentLink,
ModuleParentLink(@mut Module, ident),
BlockParentLink(@mut Module, node_id)
}
/// The type of module this is.
pub enum ModuleKind {
NormalModuleKind,
ExternModuleKind,
TraitModuleKind,
AnonymousModuleKind,
}
/// One node in the tree of modules.
pub struct Module {
parent_link: ParentLink,
def_id: Option<def_id>,
kind: ModuleKind,
children: @mut LinearMap<ident, @mut NameBindings>,
imports: @mut ~[@ImportDirective],
// The external module children of this node that were declared with
// `extern mod`.
external_module_children: @mut LinearMap<ident, @mut Module>,
// The anonymous children of this node. Anonymous children are pseudo-
// modules that are implicitly created around items contained within
// blocks.
//
// For example, if we have this:
//
// fn f() {
// fn g() {
// ...
// }
// }
//
// There will be an anonymous module created around `g` with the ID of the
// entry block for `f`.
anonymous_children: @mut LinearMap<node_id,@mut Module>,
// The status of resolving each import in this module.
import_resolutions: @mut LinearMap<ident, @mut ImportResolution>,
// The number of unresolved globs that this module exports.
glob_count: uint,
// The index of the import we're resolving.
resolved_import_count: uint,
}
pub fn Module(parent_link: ParentLink,
def_id: Option<def_id>,
kind: ModuleKind)
-> Module {
Module {
parent_link: parent_link,
def_id: def_id,
kind: kind,
children: @mut LinearMap::new(),
imports: @mut ~[],
external_module_children: @mut LinearMap::new(),
anonymous_children: @mut LinearMap::new(),
import_resolutions: @mut LinearMap::new(),
glob_count: 0,
resolved_import_count: 0
}
}
pub impl Module {
fn all_imports_resolved(&self) -> bool {
let imports = &mut *self.imports;
return imports.len() == self.resolved_import_count;
}
}
// Records a possibly-private type definition.
pub struct TypeNsDef {
privacy: Privacy,
module_def: Option<@mut Module>,
type_def: Option<def>
}
// Records a possibly-private value definition.
pub struct ValueNsDef {
privacy: Privacy,
def: def,
}
// Records the definitions (at most one for each namespace) that a name is
// bound to.
pub struct NameBindings {
type_def: Option<TypeNsDef>, //< Meaning in type namespace.
value_def: Option<ValueNsDef>, //< Meaning in value namespace.
// For error reporting
// FIXME (#3783): Merge me into TypeNsDef and ValueNsDef.
type_span: Option<span>,
value_span: Option<span>,
}
pub impl NameBindings {
/// Creates a new module in this set of name bindings.
fn define_module(@mut self,
privacy: Privacy,
parent_link: ParentLink,
def_id: Option<def_id>,
kind: ModuleKind,
sp: span) {
// Merges the module with the existing type def or creates a new one.
let module_ = @mut Module(parent_link, def_id, kind);
match self.type_def {
None => {
self.type_def = Some(TypeNsDef {
privacy: privacy,
module_def: Some(module_),
type_def: None
});
}
Some(copy type_def) => {
self.type_def = Some(TypeNsDef {
privacy: privacy,
module_def: Some(module_),
.. type_def
});
}
}
self.type_span = Some(sp);
}
/// Records a type definition.
fn define_type(@mut self, privacy: Privacy, def: def, sp: span) {
// Merges the type with the existing type def or creates a new one.
match self.type_def {
None => {
self.type_def = Some(TypeNsDef {
privacy: privacy,
module_def: None,
type_def: Some(def)
});
}
Some(copy type_def) => {
self.type_def = Some(TypeNsDef {
privacy: privacy,
type_def: Some(def),
.. type_def
});
}
}
self.type_span = Some(sp);
}
/// Records a value definition.
fn define_value(@mut self, privacy: Privacy, def: def, sp: span) {
self.value_def = Some(ValueNsDef { privacy: privacy, def: def });
self.value_span = Some(sp);
}
/// Returns the module node if applicable.
fn get_module_if_available(&self) -> Option<@mut Module> {
match self.type_def {
Some(ref type_def) => (*type_def).module_def,
None => None
}
}
/**
* Returns the module node. Fails if this node does not have a module
* definition.
*/
fn get_module(@mut self) -> @mut Module {
match self.get_module_if_available() {
None => {
fail!(~"get_module called on a node with no module \
definition!")
}
Some(module_def) => module_def
}
}
fn defined_in_namespace(&self, namespace: Namespace) -> bool {
match namespace {
TypeNS => return self.type_def.is_some(),
ValueNS => return self.value_def.is_some()
}
}
fn defined_in_public_namespace(&self, namespace: Namespace) -> bool {
match namespace {
TypeNS => match self.type_def {
Some(def) => def.privacy != Private,
None => false
},
ValueNS => match self.value_def {
Some(def) => def.privacy != Private,
None => false
}
}
}
fn def_for_namespace(&self, namespace: Namespace) -> Option<def> {
match namespace {
TypeNS => {
match self.type_def {
None => None,
Some(ref type_def) => {
// FIXME (#3784): This is reallllly questionable.
// Perhaps the right thing to do is to merge def_mod
// and def_ty.
match (*type_def).type_def {
Some(type_def) => Some(type_def),
None => {
match (*type_def).module_def {
Some(module_def) => {
let module_def = &mut *module_def;
module_def.def_id.map(|def_id|
def_mod(*def_id))
}
None => None
}
}
}
}
}
}
ValueNS => {
match self.value_def {
None => None,
Some(value_def) => Some(value_def.def)
}
}
}
}
fn privacy_for_namespace(&self, namespace: Namespace) -> Option<Privacy> {
match namespace {
TypeNS => {
match self.type_def {
None => None,
Some(ref type_def) => Some((*type_def).privacy)
}
}
ValueNS => {
match self.value_def {
None => None,
Some(value_def) => Some(value_def.privacy)
}
}
}
}
fn span_for_namespace(&self, namespace: Namespace) -> Option<span> {
if self.defined_in_namespace(namespace) {
match namespace {
TypeNS => self.type_span,
ValueNS => self.value_span,
}
} else {
None
}
}
}
pub fn NameBindings() -> NameBindings {
NameBindings {
type_def: None,
value_def: None,
type_span: None,
value_span: None
}
}
/// Interns the names of the primitive types.
pub struct PrimitiveTypeTable {
primitive_types: LinearMap<ident,prim_ty>,
}
pub impl PrimitiveTypeTable {
fn intern(&mut self, intr: @ident_interner, string: @~str,
primitive_type: prim_ty) {
let ident = intr.intern(string);
self.primitive_types.insert(ident, primitive_type);
}
}
pub fn PrimitiveTypeTable(intr: @ident_interner) -> PrimitiveTypeTable {
let mut table = PrimitiveTypeTable {
primitive_types: LinearMap::new()
};
table.intern(intr, @~"bool", ty_bool);
table.intern(intr, @~"char", ty_int(ty_char));
table.intern(intr, @~"float", ty_float(ty_f));
table.intern(intr, @~"f32", ty_float(ty_f32));
table.intern(intr, @~"f64", ty_float(ty_f64));
table.intern(intr, @~"int", ty_int(ty_i));
table.intern(intr, @~"i8", ty_int(ty_i8));
table.intern(intr, @~"i16", ty_int(ty_i16));
table.intern(intr, @~"i32", ty_int(ty_i32));
table.intern(intr, @~"i64", ty_int(ty_i64));
table.intern(intr, @~"str", ty_str);
table.intern(intr, @~"uint", ty_uint(ty_u));
table.intern(intr, @~"u8", ty_uint(ty_u8));
table.intern(intr, @~"u16", ty_uint(ty_u16));
table.intern(intr, @~"u32", ty_uint(ty_u32));
table.intern(intr, @~"u64", ty_uint(ty_u64));
return table;
}
pub fn namespace_to_str(ns: Namespace) -> ~str {
match ns {
TypeNS => ~"type",
ValueNS => ~"value",
}
}
pub fn Resolver(session: Session,
lang_items: LanguageItems,
crate: @crate)
-> Resolver {
let graph_root = @mut NameBindings();
graph_root.define_module(Public,
NoParentLink,
Some(def_id { crate: 0, node: 0 }),
NormalModuleKind,
crate.span);
let current_module = graph_root.get_module();
let self = Resolver {
session: @session,
lang_items: copy lang_items,
crate: crate,
// The outermost module has def ID 0; this is not reflected in the
// AST.
graph_root: graph_root,
trait_info: LinearMap::new(),
structs: LinearSet::new(),
unresolved_imports: 0,
current_module: current_module,
value_ribs: ~[],
type_ribs: ~[],
label_ribs: ~[],
xray_context: NoXray,
current_trait_refs: None,
self_ident: special_idents::self_,
type_self_ident: special_idents::type_self,
primitive_type_table: @PrimitiveTypeTable(session.
parse_sess.interner),
namespaces: ~[ TypeNS, ValueNS ],
attr_main_fn: None,
main_fns: ~[],
def_map: @mut LinearMap::new(),
export_map2: @mut LinearMap::new(),
trait_map: LinearMap::new(),
intr: session.intr()
};
self
}
/// The main resolver class.
pub struct Resolver {
session: @Session,
lang_items: LanguageItems,
crate: @crate,
intr: @ident_interner,
graph_root: @mut NameBindings,
trait_info: LinearMap<def_id, LinearSet<ident>>,
structs: LinearSet<def_id>,
// The number of imports that are currently unresolved.
unresolved_imports: uint,
// The module that represents the current item scope.
current_module: @mut Module,
// The current set of local scopes, for values.
// FIXME #4948: Reuse ribs to avoid allocation.
value_ribs: ~[@Rib],
// The current set of local scopes, for types.
type_ribs: ~[@Rib],
// The current set of local scopes, for labels.
label_ribs: ~[@Rib],
// Whether the current context is an X-ray context. An X-ray context is
// allowed to access private names of any module.
xray_context: XrayFlag,
// The trait that the current context can refer to.
current_trait_refs: Option<~[def_id]>,
// The ident for the keyword "self".
self_ident: ident,
// The ident for the non-keyword "Self".
type_self_ident: ident,
// The idents for the primitive types.
primitive_type_table: @PrimitiveTypeTable,
// The four namespaces.
namespaces: ~[Namespace],
// The function that has attribute named 'main'
attr_main_fn: Option<(node_id, span)>,
// The functions named 'main'
main_fns: ~[Option<(node_id, span)>],
def_map: DefMap,
export_map2: ExportMap2,
trait_map: TraitMap,
}
pub impl Resolver {
/// The main name resolution procedure.
fn resolve(@mut self) {
self.build_reduced_graph();
self.session.abort_if_errors();
self.resolve_imports();
self.session.abort_if_errors();
self.record_exports();
self.session.abort_if_errors();
self.resolve_crate();
self.session.abort_if_errors();
self.check_duplicate_main();
self.check_for_unused_imports_if_necessary();
}
//
// Reduced graph building
//
// Here we build the "reduced graph": the graph of the module tree without
// any imports resolved.
//
/// Constructs the reduced graph for the entire crate.
fn build_reduced_graph(@mut self) {
let initial_parent =
ModuleReducedGraphParent(self.graph_root.get_module());
visit_crate(*self.crate, initial_parent, mk_vt(@Visitor {
visit_item: |item, context, visitor|
self.build_reduced_graph_for_item(item, context, visitor),
visit_foreign_item: |foreign_item, context, visitor|
self.build_reduced_graph_for_foreign_item(foreign_item,
context,
visitor),
visit_view_item: |view_item, context, visitor|
self.build_reduced_graph_for_view_item(view_item,
context,
visitor),
visit_block: |block, context, visitor|
self.build_reduced_graph_for_block(block,
context,
visitor),
.. *default_visitor()
}));
}
/// Returns the current module tracked by the reduced graph parent.
fn get_module_from_parent(@mut self,
reduced_graph_parent: ReducedGraphParent)
-> @mut Module {
match reduced_graph_parent {
ModuleReducedGraphParent(module_) => {
return module_;
}
}
}
/**
* Adds a new child item to the module definition of the parent node and
* returns its corresponding name bindings as well as the current parent.
* Or, if we're inside a block, creates (or reuses) an anonymous module
* corresponding to the innermost block ID and returns the name bindings
* as well as the newly-created parent.
*
* If this node does not have a module definition and we are not inside
* a block, fails.
*/
fn add_child(@mut self,
name: ident,
reduced_graph_parent: ReducedGraphParent,
duplicate_checking_mode: DuplicateCheckingMode,
// For printing errors
sp: span)
-> (@mut NameBindings, ReducedGraphParent) {
// If this is the immediate descendant of a module, then we add the
// child name directly. Otherwise, we create or reuse an anonymous
// module and add the child to that.
let mut module_;
match reduced_graph_parent {
ModuleReducedGraphParent(parent_module) => {
module_ = parent_module;
}
}
// Add or reuse the child.
let new_parent = ModuleReducedGraphParent(module_);
match module_.children.find(&name) {
None => {
let child = @mut NameBindings();
module_.children.insert(name, child);
return (child, new_parent);
}
Some(child) => {
// Enforce the duplicate checking mode:
//
// * If we're requesting duplicate module checking, check that
// there isn't a module in the module with the same name.
//
// * If we're requesting duplicate type checking, check that
// there isn't a type in the module with the same name.
//
// * If we're requesting duplicate value checking, check that
// there isn't a value in the module with the same name.
//
// * If we're requesting duplicate type checking and duplicate
// value checking, check that there isn't a duplicate type
// and a duplicate value with the same name.
//
// * If no duplicate checking was requested at all, do
// nothing.
let mut is_duplicate = false;
match duplicate_checking_mode {
ForbidDuplicateModules => {
is_duplicate =
child.get_module_if_available().is_some();
}
ForbidDuplicateTypes => {
match child.def_for_namespace(TypeNS) {
Some(def_mod(_)) | None => {}
Some(_) => is_duplicate = true
}
}
ForbidDuplicateValues => {
is_duplicate = child.defined_in_namespace(ValueNS);
}
ForbidDuplicateTypesAndValues => {
match child.def_for_namespace(TypeNS) {
Some(def_mod(_)) | None => {}
Some(_) => is_duplicate = true
};
if child.defined_in_namespace(ValueNS) {
is_duplicate = true;
}
}
OverwriteDuplicates => {}
}
if duplicate_checking_mode != OverwriteDuplicates &&
is_duplicate {
// Return an error here by looking up the namespace that
// had the duplicate.
let ns = namespace_for_duplicate_checking_mode(
duplicate_checking_mode);
self.session.span_err(sp,
fmt!("duplicate definition of %s %s",
namespace_to_str(ns),
*self.session.str_of(name)));
for child.span_for_namespace(ns).each |sp| {
self.session.span_note(*sp,
fmt!("first definition of %s %s here:",
namespace_to_str(ns),
*self.session.str_of(name)));
}
}
return (*child, new_parent);
}
}
}
fn block_needs_anonymous_module(@mut self, block: &blk) -> bool {
// If the block has view items, we need an anonymous module.
if block.node.view_items.len() > 0 {
return true;
}
// Check each statement.
for block.node.stmts.each |statement| {
match statement.node {
stmt_decl(declaration, _) => {
match declaration.node {
decl_item(_) => {
return true;
}
_ => {
// Keep searching.
}
}
}
_ => {
// Keep searching.
}
}
}
// If we found neither view items nor items, we don't need to create
// an anonymous module.
return false;
}
fn get_parent_link(@mut self,
parent: ReducedGraphParent,
name: ident)
-> ParentLink {
match parent {
ModuleReducedGraphParent(module_) => {
return ModuleParentLink(module_, name);
}
}
}
/// Constructs the reduced graph for one item.
fn build_reduced_graph_for_item(@mut self,
item: @item,
parent: ReducedGraphParent,
&&visitor: vt<ReducedGraphParent>) {
let ident = item.ident;
let sp = item.span;
let privacy = visibility_to_privacy(item.vis);
match item.node {
item_mod(ref module_) => {
let (name_bindings, new_parent) =
self.add_child(ident, parent, ForbidDuplicateModules, sp);
let parent_link = self.get_parent_link(new_parent, ident);
let def_id = def_id { crate: 0, node: item.id };
name_bindings.define_module(privacy,
parent_link,
Some(def_id),
NormalModuleKind,
sp);
let new_parent =
ModuleReducedGraphParent(name_bindings.get_module());
visit_mod(module_, sp, item.id, new_parent, visitor);
}
item_foreign_mod(ref fm) => {
let new_parent = match fm.sort {
named => {
let (name_bindings, new_parent) =
self.add_child(ident, parent,
ForbidDuplicateModules, sp);
let parent_link = self.get_parent_link(new_parent,
ident);
let def_id = def_id { crate: 0, node: item.id };
name_bindings.define_module(privacy,
parent_link,
Some(def_id),
ExternModuleKind,
sp);
ModuleReducedGraphParent(name_bindings.get_module())
}
// For anon foreign mods, the contents just go in the
// current scope
anonymous => parent
};
visit_item(item, new_parent, visitor);
}
// These items live in the value namespace.
item_const(*) => {
let (name_bindings, _) =
self.add_child(ident, parent, ForbidDuplicateValues, sp);
name_bindings.define_value
(privacy, def_const(local_def(item.id)), sp);
}
item_fn(_, purity, _, _) => {
let (name_bindings, new_parent) =
self.add_child(ident, parent, ForbidDuplicateValues, sp);
let def = def_fn(local_def(item.id), purity);
name_bindings.define_value(privacy, def, sp);
visit_item(item, new_parent, visitor);
}
// These items live in the type namespace.
item_ty(*) => {
let (name_bindings, _) =
self.add_child(ident, parent, ForbidDuplicateTypes, sp);
name_bindings.define_type
(privacy, def_ty(local_def(item.id)), sp);
}
item_enum(ref enum_definition, _) => {
let (name_bindings, new_parent) =
self.add_child(ident, parent, ForbidDuplicateTypes, sp);
name_bindings.define_type
(privacy, def_ty(local_def(item.id)), sp);
for (*enum_definition).variants.each |variant| {
self.build_reduced_graph_for_variant(*variant,
local_def(item.id),
// inherited => privacy of the enum item
variant_visibility_to_privacy(variant.node.vis,
privacy == Public),
new_parent,
visitor);
}
}
// These items live in both the type and value namespaces.
item_struct(struct_def, _) => {
let (name_bindings, new_parent) =
self.add_child(ident, parent, ForbidDuplicateTypes, sp);
name_bindings.define_type(
privacy, def_ty(local_def(item.id)), sp);
// If this struct is tuple-like or enum-like, define a name
// in the value namespace.
match struct_def.ctor_id {
None => {}
Some(ctor_id) => {
name_bindings.define_value(
privacy,
def_struct(local_def(ctor_id)),
sp);
}
}
// Record the def ID of this struct.
self.structs.insert(local_def(item.id));
visit_item(item, new_parent, visitor);
}
item_impl(_, trait_ref_opt, ty, ref methods) => {
// If this implements an anonymous trait and it has static
// methods, then add all the static methods within to a new
// module, if the type was defined within this module.
//
// FIXME (#3785): This is quite unsatisfactory. Perhaps we
// should modify anonymous traits to only be implementable in
// the same module that declared the type.
// Bail out early if there are no static methods.
let mut has_static_methods = false;
for methods.each |method| {
match method.self_ty.node {
sty_static => has_static_methods = true,
_ => {}
}
}
// If there are static methods, then create the module
// and add them.
match (trait_ref_opt, ty) {
(None, @Ty { node: ty_path(path, _), _ }) if
has_static_methods && path.idents.len() == 1 => {
// Create the module.
let name = path_to_ident(path);
let (name_bindings, new_parent) =
self.add_child(name,
parent,
ForbidDuplicateModules,
sp);
let parent_link = self.get_parent_link(new_parent,
ident);
let def_id = local_def(item.id);
name_bindings.define_module(Public,
parent_link,
Some(def_id),
TraitModuleKind,
sp);
let new_parent = ModuleReducedGraphParent(
name_bindings.get_module());
// For each static method...
for methods.each |method| {
match method.self_ty.node {
sty_static => {
// Add the static method to the
// module.
let ident = method.ident;
let (method_name_bindings, _) =
self.add_child(
ident,
new_parent,
ForbidDuplicateValues,
method.span);
let def = def_fn(local_def(method.id),
method.purity);
method_name_bindings.define_value(
Public, def, method.span);
}
_ => {}
}
}
}
_ => {}
}
visit_item(item, parent, visitor);
}
item_trait(_, _, ref methods) => {
let (name_bindings, new_parent) =
self.add_child(ident, parent, ForbidDuplicateTypes, sp);
// If the trait has static methods, then add all the static
// methods within to a new module.
//
// We only need to create the module if the trait has static
// methods, so check that first.
let mut has_static_methods = false;
for (*methods).each |method| {
let ty_m = trait_method_to_ty_method(method);
match ty_m.self_ty.node {
sty_static => {
has_static_methods = true;
break;
}
_ => {}
}
}
// Create the module if necessary.
let module_parent_opt;
if has_static_methods {
let parent_link = self.get_parent_link(parent, ident);
name_bindings.define_module(privacy,
parent_link,
Some(local_def(item.id)),
TraitModuleKind,
sp);
module_parent_opt = Some(ModuleReducedGraphParent(
name_bindings.get_module()));
} else {
module_parent_opt = None;
}
// Add the names of all the methods to the trait info.
let mut method_names = LinearSet::new();
for methods.each |method| {
let ty_m = trait_method_to_ty_method(method);
let ident = ty_m.ident;
// Add it to the trait info if not static,
// add it as a name in the trait module otherwise.
match ty_m.self_ty.node {
sty_static => {
let def = def_static_method(
local_def(ty_m.id),
Some(local_def(item.id)),
ty_m.purity);
let (method_name_bindings, _) =
self.add_child(ident,
module_parent_opt.get(),
ForbidDuplicateValues,
ty_m.span);
method_name_bindings.define_value(Public,
def,
ty_m.span);
}
_ => {
method_names.insert(ident);
}
}
}
let def_id = local_def(item.id);
self.trait_info.insert(def_id, method_names);
name_bindings.define_type(privacy, def_ty(def_id), sp);
visit_item(item, new_parent, visitor);
}
item_mac(*) => {
fail!(~"item macros unimplemented")
}
}
}
// Constructs the reduced graph for one variant. Variants exist in the
// type and/or value namespaces.
fn build_reduced_graph_for_variant(@mut self,
variant: variant,
item_id: def_id,
+parent_privacy: Privacy,
parent: ReducedGraphParent,
&&visitor: vt<ReducedGraphParent>) {
let ident = variant.node.name;
let (child, _) = self.add_child(ident, parent, ForbidDuplicateValues,
variant.span);
let privacy;
match variant.node.vis {
public => privacy = Public,
private => privacy = Private,
inherited => privacy = parent_privacy
}
match variant.node.kind {
tuple_variant_kind(_) => {
child.define_value(privacy,
def_variant(item_id,
local_def(variant.node.id)),
variant.span);
}
struct_variant_kind(_) => {
child.define_type(privacy,
def_variant(item_id,
local_def(variant.node.id)),
variant.span);
self.structs.insert(local_def(variant.node.id));
}
enum_variant_kind(ref enum_definition) => {
child.define_type(privacy,
def_ty(local_def(variant.node.id)),
variant.span);
for (*enum_definition).variants.each |variant| {
self.build_reduced_graph_for_variant(*variant, item_id,
parent_privacy,
parent, visitor);
}
}
}
}
/**
* Constructs the reduced graph for one 'view item'. View items consist
* of imports and use directives.
*/
fn build_reduced_graph_for_view_item(@mut self,
view_item: @view_item,
parent: ReducedGraphParent,
&&_visitor: vt<ReducedGraphParent>) {
let privacy = visibility_to_privacy(view_item.vis);
match view_item.node {
view_item_use(ref view_paths) => {
for view_paths.each |view_path| {
// Extract and intern the module part of the path. For
// globs and lists, the path is found directly in the AST;
// for simple paths we have to munge the path a little.
let mut module_path = ~[];
match view_path.node {
view_path_simple(_, full_path, _, _) => {
let path_len = full_path.idents.len();
fail_unless!(path_len != 0);
for full_path.idents.eachi |i, ident| {
if i != path_len - 1 {
module_path.push(*ident);
}
}
}
view_path_glob(module_ident_path, _) |
view_path_list(module_ident_path, _, _) => {
for module_ident_path.idents.each |ident| {
module_path.push(*ident);
}
}
}
// Build up the import directives.
let module_ = self.get_module_from_parent(parent);
let state = @mut ImportState();
match view_path.node {
view_path_simple(binding, full_path, _, _) => {
let source_ident = *full_path.idents.last();
let subclass = @SingleImport(binding,
source_ident);
self.build_import_directive(privacy,
module_,
module_path,
subclass,
view_path.span,
state);
}
view_path_list(_, ref source_idents, _) => {
for (*source_idents).each |source_ident| {
let name = source_ident.node.name;
let subclass = @SingleImport(name, name);
self.build_import_directive(privacy,
module_,
copy module_path,
subclass,
view_path.span,
state);
}
}
view_path_glob(_, _) => {
self.build_import_directive(privacy,
module_,
module_path,
@GlobImport,
view_path.span,
state);
}
}
}
}
view_item_extern_mod(name, _, node_id) => {
match find_extern_mod_stmt_cnum(self.session.cstore,
node_id) {
Some(crate_id) => {
let def_id = def_id { crate: crate_id, node: 0 };
let parent_link = ModuleParentLink
(self.get_module_from_parent(parent), name);
let external_module = @mut Module(parent_link,
Some(def_id),
NormalModuleKind);
parent.external_module_children.insert(
name,
external_module);
self.build_reduced_graph_for_external_crate(
external_module);
}
None => {} // Ignore.
}
}
}
}
/// Constructs the reduced graph for one foreign item.
fn build_reduced_graph_for_foreign_item(@mut self,
foreign_item: @foreign_item,
parent: ReducedGraphParent,
&&visitor:
vt<ReducedGraphParent>) {
let name = foreign_item.ident;
let (name_bindings, new_parent) =
self.add_child(name, parent, ForbidDuplicateValues,
foreign_item.span);
match foreign_item.node {
foreign_item_fn(_, _, ref generics) => {
let def = def_fn(local_def(foreign_item.id), unsafe_fn);
name_bindings.define_value(Public, def, foreign_item.span);
do self.with_type_parameter_rib(
HasTypeParameters(
generics, foreign_item.id, 0, NormalRibKind))
{
visit_foreign_item(foreign_item, new_parent, visitor);
}
}
foreign_item_const(*) => {
let def = def_const(local_def(foreign_item.id));
name_bindings.define_value(Public, def, foreign_item.span);
visit_foreign_item(foreign_item, new_parent, visitor);
}
}
}
fn build_reduced_graph_for_block(@mut self,
block: &blk,
parent: ReducedGraphParent,
&&visitor: vt<ReducedGraphParent>) {
let mut new_parent;
if self.block_needs_anonymous_module(block) {
let block_id = block.node.id;
debug!("(building reduced graph for block) creating a new \
anonymous module for block %d",
block_id);
let parent_module = self.get_module_from_parent(parent);
let new_module = @mut Module(
BlockParentLink(parent_module, block_id),
None,
AnonymousModuleKind);
parent_module.anonymous_children.insert(block_id, new_module);
new_parent = ModuleReducedGraphParent(new_module);
} else {
new_parent = parent;
}
visit_block(block, new_parent, visitor);
}
fn handle_external_def(@mut self,
def: def,
modules: &mut LinearMap<def_id, @mut Module>,
child_name_bindings: @mut NameBindings,
final_ident: &str,
ident: ident,
new_parent: ReducedGraphParent) {
match def {
def_mod(def_id) | def_foreign_mod(def_id) => {
match child_name_bindings.type_def {
Some(TypeNsDef { module_def: Some(copy module_def), _ }) => {
debug!("(building reduced graph for external crate) \
already created module");
module_def.def_id = Some(def_id);
modules.insert(def_id, module_def);
}
Some(_) | None => {
debug!("(building reduced graph for \
external crate) building module \
%s", final_ident);
let parent_link = self.get_parent_link(new_parent, ident);
// FIXME (#5074): this should be a match on find
if !modules.contains_key(&def_id) {
child_name_bindings.define_module(Public,
parent_link,
Some(def_id),
NormalModuleKind,
dummy_sp());
modules.insert(def_id,
child_name_bindings.get_module());
} else {
let existing_module = *modules.get(&def_id);
// Create an import resolution to
// avoid creating cycles in the
// module graph.
let resolution =
@mut ImportResolution(Public,
dummy_sp(),
@mut ImportState());
resolution.outstanding_references = 0;
match existing_module.parent_link {
NoParentLink |
BlockParentLink(*) => {
fail!(~"can't happen");
}
ModuleParentLink(parent_module, ident) => {
let name_bindings = parent_module.children.get(
&ident);
resolution.type_target =
Some(Target(parent_module, *name_bindings));
}
}
debug!("(building reduced graph for external crate) \
... creating import resolution");
new_parent.import_resolutions.insert(ident, resolution);
}
}
}
}
def_fn(*) | def_static_method(*) | def_const(*) |
def_variant(*) => {
debug!("(building reduced graph for external \
crate) building value %s", final_ident);
child_name_bindings.define_value(Public, def, dummy_sp());
}
def_ty(def_id) => {
debug!("(building reduced graph for external \
crate) building type %s", final_ident);
// If this is a trait, add all the method names
// to the trait info.
match get_method_names_if_trait(self.session.cstore, def_id) {
None => {
// Nothing to do.
}
Some(method_names) => {
let mut interned_method_names = LinearSet::new();
for method_names.each |method_data| {
let (method_name, self_ty) = *method_data;
debug!("(building reduced graph for \
external crate) ... adding \
trait method '%s'",
*self.session.str_of(method_name));
// Add it to the trait info if not static.
if self_ty != sty_static {
interned_method_names.insert(method_name);
}
}
self.trait_info.insert(def_id, interned_method_names);
}
}
child_name_bindings.define_type(Public, def, dummy_sp());
}
def_struct(def_id) => {
debug!("(building reduced graph for external \
crate) building type %s",
final_ident);
child_name_bindings.define_type(Public, def, dummy_sp());
self.structs.insert(def_id);
}
def_self(*) | def_arg(*) | def_local(*) |
def_prim_ty(*) | def_ty_param(*) | def_binding(*) |
def_use(*) | def_upvar(*) | def_region(*) |
def_typaram_binder(*) | def_label(*) | def_self_ty(*) => {
fail!(fmt!("didn't expect `%?`", def));
}
}
}
/**
* Builds the reduced graph rooted at the 'use' directive for an external
* crate.
*/
fn build_reduced_graph_for_external_crate(@mut self, root: @mut Module) {
let mut modules = LinearMap::new();
// Create all the items reachable by paths.
for each_path(self.session.cstore, root.def_id.get().crate)
|path_string, def_like| {
debug!("(building reduced graph for external crate) found path \
entry: %s (%?)",
path_string, def_like);
let mut pieces = ~[];
for each_split_str(path_string, "::") |s| { pieces.push(s.to_owned()) }
let final_ident_str = pieces.pop();
let final_ident = self.session.ident_of(final_ident_str);
// Find the module we need, creating modules along the way if we
// need to.
let mut current_module = root;
for pieces.each |ident_str| {
let ident = self.session.ident_of(/*bad*/copy *ident_str);
// Create or reuse a graph node for the child.
let (child_name_bindings, new_parent) =
self.add_child(ident,
ModuleReducedGraphParent(current_module),
OverwriteDuplicates,
dummy_sp());
// Define or reuse the module node.
match child_name_bindings.type_def {
None => {
debug!("(building reduced graph for external crate) \
autovivifying missing type def %s",
*ident_str);
let parent_link = self.get_parent_link(new_parent,
ident);
child_name_bindings.define_module(Public,
parent_link,
None,
NormalModuleKind,
dummy_sp());
}
Some(copy type_ns_def)
if type_ns_def.module_def.is_none() => {
debug!("(building reduced graph for external crate) \
autovivifying missing module def %s",
*ident_str);
let parent_link = self.get_parent_link(new_parent,
ident);
child_name_bindings.define_module(Public,
parent_link,
None,
NormalModuleKind,
dummy_sp());
}
_ => {} // Fall through.
}
current_module = child_name_bindings.get_module();
}
match def_like {
dl_def(def) => {
// Add the new child item.
let (child_name_bindings, new_parent) =
self.add_child(final_ident,
ModuleReducedGraphParent(
current_module),
OverwriteDuplicates,
dummy_sp());
self.handle_external_def(def,
&mut modules,
child_name_bindings,
*self.session.str_of(
final_ident),
final_ident,
new_parent);
}
dl_impl(def) => {
// We only process static methods of impls here.
match get_type_name_if_impl(self.session.cstore, def) {
None => {}
Some(final_ident) => {
let static_methods_opt =
get_static_methods_if_impl(
self.session.cstore, def);
match static_methods_opt {
Some(ref static_methods) if
static_methods.len() >= 1 => {
debug!("(building reduced graph for \
external crate) processing \
static methods for type name %s",
*self.session.str_of(
final_ident));
let (child_name_bindings, new_parent) =
self.add_child(final_ident,
ModuleReducedGraphParent(
current_module),
OverwriteDuplicates,
dummy_sp());
// Process the static methods. First,
// create the module.
let type_module;
match child_name_bindings.type_def {
Some(TypeNsDef {
module_def: Some(copy module_def),
_
}) => {
// We already have a module. This
// is OK.
type_module = module_def;
}
Some(_) | None => {
let parent_link =
self.get_parent_link(
new_parent, final_ident);
child_name_bindings.define_module(
Public,
parent_link,
Some(def),
NormalModuleKind,
dummy_sp());
type_module =
child_name_bindings.
get_module();
}
}
// Add each static method to the module.
let new_parent = ModuleReducedGraphParent(
type_module);
for static_methods.each
|static_method_info| {
let ident = static_method_info.ident;
debug!("(building reduced graph for \
external crate) creating \
static method '%s'",
*self.session.str_of(ident));
let (method_name_bindings, _) =
self.add_child(
ident,
new_parent,
OverwriteDuplicates,
dummy_sp());
let def = def_fn(
static_method_info.def_id,
static_method_info.purity);
method_name_bindings.define_value(
Public, def, dummy_sp());
}
}
// Otherwise, do nothing.
Some(_) | None => {}
}
}
}
}
dl_field => {
debug!("(building reduced graph for external crate) \
ignoring field");
}
}
}
}
/// Creates and adds an import directive to the given module.
fn build_import_directive(@mut self,
privacy: Privacy,
module_: @mut Module,
+module_path: ~[ident],
subclass: @ImportDirectiveSubclass,
span: span,
state: @mut ImportState) {
let directive = @ImportDirective(privacy, module_path,
subclass, span);
module_.imports.push(directive);
// Bump the reference count on the name. Or, if this is a glob, set
// the appropriate flag.
match *subclass {
SingleImport(target, _) => {
debug!("(building import directive) building import \
directive: privacy %? %s::%s",
privacy,
self.idents_to_str(directive.module_path),
*self.session.str_of(target));
match module_.import_resolutions.find(&target) {
Some(resolution) => {
debug!("(building import directive) bumping \
reference");
resolution.outstanding_references += 1;
}
None => {
debug!("(building import directive) creating new");
let resolution = @mut ImportResolution(privacy,
span,
state);
let name = self.idents_to_str(directive.module_path);
// Don't warn about unused intrinsics because they're
// automatically appended to all files
if name == ~"intrinsic::rusti" {
resolution.state.warned = true;
}
resolution.outstanding_references = 1;
module_.import_resolutions.insert(target, resolution);
}
}
}
GlobImport => {
// Set the glob flag. This tells us that we don't know the
// module's exports ahead of time.
module_.glob_count += 1;
}
}
self.unresolved_imports += 1;
}
// Import resolution
//
// This is a fixed-point algorithm. We resolve imports until our efforts
// are stymied by an unresolved import; then we bail out of the current
// module and continue. We terminate successfully once no more imports
// remain or unsuccessfully when no forward progress in resolving imports
// is made.
/**
* Resolves all imports for the crate. This method performs the fixed-
* point iteration.
*/
fn resolve_imports(@mut self) {
let mut i = 0;
let mut prev_unresolved_imports = 0;
loop {
debug!("(resolving imports) iteration %u, %u imports left",
i, self.unresolved_imports);
let module_root = self.graph_root.get_module();
self.resolve_imports_for_module_subtree(module_root);
if self.unresolved_imports == 0 {
debug!("(resolving imports) success");
break;
}
if self.unresolved_imports == prev_unresolved_imports {
self.session.err(~"failed to resolve imports");
self.report_unresolved_imports(module_root);
break;
}
i += 1;
prev_unresolved_imports = self.unresolved_imports;
}
}
/// Attempts to resolve imports for the given module and all of its
/// submodules.
fn resolve_imports_for_module_subtree(@mut self, module_: @mut Module) {
debug!("(resolving imports for module subtree) resolving %s",
self.module_to_str(module_));
self.resolve_imports_for_module(module_);
for module_.children.each_value |&child_node| {
match child_node.get_module_if_available() {
None => {
// Nothing to do.
}
Some(child_module) => {
self.resolve_imports_for_module_subtree(child_module);
}
}
}
for module_.anonymous_children.each_value |&child_module| {
self.resolve_imports_for_module_subtree(child_module);
}
}
/// Attempts to resolve imports for the given module only.
fn resolve_imports_for_module(@mut self, module: @mut Module) {
if module.all_imports_resolved() {
debug!("(resolving imports for module) all imports resolved for \
%s",
self.module_to_str(module));
return;
}
let imports = &mut *module.imports;
let import_count = imports.len();
while module.resolved_import_count < import_count {
let import_index = module.resolved_import_count;
let import_directive = imports[import_index];
match self.resolve_import_for_module(module, import_directive) {
Failed => {
// We presumably emitted an error. Continue.
let msg = fmt!("failed to resolve import: %s",
*self.import_path_to_str(
import_directive.module_path,
*import_directive.subclass));
self.session.span_err(import_directive.span, msg);
}
Indeterminate => {
// Bail out. We'll come around next time.
break;
}
Success(()) => {
// Good. Continue.
}
}
module.resolved_import_count += 1;
}
}
fn idents_to_str(@mut self, idents: &[ident]) -> ~str {
let mut first = true;
let mut result = ~"";
for idents.each |ident| {
if first { first = false; } else { result += "::" };
result += *self.session.str_of(*ident);
};
return result;
}
fn import_directive_subclass_to_str(@mut self,
subclass: ImportDirectiveSubclass)
-> @~str {
match subclass {
SingleImport(_target, source) => self.session.str_of(source),
GlobImport => @~"*"
}
}
fn import_path_to_str(@mut self,
idents: &[ident],
subclass: ImportDirectiveSubclass)
-> @~str {
if idents.is_empty() {
self.import_directive_subclass_to_str(subclass)
} else {
@fmt!("%s::%s",
self.idents_to_str(idents),
*self.import_directive_subclass_to_str(subclass))
}
}
/// Attempts to resolve the given import. The return value indicates
/// failure if we're certain the name does not exist, indeterminate if we
/// don't know whether the name exists at the moment due to other
/// currently-unresolved imports, or success if we know the name exists.
/// If successful, the resolved bindings are written into the module.
fn resolve_import_for_module(@mut self, module_: @mut Module,
import_directive: @ImportDirective)
-> ResolveResult<()> {
let mut resolution_result = Failed;
let module_path = &import_directive.module_path;
debug!("(resolving import for module) resolving import `%s::...` in \
`%s`",
self.idents_to_str(*module_path),
self.module_to_str(module_));
// First, resolve the module path for the directive, if necessary.
let containing_module = if module_path.len() == 0 {
// Use the crate root.
Some(self.graph_root.get_module())
} else {
match self.resolve_module_path_for_import(module_,
*module_path,
DontUseLexicalScope,
import_directive.span) {
Failed => None,
Indeterminate => {
resolution_result = Indeterminate;
None
}
Success(containing_module) => Some(containing_module),
}
};
match containing_module {
None => {}
Some(containing_module) => {
// We found the module that the target is contained
// within. Attempt to resolve the import within it.
match *import_directive.subclass {
SingleImport(target, source) => {
resolution_result =
self.resolve_single_import(module_,
containing_module,
target,
source);
}
GlobImport => {
let span = import_directive.span;
let privacy = import_directive.privacy;
resolution_result =
self.resolve_glob_import(privacy,
module_,
containing_module,
span);
}
}
}
}
// Decrement the count of unresolved imports.
match resolution_result {
Success(()) => {
fail_unless!(self.unresolved_imports >= 1);
self.unresolved_imports -= 1;
}
_ => {
// Nothing to do here; just return the error.
}
}
// Decrement the count of unresolved globs if necessary. But only if
// the resolution result is indeterminate -- otherwise we'll stop
// processing imports here. (See the loop in
// resolve_imports_for_module.)
if !resolution_result.indeterminate() {
match *import_directive.subclass {
GlobImport => {
fail_unless!(module_.glob_count >= 1);
module_.glob_count -= 1;
}
SingleImport(*) => {
// Ignore.
}
}
}
return resolution_result;
}
fn create_name_bindings_from_module(module: @mut Module) -> NameBindings {
NameBindings {
type_def: Some(TypeNsDef {
privacy: Public,
module_def: Some(module),
type_def: None,
}),
value_def: None,
type_span: None,
value_span: None,
}
}
fn resolve_single_import(@mut self,
module_: @mut Module,
containing_module: @mut Module,
target: ident,
source: ident)
-> ResolveResult<()> {
debug!("(resolving single import) resolving `%s` = `%s::%s` from \
`%s`",
*self.session.str_of(target),
self.module_to_str(containing_module),
*self.session.str_of(source),
self.module_to_str(module_));
// We need to resolve both namespaces for this to succeed.
//
// FIXME #4949: See if there's some way of handling namespaces in
// a more generic way. We have two of them; it seems worth
// doing...
let mut value_result = UnknownResult;
let mut type_result = UnknownResult;
// Search for direct children of the containing module.
match containing_module.children.find(&source) {
None => {
// Continue.
}
Some(child_name_bindings) => {
if child_name_bindings.defined_in_namespace(ValueNS) {
value_result = BoundResult(containing_module,
*child_name_bindings);
}
if child_name_bindings.defined_in_namespace(TypeNS) {
type_result = BoundResult(containing_module,
*child_name_bindings);
}
}
}
// Unless we managed to find a result in both namespaces (unlikely),
// search imports as well.
match (value_result, type_result) {
(BoundResult(*), BoundResult(*)) => {
// Continue.
}
_ => {
// If there is an unresolved glob at this point in the
// containing module, bail out. We don't know enough to be
// able to resolve this import.
if containing_module.glob_count > 0 {
debug!("(resolving single import) unresolved glob; \
bailing out");
return Indeterminate;
}
// Now search the exported imports within the containing
// module.
match containing_module.import_resolutions.find(&source) {
None => {
// The containing module definitely doesn't have an
// exported import with the name in question. We can
// therefore accurately report that the names are
// unbound.
if value_result.is_unknown() {
value_result = UnboundResult;
}
if type_result.is_unknown() {
type_result = UnboundResult;
}
}
Some(import_resolution)
if import_resolution.outstanding_references
== 0 => {
fn get_binding(import_resolution:
@mut ImportResolution,
namespace: Namespace)
-> NamespaceResult {
// Import resolutions must be declared with "pub"
// in order to be exported.
if import_resolution.privacy == Private {
return UnboundResult;
}
match (*import_resolution).
target_for_namespace(namespace) {
None => {
return UnboundResult;
}
Some(target) => {
import_resolution.state.used = true;
return BoundResult(target.target_module,
target.bindings);
}
}
}
// The name is an import which has been fully
// resolved. We can, therefore, just follow it.
if value_result.is_unknown() {
value_result = get_binding(*import_resolution,
ValueNS);
}
if type_result.is_unknown() {
type_result = get_binding(*import_resolution,
TypeNS);
}
}
Some(_) => {
// The import is unresolved. Bail out.
debug!("(resolving single import) unresolved import; \
bailing out");
return Indeterminate;
}
}
}
}
// If we didn't find a result in the type namespace, search the
// external modules.
match type_result {
BoundResult(*) => {}
_ => {
match containing_module.external_module_children
.find(&source) {
None => {} // Continue.
Some(module) => {
let name_bindings =
@mut Resolver::create_name_bindings_from_module(
*module);
type_result = BoundResult(containing_module,
name_bindings);
}
}
}
}
// We've successfully resolved the import. Write the results in.
fail_unless!(module_.import_resolutions.contains_key(&target));
let import_resolution = module_.import_resolutions.get(&target);
match value_result {
BoundResult(target_module, name_bindings) => {
import_resolution.value_target =
Some(Target(target_module, name_bindings));
}
UnboundResult => { /* Continue. */ }
UnknownResult => {
fail!(~"value result should be known at this point");
}
}
match type_result {
BoundResult(target_module, name_bindings) => {
import_resolution.type_target =
Some(Target(target_module, name_bindings));
}
UnboundResult => { /* Continue. */ }
UnknownResult => {
fail!(~"type result should be known at this point");
}
}
let i = import_resolution;
match (i.value_target, i.type_target) {
// If this name wasn't found in either namespace, it's definitely
// unresolved.
(None, None) => { return Failed; }
// If it's private, it's also unresolved.
(Some(t), None) | (None, Some(t)) => {
let bindings = &mut *t.bindings;
match bindings.type_def {
Some(ref type_def) => {
if type_def.privacy == Private {
return Failed;
}
}
_ => ()
}
match bindings.value_def {
Some(ref value_def) => {
if value_def.privacy == Private {
return Failed;
}
}
_ => ()
}
}
// It's also an error if there's both a type and a value with this
// name, but both are private
(Some(val), Some(ty)) => {
match (val.bindings.value_def, ty.bindings.value_def) {
(Some(ref value_def), Some(ref type_def)) =>
if value_def.privacy == Private
&& type_def.privacy == Private {
return Failed;
},
_ => ()
}
}
}
fail_unless!(import_resolution.outstanding_references >= 1);
import_resolution.outstanding_references -= 1;
debug!("(resolving single import) successfully resolved import");
return Success(());
}
// Resolves a glob import. Note that this function cannot fail; it either
// succeeds or bails out (as importing * from an empty module or a module
// that exports nothing is valid).
fn resolve_glob_import(@mut self,
privacy: Privacy,
module_: @mut Module,
containing_module: @mut Module,
span: span)
-> ResolveResult<()> {
// This function works in a highly imperative manner; it eagerly adds
// everything it can to the list of import resolutions of the module
// node.
debug!("(resolving glob import) resolving %? glob import", privacy);
let state = @mut ImportState();
// We must bail out if the node has unresolved imports of any kind
// (including globs).
if !(*containing_module).all_imports_resolved() {
debug!("(resolving glob import) target module has unresolved \
imports; bailing out");
return Indeterminate;
}
fail_unless!(containing_module.glob_count == 0);
// Add all resolved imports from the containing module.
for containing_module.import_resolutions.each
|&(ident, target_import_resolution)| {
debug!("(resolving glob import) writing module resolution \
%? into `%s`",
target_import_resolution.type_target.is_none(),
self.module_to_str(module_));
// Here we merge two import resolutions.
match module_.import_resolutions.find(ident) {
None if target_import_resolution.privacy == Public => {
// Simple: just copy the old import resolution.
let new_import_resolution =
@mut ImportResolution(privacy,
target_import_resolution.span,
state);
new_import_resolution.value_target =
copy target_import_resolution.value_target;
new_import_resolution.type_target =
copy target_import_resolution.type_target;
module_.import_resolutions.insert
(*ident, new_import_resolution);
}
None => { /* continue ... */ }
Some(dest_import_resolution) => {
// Merge the two import resolutions at a finer-grained
// level.
match target_import_resolution.value_target {
None => {
// Continue.
}
Some(copy value_target) => {
dest_import_resolution.value_target =
Some(value_target);
}
}
match target_import_resolution.type_target {
None => {
// Continue.
}
Some(copy type_target) => {
dest_import_resolution.type_target =
Some(type_target);
}
}
}
}
}
let merge_import_resolution = |ident,
name_bindings: @mut NameBindings| {
let mut dest_import_resolution;
match module_.import_resolutions.find(ident) {
None => {
// Create a new import resolution from this child.
dest_import_resolution = @mut ImportResolution(privacy,
span,
state);
module_.import_resolutions.insert
(*ident, dest_import_resolution);
}
Some(existing_import_resolution) => {
dest_import_resolution = *existing_import_resolution;
}
}
debug!("(resolving glob import) writing resolution `%s` in `%s` \
to `%s`, privacy=%?",
*self.session.str_of(*ident),
self.module_to_str(containing_module),
self.module_to_str(module_),
copy dest_import_resolution.privacy);
// Merge the child item into the import resolution.
if name_bindings.defined_in_public_namespace(ValueNS) {
debug!("(resolving glob import) ... for value target");
dest_import_resolution.value_target =
Some(Target(containing_module, name_bindings));
}
if name_bindings.defined_in_public_namespace(TypeNS) {
debug!("(resolving glob import) ... for type target");
dest_import_resolution.type_target =
Some(Target(containing_module, name_bindings));
}
};
// Add all children from the containing module.
for containing_module.children.each |&(ident, name_bindings)| {
merge_import_resolution(ident, *name_bindings);
}
// Add external module children from the containing module.
for containing_module.external_module_children.each
|&(ident, module)| {
let name_bindings =
@mut Resolver::create_name_bindings_from_module(*module);
merge_import_resolution(ident, name_bindings);
}
debug!("(resolving glob import) successfully resolved import");
return Success(());
}
/// Resolves the given module path from the given root `module_`.
fn resolve_module_path_from_root(@mut self,
module_: @mut Module,
module_path: &[ident],
index: uint,
span: span,
mut name_search_type: NameSearchType)
-> ResolveResult<@mut Module> {
let mut search_module = module_;
let mut index = index;
let module_path_len = module_path.len();
// Resolve the module part of the path. This does not involve looking
// upward though scope chains; we simply resolve names directly in
// modules as we go.
while index < module_path_len {
let name = module_path[index];
match self.resolve_name_in_module(search_module,
name,
TypeNS,
name_search_type) {
Failed => {
self.session.span_err(span, ~"unresolved name");
return Failed;
}
Indeterminate => {
debug!("(resolving module path for import) module \
resolution is indeterminate: %s",
*self.session.str_of(name));
return Indeterminate;
}
Success(target) => {
// Check to see whether there are type bindings, and, if
// so, whether there is a module within.
match target.bindings.type_def {
Some(copy type_def) => {
match type_def.module_def {
None => {
// Not a module.
self.session.span_err(span,
fmt!("not a \
module: %s",
*self.session.
str_of(
name)));
return Failed;
}
Some(copy module_def) => {
search_module = module_def;
}
}
}
None => {
// There are no type bindings at all.
self.session.span_err(span,
fmt!("not a module: %s",
*self.session.str_of(
name)));
return Failed;
}
}
}
}
index += 1;
// After the first element of the path, allow searching through
// items and imports unconditionally. This allows things like:
//
// pub mod core {
// pub use vec;
// }
//
// pub mod something_else {
// use core::vec;
// }
name_search_type = SearchItemsAndPublicImports;
}
return Success(search_module);
}
/// Attempts to resolve the module part of an import directive or path
/// rooted at the given module.
fn resolve_module_path_for_import(@mut self,
module_: @mut Module,
module_path: &[ident],
use_lexical_scope: UseLexicalScopeFlag,
span: span)
-> ResolveResult<@mut Module> {
let module_path_len = module_path.len();
fail_unless!(module_path_len > 0);
debug!("(resolving module path for import) processing `%s` rooted at \
`%s`",
self.idents_to_str(module_path),
self.module_to_str(module_));
// Resolve the module prefix, if any.
let module_prefix_result = self.resolve_module_prefix(module_,
module_path);
let mut search_module;
let mut start_index;
match module_prefix_result {
Failed => {
self.session.span_err(span, ~"unresolved name");
return Failed;
}
Indeterminate => {
debug!("(resolving module path for import) indeterminate; \
bailing");
return Indeterminate;
}
Success(NoPrefixFound) => {
// There was no prefix, so we're considering the first element
// of the path. How we handle this depends on whether we were
// instructed to use lexical scope or not.
match use_lexical_scope {
DontUseLexicalScope => {
// This is a crate-relative path. We will start the
// resolution process at index zero.
search_module = self.graph_root.get_module();
start_index = 0;
}
UseLexicalScope => {
// This is not a crate-relative path. We resolve the
// first component of the path in the current lexical
// scope and then proceed to resolve below that.
let result = self.resolve_module_in_lexical_scope(
module_,
module_path[0]);
match result {
Failed => {
self.session.span_err(span,
~"unresolved name");
return Failed;
}
Indeterminate => {
debug!("(resolving module path for import) \
indeterminate; bailing");
return Indeterminate;
}
Success(containing_module) => {
search_module = containing_module;
start_index = 1;
}
}
}
}
}
Success(PrefixFound(containing_module, index)) => {
search_module = containing_module;
start_index = index;
}
}
self.resolve_module_path_from_root(search_module,
module_path,
start_index,
span,
SearchItemsAndPublicImports)
}
/// Invariant: This must only be called during main resolution, not during
/// import resolution.
fn resolve_item_in_lexical_scope(@mut self,
module_: @mut Module,
name: ident,
namespace: Namespace,
search_through_modules:
SearchThroughModulesFlag)
-> ResolveResult<Target> {
debug!("(resolving item in lexical scope) resolving `%s` in \
namespace %? in `%s`",
*self.session.str_of(name),
namespace,
self.module_to_str(module_));
// The current module node is handled specially. First, check for
// its immediate children.
match module_.children.find(&name) {
Some(name_bindings)
if name_bindings.defined_in_namespace(namespace) => {
return Success(Target(module_, *name_bindings));
}
Some(_) | None => { /* Not found; continue. */ }
}
// Now check for its import directives. We don't have to have resolved
// all its imports in the usual way; this is because chains of
// adjacent import statements are processed as though they mutated the
// current scope.
match module_.import_resolutions.find(&name) {
None => {
// Not found; continue.
}
Some(import_resolution) => {
match (*import_resolution).target_for_namespace(namespace) {
None => {
// Not found; continue.
debug!("(resolving item in lexical scope) found \
import resolution, but not in namespace %?",
namespace);
}
Some(target) => {
debug!("(resolving item in lexical scope) using \
import resolution");
import_resolution.state.used = true;
return Success(copy target);
}
}
}
}
// Search for external modules.
if namespace == TypeNS {
match module_.external_module_children.find(&name) {
None => {}
Some(module) => {
let name_bindings =
@mut Resolver::create_name_bindings_from_module(
*module);
return Success(Target(module_, name_bindings));
}
}
}
// Finally, proceed up the scope chain looking for parent modules.
let mut search_module = module_;
loop {
// Go to the next parent.
match search_module.parent_link {
NoParentLink => {
// No more parents. This module was unresolved.
debug!("(resolving item in lexical scope) unresolved \
module");
return Failed;
}
ModuleParentLink(parent_module_node, _) => {
match search_through_modules {
DontSearchThroughModules => {
match search_module.kind {
NormalModuleKind => {
// We stop the search here.
debug!("(resolving item in lexical \
scope) unresolved module: not \
searching through module \
parents");
return Failed;
}
ExternModuleKind |
TraitModuleKind |
AnonymousModuleKind => {
search_module = parent_module_node;
}
}
}
SearchThroughModules => {
search_module = parent_module_node;
}
}
}
BlockParentLink(parent_module_node, _) => {
search_module = parent_module_node;
}
}
// Resolve the name in the parent module.
match self.resolve_name_in_module(search_module,
name,
namespace,
SearchItemsAndAllImports) {
Failed => {
// Continue up the search chain.
}
Indeterminate => {
// We couldn't see through the higher scope because of an
// unresolved import higher up. Bail.
debug!("(resolving item in lexical scope) indeterminate \
higher scope; bailing");
return Indeterminate;
}
Success(target) => {
// We found the module.
return Success(copy target);
}
}
}
}
/** Resolves a module name in the current lexical scope. */
fn resolve_module_in_lexical_scope(@mut self,
module_: @mut Module,
name: ident)
-> ResolveResult<@mut Module> {
// If this module is an anonymous module, resolve the item in the
// lexical scope. Otherwise, resolve the item from the crate root.
let resolve_result = self.resolve_item_in_lexical_scope(
module_, name, TypeNS, DontSearchThroughModules);
match resolve_result {
Success(target) => {
let bindings = &mut *target.bindings;
match bindings.type_def {
Some(ref type_def) => {
match (*type_def).module_def {
None => {
error!("!!! (resolving module in lexical \
scope) module wasn't actually a \
module!");
return Failed;
}
Some(module_def) => {
return Success(module_def);
}
}
}
None => {
error!("!!! (resolving module in lexical scope) module
wasn't actually a module!");
return Failed;
}
}
}
Indeterminate => {
debug!("(resolving module in lexical scope) indeterminate; \
bailing");
return Indeterminate;
}
Failed => {
debug!("(resolving module in lexical scope) failed to \
resolve");
return Failed;
}
}
}
/**
* Returns the nearest normal module parent of the given module.
*/
fn get_nearest_normal_module_parent(@mut self, module_: @mut Module)
-> Option<@mut Module> {
let mut module_ = module_;
loop {
match module_.parent_link {
NoParentLink => return None,
ModuleParentLink(new_module, _) |
BlockParentLink(new_module, _) => {
match new_module.kind {
NormalModuleKind => return Some(new_module),
ExternModuleKind |
TraitModuleKind |
AnonymousModuleKind => module_ = new_module,
}
}
}
}
}
/**
* Returns the nearest normal module parent of the given module, or the
* module itself if it is a normal module.
*/
fn get_nearest_normal_module_parent_or_self(@mut self,
module_: @mut Module)
-> @mut Module {
match module_.kind {
NormalModuleKind => return module_,
ExternModuleKind | TraitModuleKind | AnonymousModuleKind => {
match self.get_nearest_normal_module_parent(module_) {
None => module_,
Some(new_module) => new_module
}
}
}
}
/**
* Resolves a "module prefix". A module prefix is one of (a) `self::`;
* (b) some chain of `super::`.
*/
fn resolve_module_prefix(@mut self,
module_: @mut Module,
module_path: &[ident])
-> ResolveResult<ModulePrefixResult> {
let interner = self.session.parse_sess.interner;
// Start at the current module if we see `self` or `super`, or at the
// top of the crate otherwise.
let mut containing_module;
let mut i;
if *interner.get(module_path[0]) == ~"self" {
containing_module =
self.get_nearest_normal_module_parent_or_self(module_);
i = 1;
} else if *interner.get(module_path[0]) == ~"super" {
containing_module =
self.get_nearest_normal_module_parent_or_self(module_);
i = 0; // We'll handle `super` below.
} else {
return Success(NoPrefixFound);
}
// Now loop through all the `super`s we find.
while i < module_path.len() &&
*interner.get(module_path[i]) == ~"super" {
debug!("(resolving module prefix) resolving `super` at %s",
self.module_to_str(containing_module));
match self.get_nearest_normal_module_parent(containing_module) {
None => return Failed,
Some(new_module) => {
containing_module = new_module;
i += 1;
}
}
}
debug!("(resolving module prefix) finished resolving prefix at %s",
self.module_to_str(containing_module));
return Success(PrefixFound(containing_module, i));
}
/// Attempts to resolve the supplied name in the given module for the
/// given namespace. If successful, returns the target corresponding to
/// the name.
fn resolve_name_in_module(@mut self,
module_: @mut Module,
name: ident,
namespace: Namespace,
+name_search_type: NameSearchType)
-> ResolveResult<Target> {
debug!("(resolving name in module) resolving `%s` in `%s`",
*self.session.str_of(name),
self.module_to_str(module_));
// First, check the direct children of the module.
match module_.children.find(&name) {
Some(name_bindings)
if name_bindings.defined_in_namespace(namespace) => {
debug!("(resolving name in module) found node as child");
return Success(Target(module_, *name_bindings));
}
Some(_) | None => {
// Continue.
}
}
// Next, check the module's imports if necessary.
// If this is a search of all imports, we should be done with glob
// resolution at this point.
if name_search_type == SearchItemsAndAllImports {
fail_unless!(module_.glob_count == 0);
}
// Check the list of resolved imports.
match module_.import_resolutions.find(&name) {
Some(import_resolution) => {
if import_resolution.privacy == Public &&
import_resolution.outstanding_references != 0 {
debug!("(resolving name in module) import \
unresolved; bailing out");
return Indeterminate;
}
match import_resolution.target_for_namespace(namespace) {
None => {
debug!("(resolving name in module) name found, \
but not in namespace %?",
namespace);
}
Some(target)
if name_search_type ==
SearchItemsAndAllImports ||
import_resolution.privacy == Public => {
debug!("(resolving name in module) resolved to \
import");
import_resolution.state.used = true;
return Success(copy target);
}
Some(_) => {
debug!("(resolving name in module) name found, \
but not public");
}
}
}
None => {} // Continue.
}
// Finally, search through external children.
if namespace == TypeNS {
match module_.external_module_children.find(&name) {
None => {}
Some(module) => {
let name_bindings =
@mut Resolver::create_name_bindings_from_module(
*module);
return Success(Target(module_, name_bindings));
}
}
}
// We're out of luck.
debug!("(resolving name in module) failed to resolve %s",
*self.session.str_of(name));
return Failed;
}
fn report_unresolved_imports(@mut self, module_: @mut Module) {
let index = module_.resolved_import_count;
let imports: &mut ~[@ImportDirective] = &mut *module_.imports;
let import_count = imports.len();
if index != import_count {
self.session.span_err(imports[index].span, ~"unresolved import");
}
// Descend into children and anonymous children.
for module_.children.each_value |&child_node| {
match child_node.get_module_if_available() {
None => {
// Continue.
}
Some(child_module) => {
self.report_unresolved_imports(child_module);
}
}
}
for module_.anonymous_children.each_value |&module_| {
self.report_unresolved_imports(module_);
}
}
// Export recording
//
// This pass simply determines what all "export" keywords refer to and
// writes the results into the export map.
//
// FIXME #4953 This pass will be removed once exports change to per-item.
// Then this operation can simply be performed as part of item (or import)
// processing.
fn record_exports(@mut self) {
let root_module = self.graph_root.get_module();
self.record_exports_for_module_subtree(root_module);
}
fn record_exports_for_module_subtree(@mut self, module_: @mut Module) {
// If this isn't a local crate, then bail out. We don't need to record
// exports for nonlocal crates.
match module_.def_id {
Some(def_id) if def_id.crate == local_crate => {
// OK. Continue.
debug!("(recording exports for module subtree) recording \
exports for local module");
}
None => {
// Record exports for the root module.
debug!("(recording exports for module subtree) recording \
exports for root module");
}
Some(_) => {
// Bail out.
debug!("(recording exports for module subtree) not recording \
exports for `%s`",
self.module_to_str(module_));
return;
}
}
self.record_exports_for_module(module_);
for module_.children.each_value |&child_name_bindings| {
match child_name_bindings.get_module_if_available() {
None => {
// Nothing to do.
}
Some(child_module) => {
self.record_exports_for_module_subtree(child_module);
}
}
}
for module_.anonymous_children.each_value |&child_module| {
self.record_exports_for_module_subtree(child_module);
}
}
fn record_exports_for_module(@mut self, module_: @mut Module) {
let mut exports2 = ~[];
self.add_exports_for_module(&mut exports2, module_);
match /*bad*/copy module_.def_id {
Some(def_id) => {
self.export_map2.insert(def_id.node, exports2);
debug!("(computing exports) writing exports for %d (some)",
def_id.node);
}
None => {}
}
}
fn add_exports_of_namebindings(@mut self,
exports2: &mut ~[Export2],
ident: ident,
namebindings: @mut NameBindings,
ns: Namespace,
reexport: bool) {
match (namebindings.def_for_namespace(ns),
namebindings.privacy_for_namespace(ns)) {
(Some(d), Some(Public)) => {
debug!("(computing exports) YES: %s '%s' => %?",
if reexport { ~"reexport" } else { ~"export"},
*self.session.str_of(ident),
def_id_of_def(d));
exports2.push(Export2 {
reexport: reexport,
name: self.session.str_of(ident),
def_id: def_id_of_def(d)
});
}
(Some(_), Some(privacy)) => {
debug!("(computing reexports) NO: privacy %?", privacy);
}
(d_opt, p_opt) => {
debug!("(computing reexports) NO: %?, %?", d_opt, p_opt);
}
}
}
fn add_exports_for_module(@mut self,
exports2: &mut ~[Export2],
module_: @mut Module) {
for module_.children.each |&(ident, namebindings)| {
debug!("(computing exports) maybe export '%s'",
*self.session.str_of(*ident));
self.add_exports_of_namebindings(&mut *exports2,
*ident,
*namebindings,
TypeNS,
false);
self.add_exports_of_namebindings(&mut *exports2,
*ident,
*namebindings,
ValueNS,
false);
}
for module_.import_resolutions.each |&(ident, importresolution)| {
if importresolution.privacy != Public {
debug!("(computing exports) not reexporting private `%s`",
*self.session.str_of(*ident));
loop;
}
for [ TypeNS, ValueNS ].each |ns| {
match importresolution.target_for_namespace(*ns) {
Some(target) => {
debug!("(computing exports) maybe reexport '%s'",
*self.session.str_of(*ident));
self.add_exports_of_namebindings(&mut *exports2,
*ident,
target.bindings,
*ns,
true)
}
_ => ()
}
}
}
}
// AST resolution
//
// We maintain a list of value ribs and type ribs.
//
// Simultaneously, we keep track of the current position in the module
// graph in the `current_module` pointer. When we go to resolve a name in
// the value or type namespaces, we first look through all the ribs and
// then query the module graph. When we resolve a name in the module
// namespace, we can skip all the ribs (since nested modules are not
// allowed within blocks in Rust) and jump straight to the current module
// graph node.
//
// Named implementations are handled separately. When we find a method
// call, we consult the module node to find all of the implementations in
// scope. This information is lazily cached in the module node. We then
// generate a fake "implementation scope" containing all the
// implementations thus found, for compatibility with old resolve pass.
fn with_scope(@mut self, name: Option<ident>, f: &fn()) {
let orig_module = self.current_module;
// Move down in the graph.
match name {
None => {
// Nothing to do.
}
Some(name) => {
match orig_module.children.find(&name) {
None => {
debug!("!!! (with scope) didn't find `%s` in `%s`",
*self.session.str_of(name),
self.module_to_str(orig_module));
}
Some(name_bindings) => {
match (*name_bindings).get_module_if_available() {
None => {
debug!("!!! (with scope) didn't find module \
for `%s` in `%s`",
*self.session.str_of(name),
self.module_to_str(orig_module));
}
Some(module_) => {
self.current_module = module_;
}
}
}
}
}
}
f();
self.current_module = orig_module;
}
// Wraps the given definition in the appropriate number of `def_upvar`
// wrappers.
fn upvarify(@mut self,
ribs: &mut ~[@Rib],
rib_index: uint,
def_like: def_like,
span: span,
allow_capturing_self: AllowCapturingSelfFlag)
-> Option<def_like> {
let mut def;
let mut is_ty_param;
match def_like {
dl_def(d @ def_local(*)) | dl_def(d @ def_upvar(*)) |
dl_def(d @ def_arg(*)) | dl_def(d @ def_binding(*)) => {
def = d;
is_ty_param = false;
}
dl_def(d @ def_ty_param(*)) => {
def = d;
is_ty_param = true;
}
dl_def(d @ def_self(*))
if allow_capturing_self == DontAllowCapturingSelf => {
def = d;
is_ty_param = false;
}
_ => {
return Some(def_like);
}
}
let mut rib_index = rib_index + 1;
while rib_index < ribs.len() {
match ribs[rib_index].kind {
NormalRibKind => {
// Nothing to do. Continue.
}
FunctionRibKind(function_id, body_id) => {
if !is_ty_param {
def = def_upvar(def_id_of_def(def).node,
@def,
function_id,
body_id);
}
}
MethodRibKind(item_id, _) => {
// If the def is a ty param, and came from the parent
// item, it's ok
match def {
def_ty_param(did, _)
if self.def_map.find(&did.node).map_consume(|x| *x)
== Some(def_typaram_binder(item_id)) => {
// ok
}
_ => {
if !is_ty_param {
// This was an attempt to access an upvar inside a
// named function item. This is not allowed, so we
// report an error.
self.session.span_err(
span,
~"attempted dynamic environment-capture");
} else {
// This was an attempt to use a type parameter outside
// its scope.
self.session.span_err(span,
~"attempt to use a type \
argument out of scope");
}
return None;
}
}
}
OpaqueFunctionRibKind => {
if !is_ty_param {
// This was an attempt to access an upvar inside a
// named function item. This is not allowed, so we
// report an error.
self.session.span_err(
span,
~"attempted dynamic environment-capture");
} else {
// This was an attempt to use a type parameter outside
// its scope.
self.session.span_err(span,
~"attempt to use a type \
argument out of scope");
}
return None;
}
ConstantItemRibKind => {
// Still doesn't deal with upvars
self.session.span_err(span,
~"attempt to use a non-constant \
value in a constant");
}
}
rib_index += 1;
}
return Some(dl_def(def));
}
fn search_ribs(@mut self,
ribs: &mut ~[@Rib],
name: ident,
span: span,
allow_capturing_self: AllowCapturingSelfFlag)
-> Option<def_like> {
// FIXME #4950: This should not use a while loop.
// FIXME #4950: Try caching?
let mut i = ribs.len();
while i != 0 {
i -= 1;
match ribs[i].bindings.find(&name) {
Some(&def_like) => {
return self.upvarify(ribs, i, def_like, span,
allow_capturing_self);
}
None => {
// Continue.
}
}
}
return None;
}
fn resolve_crate(@mut self) {
debug!("(resolving crate) starting");
visit_crate(*self.crate, (), mk_vt(@Visitor {
visit_item: |item, _context, visitor|
self.resolve_item(item, visitor),
visit_arm: |arm, _context, visitor|
self.resolve_arm(arm, visitor),
visit_block: |block, _context, visitor|
self.resolve_block(block, visitor),
visit_expr: |expr, _context, visitor|
self.resolve_expr(expr, visitor),
visit_local: |local, _context, visitor|
self.resolve_local(local, visitor),
visit_ty: |ty, _context, visitor|
self.resolve_type(ty, visitor),
.. *default_visitor()
}));
}
fn resolve_item(@mut self, item: @item, visitor: ResolveVisitor) {
debug!("(resolving item) resolving %s",
*self.session.str_of(item.ident));
// Items with the !resolve_unexported attribute are X-ray contexts.
// This is used to allow the test runner to run unexported tests.
let orig_xray_flag = self.xray_context;
if contains_name(attr_metas(item.attrs),
~"!resolve_unexported") {
self.xray_context = Xray;
}
match item.node {
// enum item: resolve all the variants' discrs,
// then resolve the ty params
item_enum(ref enum_def, ref generics) => {
for (*enum_def).variants.each() |variant| {
for variant.node.disr_expr.each |dis_expr| {
// resolve the discriminator expr
// as a constant
self.with_constant_rib(|| {
self.resolve_expr(*dis_expr, visitor);
});
}
}
// n.b. the discr expr gets visted twice.
// but maybe it's okay since the first time will signal an
// error if there is one? -- tjc
do self.with_type_parameter_rib(
HasTypeParameters(
generics, item.id, 0, NormalRibKind)) {
visit_item(item, (), visitor);
}
}
item_ty(_, ref generics) => {
do self.with_type_parameter_rib
(HasTypeParameters(generics, item.id, 0,
NormalRibKind))
|| {
visit_item(item, (), visitor);
}
}
item_impl(ref generics,
implemented_traits,
self_type,
ref methods) => {
self.resolve_implementation(item.id,
item.span,
generics,
implemented_traits,
self_type,
*methods,
visitor);
}
item_trait(ref generics, ref traits, ref methods) => {
// Create a new rib for the self type.
let self_type_rib = @Rib(NormalRibKind);
self.type_ribs.push(self_type_rib);
self_type_rib.bindings.insert(self.type_self_ident,
dl_def(def_self_ty(item.id)));
// Create a new rib for the trait-wide type parameters.
do self.with_type_parameter_rib
(HasTypeParameters(generics, item.id, 0,
NormalRibKind)) {
self.resolve_type_parameters(&generics.ty_params,
visitor);
// Resolve derived traits.
for traits.each |trt| {
match self.resolve_path(trt.path, TypeNS, true,
visitor) {
None =>
self.session.span_err(trt.path.span,
~"attempt to derive a \
nonexistent trait"),
Some(def) => {
// Write a mapping from the trait ID to the
// definition of the trait into the definition
// map.
debug!("(resolving trait) found trait def: \
%?", def);
self.record_def(trt.ref_id, def);
}
}
}
for (*methods).each |method| {
// Create a new rib for the method-specific type
// parameters.
//
// FIXME #4951: Do we need a node ID here?
match *method {
required(ref ty_m) => {
do self.with_type_parameter_rib
(HasTypeParameters(&ty_m.generics,
item.id,
generics.ty_params.len(),
MethodRibKind(item.id, Required))) {
// Resolve the method-specific type
// parameters.
self.resolve_type_parameters(
&ty_m.generics.ty_params,
visitor);
for ty_m.decl.inputs.each |argument| {
self.resolve_type(argument.ty, visitor);
}
self.resolve_type(ty_m.decl.output, visitor);
}
}
provided(m) => {
self.resolve_method(MethodRibKind(item.id,
Provided(m.id)),
m,
generics.ty_params.len(),
visitor)
}
}
}
}
self.type_ribs.pop();
}
item_struct(ref struct_def, ref generics) => {
self.resolve_struct(item.id,
generics,
struct_def.fields,
struct_def.dtor,
visitor);
}
item_mod(ref module_) => {
do self.with_scope(Some(item.ident)) {
self.resolve_module(module_, item.span, item.ident,
item.id, visitor);
}
}
item_foreign_mod(ref foreign_module) => {
do self.with_scope(Some(item.ident)) {
for foreign_module.items.each |foreign_item| {
match foreign_item.node {
foreign_item_fn(_, _, ref generics) => {
self.with_type_parameter_rib(
HasTypeParameters(
generics, foreign_item.id, 0,
NormalRibKind),
|| visit_foreign_item(*foreign_item, (),
visitor));
}
foreign_item_const(_) => {
visit_foreign_item(*foreign_item, (),
visitor);
}
}
}
}
}
item_fn(ref fn_decl, _, ref generics, ref block) => {
// If this is the main function, we must record it in the
// session.
// FIXME #4404 android JNI hacks
if !*self.session.building_library ||
self.session.targ_cfg.os == session::os_android {
if self.attr_main_fn.is_none() &&
item.ident == special_idents::main {
self.main_fns.push(Some((item.id, item.span)));
}
if attrs_contains_name(item.attrs, ~"main") {
if self.attr_main_fn.is_none() {
self.attr_main_fn = Some((item.id, item.span));
} else {
self.session.span_err(
item.span,
~"multiple 'main' functions");
}
}
}
self.resolve_function(OpaqueFunctionRibKind,
Some(fn_decl),
HasTypeParameters
(generics,
item.id,
0,
OpaqueFunctionRibKind),
block,
NoSelfBinding,
visitor);
}
item_const(*) => {
self.with_constant_rib(|| {
visit_item(item, (), visitor);
});
}
item_mac(*) => {
fail!(~"item macros unimplemented")
}
}
self.xray_context = orig_xray_flag;
}
fn with_type_parameter_rib(@mut self,
type_parameters: TypeParameters,
f: &fn()) {
match type_parameters {
HasTypeParameters(generics, node_id, initial_index,
rib_kind) => {
let function_type_rib = @Rib(rib_kind);
self.type_ribs.push(function_type_rib);
for generics.ty_params.eachi |index, type_parameter| {
let name = type_parameter.ident;
debug!("with_type_parameter_rib: %d %d", node_id,
type_parameter.id);
let def_like = dl_def(def_ty_param
(local_def(type_parameter.id),
index + initial_index));
// Associate this type parameter with
// the item that bound it
self.record_def(type_parameter.id,
def_typaram_binder(node_id));
function_type_rib.bindings.insert(name, def_like);
}
}
NoTypeParameters => {
// Nothing to do.
}
}
f();
match type_parameters {
HasTypeParameters(*) => {
self.type_ribs.pop();
}
NoTypeParameters => {
// Nothing to do.
}
}
}
fn with_label_rib(@mut self, f: &fn()) {
self.label_ribs.push(@Rib(NormalRibKind));
f();
self.label_ribs.pop();
}
fn with_constant_rib(@mut self, f: &fn()) {
self.value_ribs.push(@Rib(ConstantItemRibKind));
f();
self.value_ribs.pop();
}
fn resolve_function(@mut self,
rib_kind: RibKind,
optional_declaration: Option<&fn_decl>,
type_parameters: TypeParameters,
block: &blk,
self_binding: SelfBinding,
visitor: ResolveVisitor) {
// Create a value rib for the function.
let function_value_rib = @Rib(rib_kind);
self.value_ribs.push(function_value_rib);
// Create a label rib for the function.
let function_label_rib = @Rib(rib_kind);
self.label_ribs.push(function_label_rib);
// If this function has type parameters, add them now.
do self.with_type_parameter_rib(type_parameters) {
// Resolve the type parameters.
match type_parameters {
NoTypeParameters => {
// Continue.
}
HasTypeParameters(ref generics, _, _, _) => {
self.resolve_type_parameters(&generics.ty_params,
visitor);
}
}
// Add self to the rib, if necessary.
match self_binding {
NoSelfBinding => {
// Nothing to do.
}
HasSelfBinding(self_node_id, is_implicit) => {
let def_like = dl_def(def_self(self_node_id,
is_implicit));
(*function_value_rib).bindings.insert(self.self_ident,
def_like);
}
}
// Add each argument to the rib.
match optional_declaration {
None => {
// Nothing to do.
}
Some(declaration) => {
for declaration.inputs.each |argument| {
let binding_mode =
ArgumentIrrefutableMode(argument.mode);
let mutability =
if argument.is_mutbl {Mutable} else {Immutable};
self.resolve_pattern(argument.pat,
binding_mode,
mutability,
None,
visitor);
self.resolve_type(argument.ty, visitor);
debug!("(resolving function) recorded argument");
}
self.resolve_type(declaration.output, visitor);
}
}
// Resolve the function body.
self.resolve_block(block, visitor);
debug!("(resolving function) leaving function");
}
self.label_ribs.pop();
self.value_ribs.pop();
}
fn resolve_type_parameters(@mut self,
type_parameters: &OptVec<TyParam>,
visitor: ResolveVisitor) {
for type_parameters.each |type_parameter| {
for type_parameter.bounds.each |&bound| {
match bound {
TraitTyParamBound(ty) => self.resolve_type(ty, visitor),
RegionTyParamBound => {}
}
}
}
}
fn resolve_struct(@mut self,
id: node_id,
generics: &Generics,
fields: &[@struct_field],
optional_destructor: Option<struct_dtor>,
visitor: ResolveVisitor) {
// If applicable, create a rib for the type parameters.
do self.with_type_parameter_rib(HasTypeParameters
(generics, id, 0,
OpaqueFunctionRibKind)) {
// Resolve the type parameters.
self.resolve_type_parameters(&generics.ty_params, visitor);
// Resolve fields.
for fields.each |field| {
self.resolve_type(field.node.ty, visitor);
}
// Resolve the destructor, if applicable.
match optional_destructor {
None => {
// Nothing to do.
}
Some(ref destructor) => {
self.resolve_function(NormalRibKind,
None,
NoTypeParameters,
&destructor.node.body,
HasSelfBinding
((*destructor).node.self_id,
true),
visitor);
}
}
}
}
// Does this really need to take a RibKind or is it always going
// to be NormalRibKind?
fn resolve_method(@mut self,
rib_kind: RibKind,
method: @method,
outer_type_parameter_count: uint,
visitor: ResolveVisitor) {
let method_generics = &method.generics;
let type_parameters =
HasTypeParameters(method_generics,
method.id,
outer_type_parameter_count,
rib_kind);
// we only have self ty if it is a non static method
let self_binding = match method.self_ty.node {
sty_static => { NoSelfBinding }
_ => { HasSelfBinding(method.self_id, false) }
};
self.resolve_function(rib_kind,
Some(&method.decl),
type_parameters,
&method.body,
self_binding,
visitor);
}
fn resolve_implementation(@mut self,
id: node_id,
span: span,
generics: &Generics,
opt_trait_reference: Option<@trait_ref>,
self_type: @Ty,
methods: &[@method],
visitor: ResolveVisitor) {
// If applicable, create a rib for the type parameters.
let outer_type_parameter_count = generics.ty_params.len();
do self.with_type_parameter_rib(HasTypeParameters
(generics, id, 0,
NormalRibKind)) {
// Resolve the type parameters.
self.resolve_type_parameters(&generics.ty_params,
visitor);
// Resolve the trait reference, if necessary.
let original_trait_refs;
match opt_trait_reference {
Some(trait_reference) => {
let mut new_trait_refs = ~[];
match self.resolve_path(
trait_reference.path, TypeNS, true, visitor) {
None => {
self.session.span_err(span,
~"attempt to implement an \
unknown trait");
}
Some(def) => {
self.record_def(trait_reference.ref_id, def);
// Record the current trait reference.
new_trait_refs.push(def_id_of_def(def));
}
}
// Record the current set of trait references.
let mut old = Some(new_trait_refs);
self.current_trait_refs <-> old;
original_trait_refs = Some(old);
}
None => {
original_trait_refs = None;
}
}
// Resolve the self type.
self.resolve_type(self_type, visitor);
for methods.each |method| {
// We also need a new scope for the method-specific
// type parameters.
self.resolve_method(MethodRibKind(
id,
Provided(method.id)),
*method,
outer_type_parameter_count,
visitor);
/*
let borrowed_type_parameters = &method.tps;
self.resolve_function(MethodRibKind(
id,
Provided(method.id)),
Some(@method.decl),
HasTypeParameters
(borrowed_type_parameters,
method.id,
outer_type_parameter_count,
NormalRibKind),
method.body,
HasSelfBinding(method.self_id),
visitor);
*/
}
// Restore the original trait references.
match original_trait_refs {
Some(r) => { self.current_trait_refs = r; }
None => ()
}
}
}
fn resolve_module(@mut self,
module_: &_mod,
span: span,
_name: ident,
id: node_id,
visitor: ResolveVisitor) {
// Write the implementations in scope into the module metadata.
debug!("(resolving module) resolving module ID %d", id);
visit_mod(module_, span, id, (), visitor);
}
fn resolve_local(@mut self, local: @local, visitor: ResolveVisitor) {
let mutability = if local.node.is_mutbl {Mutable} else {Immutable};
// Resolve the type.
self.resolve_type(local.node.ty, visitor);
// Resolve the initializer, if necessary.
match local.node.init {
None => {
// Nothing to do.
}
Some(initializer) => {
self.resolve_expr(initializer, visitor);
}
}
// Resolve the pattern.
self.resolve_pattern(local.node.pat, LocalIrrefutableMode, mutability,
None, visitor);
}
fn binding_mode_map(@mut self, pat: @pat) -> BindingMap {
let mut result = LinearMap::new();
do pat_bindings(self.def_map, pat) |binding_mode, _id, sp, path| {
let ident = path_to_ident(path);
result.insert(ident,
binding_info {span: sp,
binding_mode: binding_mode});
}
return result;
}
fn check_consistent_bindings(@mut self, arm: &arm) {
if arm.pats.len() == 0 { return; }
let map_0 = self.binding_mode_map(arm.pats[0]);
for arm.pats.eachi() |i, p| {
let map_i = self.binding_mode_map(*p);
for map_0.each |&(&key, &binding_0)| {
match map_i.find(&key) {
None => {
self.session.span_err(
p.span,
fmt!("variable `%s` from pattern #1 is \
not bound in pattern #%u",
*self.session.str_of(key), i + 1));
}
Some(binding_i) => {
if binding_0.binding_mode != binding_i.binding_mode {
self.session.span_err(
binding_i.span,
fmt!("variable `%s` is bound with different \
mode in pattern #%u than in pattern #1",
*self.session.str_of(key), i + 1));
}
}
}
}
for map_i.each |&(&key, &binding)| {
if !map_0.contains_key(&key) {
self.session.span_err(
binding.span,
fmt!("variable `%s` from pattern #%u is \
not bound in pattern #1",
*self.session.str_of(key), i + 1));
}
}
}
}
fn resolve_arm(@mut self, arm: &arm, visitor: ResolveVisitor) {
self.value_ribs.push(@Rib(NormalRibKind));
let bindings_list = @mut LinearMap::new();
for arm.pats.each |pattern| {
self.resolve_pattern(*pattern, RefutableMode, Immutable,
Some(bindings_list), visitor);
}
// This has to happen *after* we determine which
// pat_idents are variants
self.check_consistent_bindings(arm);
visit_expr_opt(arm.guard, (), visitor);
self.resolve_block(&arm.body, visitor);
self.value_ribs.pop();
}
fn resolve_block(@mut self, block: &blk, visitor: ResolveVisitor) {
debug!("(resolving block) entering block");
self.value_ribs.push(@Rib(NormalRibKind));
// Move down in the graph, if there's an anonymous module rooted here.
let orig_module = self.current_module;
match self.current_module.anonymous_children.find(&block.node.id) {
None => { /* Nothing to do. */ }
Some(&anonymous_module) => {
debug!("(resolving block) found anonymous module, moving \
down");
self.current_module = anonymous_module;
}
}
// Descend into the block.
visit_block(block, (), visitor);
// Move back up.
self.current_module = orig_module;
self.value_ribs.pop();
debug!("(resolving block) leaving block");
}
fn resolve_type(@mut self, ty: @Ty, visitor: ResolveVisitor) {
match ty.node {
// Like path expressions, the interpretation of path types depends
// on whether the path has multiple elements in it or not.
ty_path(path, path_id) => {
// This is a path in the type namespace. Walk through scopes
// scopes looking for it.
let mut result_def = None;
// First, check to see whether the name is a primitive type.
if path.idents.len() == 1 {
let name = *path.idents.last();
match self.primitive_type_table
.primitive_types
.find(&name) {
Some(&primitive_type) => {
result_def =
Some(def_prim_ty(primitive_type));
}
None => {
// Continue.
}
}
}
match result_def {
None => {
match self.resolve_path(path, TypeNS, true, visitor) {
Some(def) => {
debug!("(resolving type) resolved `%s` to \
type %?",
*self.session.str_of(
*path.idents.last()),
def);
result_def = Some(def);
}
None => {
result_def = None;
}
}
}
Some(_) => {
// Continue.
}
}
match result_def {
Some(def) => {
// Write the result into the def map.
debug!("(resolving type) writing resolution for `%s` \
(id %d)",
self.idents_to_str(path.idents),
path_id);
self.record_def(path_id, def);
}
None => {
self.session.span_err
(ty.span, fmt!("use of undeclared type name `%s`",
self.idents_to_str(path.idents)));
}
}
}
_ => {
// Just resolve embedded types.
visit_ty(ty, (), visitor);
}
}
}
fn resolve_pattern(@mut self,
pattern: @pat,
mode: PatternBindingMode,
mutability: Mutability,
// Maps idents to the node ID for the (outermost)
// pattern that binds them
bindings_list: Option<@mut LinearMap<ident,node_id>>,
visitor: ResolveVisitor) {
let pat_id = pattern.id;
do walk_pat(pattern) |pattern| {
match pattern.node {
pat_ident(binding_mode, path, _)
if !path.global && path.idents.len() == 1 => {
// The meaning of pat_ident with no type parameters
// depends on whether an enum variant or unit-like struct
// with that name is in scope. The probing lookup has to
// be careful not to emit spurious errors. Only matching
// patterns (match) can match nullary variants or
// unit-like structs. For binding patterns (let), matching
// such a value is simply disallowed (since it's rarely
// what you want).
let ident = path.idents[0];
match self.resolve_bare_identifier_pattern(ident) {
FoundStructOrEnumVariant(def)
if mode == RefutableMode => {
debug!("(resolving pattern) resolving `%s` to \
struct or enum variant",
*self.session.str_of(ident));
self.enforce_default_binding_mode(
pattern,
binding_mode,
"an enum variant");
self.record_def(pattern.id, def);
}
FoundStructOrEnumVariant(_) => {
self.session.span_err(pattern.span,
fmt!("declaration of `%s` \
shadows an enum \
variant or unit-like \
struct in scope",
*self.session
.str_of(ident)));
}
FoundConst(def) if mode == RefutableMode => {
debug!("(resolving pattern) resolving `%s` to \
constant",
*self.session.str_of(ident));
self.enforce_default_binding_mode(
pattern,
binding_mode,
"a constant");
self.record_def(pattern.id, def);
}
FoundConst(_) => {
self.session.span_err(pattern.span,
~"only refutable patterns \
allowed here");
}
BareIdentifierPatternUnresolved => {
debug!("(resolving pattern) binding `%s`",
*self.session.str_of(ident));
let is_mutable = mutability == Mutable;
let def = match mode {
RefutableMode => {
// For pattern arms, we must use
// `def_binding` definitions.
def_binding(pattern.id, binding_mode)
}
LocalIrrefutableMode => {
// But for locals, we use `def_local`.
def_local(pattern.id, is_mutable)
}
ArgumentIrrefutableMode(argument_mode) => {
// And for function arguments, `def_arg`.
def_arg(pattern.id, argument_mode,
is_mutable)
}
};
// Record the definition so that later passes
// will be able to distinguish variants from
// locals in patterns.
self.record_def(pattern.id, def);
// Add the binding to the local ribs, if it
// doesn't already exist in the bindings list. (We
// must not add it if it's in the bindings list
// because that breaks the assumptions later
// passes make about or-patterns.)
match bindings_list {
Some(bindings_list)
if !bindings_list.contains_key(&ident) => {
let this = &mut *self;
let last_rib = this.value_ribs[
this.value_ribs.len() - 1];
last_rib.bindings.insert(ident,
dl_def(def));
bindings_list.insert(ident, pat_id);
}
Some(b) => {
if b.find(&ident) == Some(&pat_id) {
// Then this is a duplicate variable
// in the same disjunct, which is an
// error
self.session.span_err(pattern.span,
fmt!("Identifier %s is bound more \
than once in the same pattern",
path_to_str(path, self.session
.intr())));
}
// Not bound in the same pattern: do nothing
}
None => {
let this = &mut *self;
let last_rib = this.value_ribs[
this.value_ribs.len() - 1];
last_rib.bindings.insert(ident,
dl_def(def));
}
}
}
}
// Check the types in the path pattern.
for path.types.each |ty| {
self.resolve_type(*ty, visitor);
}
}
pat_ident(binding_mode, path, _) => {
// This must be an enum variant, struct, or constant.
match self.resolve_path(path, ValueNS, false, visitor) {
Some(def @ def_variant(*)) |
Some(def @ def_struct(*)) => {
self.record_def(pattern.id, def);
}
Some(def @ def_const(*)) => {
self.enforce_default_binding_mode(
pattern,
binding_mode,
"a constant");
self.record_def(pattern.id, def);
}
Some(_) => {
self.session.span_err(
path.span,
fmt!("not an enum variant or constant: %s",
*self.session.str_of(
*path.idents.last())));
}
None => {
self.session.span_err(path.span,
~"unresolved enum variant");
}
}
// Check the types in the path pattern.
for path.types.each |ty| {
self.resolve_type(*ty, visitor);
}
}
pat_enum(path, _) => {
// This must be an enum variant, struct or const.
match self.resolve_path(path, ValueNS, false, visitor) {
Some(def @ def_variant(*)) |
Some(def @ def_struct(*)) |
Some(def @ def_const(*)) => {
self.record_def(pattern.id, def);
}
Some(_) => {
self.session.span_err(
path.span,
fmt!("not an enum variant, struct or const: %s",
*self.session.str_of(
*path.idents.last())));
}
None => {
self.session.span_err(path.span,
~"unresolved enum variant, \
struct or const");
}
}
// Check the types in the path pattern.
for path.types.each |ty| {
self.resolve_type(*ty, visitor);
}
}
pat_lit(expr) => {
self.resolve_expr(expr, visitor);
}
pat_range(first_expr, last_expr) => {
self.resolve_expr(first_expr, visitor);
self.resolve_expr(last_expr, visitor);
}
pat_struct(path, _, _) => {
let structs: &mut LinearSet<def_id> = &mut self.structs;
match self.resolve_path(path, TypeNS, false, visitor) {
Some(def_ty(class_id))
if structs.contains(&class_id) => {
let class_def = def_struct(class_id);
self.record_def(pattern.id, class_def);
}
Some(definition @ def_struct(class_id))
if structs.contains(&class_id) => {
self.record_def(pattern.id, definition);
}
Some(definition @ def_variant(_, variant_id))
if structs.contains(&variant_id) => {
self.record_def(pattern.id, definition);
}
result => {
debug!("(resolving pattern) didn't find struct \
def: %?", result);
self.session.span_err(
path.span,
fmt!("`%s` does not name a structure",
self.idents_to_str(path.idents)));
}
}
}
_ => {
// Nothing to do.
}
}
}
}
fn resolve_bare_identifier_pattern(@mut self, name: ident)
-> BareIdentifierPatternResolution {
match self.resolve_item_in_lexical_scope(self.current_module,
name,
ValueNS,
SearchThroughModules) {
Success(target) => {
match target.bindings.value_def {
None => {
fail!(~"resolved name in the value namespace to a \
set of name bindings with no def?!");
}
Some(def) => {
match def.def {
def @ def_variant(*) | def @ def_struct(*) => {
return FoundStructOrEnumVariant(def);
}
def @ def_const(*) => {
return FoundConst(def);
}
_ => {
return BareIdentifierPatternUnresolved;
}
}
}
}
}
Indeterminate => {
fail!(~"unexpected indeterminate result");
}
Failed => {
return BareIdentifierPatternUnresolved;
}
}
}
/// If `check_ribs` is true, checks the local definitions first; i.e.
/// doesn't skip straight to the containing module.
fn resolve_path(@mut self,
path: @path,
namespace: Namespace,
check_ribs: bool,
visitor: ResolveVisitor)
-> Option<def> {
// First, resolve the types.
for path.types.each |ty| {
self.resolve_type(*ty, visitor);
}
if path.global {
return self.resolve_crate_relative_path(path,
self.xray_context,
namespace);
}
if path.idents.len() > 1 {
return self.resolve_module_relative_path(path,
self.xray_context,
namespace);
}
return self.resolve_identifier(*path.idents.last(),
namespace,
check_ribs,
path.span);
}
fn resolve_identifier(@mut self,
identifier: ident,
namespace: Namespace,
check_ribs: bool,
span: span)
-> Option<def> {
if check_ribs {
match self.resolve_identifier_in_local_ribs(identifier,
namespace,
span) {
Some(def) => {
return Some(def);
}
None => {
// Continue.
}
}
}
return self.resolve_item_by_identifier_in_lexical_scope(identifier,
namespace);
}
// FIXME #4952: Merge me with resolve_name_in_module?
fn resolve_definition_of_name_in_module(@mut self,
containing_module: @mut Module,
name: ident,
namespace: Namespace,
xray: XrayFlag)
-> NameDefinition {
// First, search children.
match containing_module.children.find(&name) {
Some(child_name_bindings) => {
match (child_name_bindings.def_for_namespace(namespace),
child_name_bindings.privacy_for_namespace(namespace)) {
(Some(def), Some(Public)) => {
// Found it. Stop the search here.
return ChildNameDefinition(def);
}
(Some(def), _) if xray == Xray => {
// Found it. Stop the search here.
return ChildNameDefinition(def);
}
(Some(_), _) | (None, _) => {
// Continue.
}
}
}
None => {
// Continue.
}
}
// Next, search import resolutions.
match containing_module.import_resolutions.find(&name) {
Some(import_resolution) if import_resolution.privacy == Public ||
xray == Xray => {
match (*import_resolution).target_for_namespace(namespace) {
Some(target) => {
match (target.bindings.def_for_namespace(namespace),
target.bindings.privacy_for_namespace(
namespace)) {
(Some(def), Some(Public)) => {
// Found it.
import_resolution.state.used = true;
return ImportNameDefinition(def);
}
(Some(_), _) | (None, _) => {
// This can happen with external impls, due to
// the imperfect way we read the metadata.
}
}
}
None => {}
}
}
Some(_) | None => {} // Continue.
}
// Finally, search through external children.
if namespace == TypeNS {
match containing_module.external_module_children.find(&name) {
None => {}
Some(module) => {
match module.def_id {
None => {} // Continue.
Some(def_id) => {
return ChildNameDefinition(def_mod(def_id));
}
}
}
}
}
return NoNameDefinition;
}
fn intern_module_part_of_path(@mut self, path: @path) -> ~[ident] {
let mut module_path_idents = ~[];
for path.idents.eachi |index, ident| {
if index == path.idents.len() - 1 {
break;
}
module_path_idents.push(*ident);
}
return module_path_idents;
}
fn resolve_module_relative_path(@mut self,
path: @path,
+xray: XrayFlag,
namespace: Namespace)
-> Option<def> {
let module_path_idents = self.intern_module_part_of_path(path);
let mut containing_module;
match self.resolve_module_path_for_import(self.current_module,
module_path_idents,
UseLexicalScope,
path.span) {
Failed => {
self.session.span_err(path.span,
fmt!("use of undeclared module `%s`",
self.idents_to_str(
module_path_idents)));
return None;
}
Indeterminate => {
fail!(~"indeterminate unexpected");
}
Success(resulting_module) => {
containing_module = resulting_module;
}
}
let name = *path.idents.last();
match self.resolve_definition_of_name_in_module(containing_module,
name,
namespace,
xray) {
NoNameDefinition => {
// We failed to resolve the name. Report an error.
return None;
}
ChildNameDefinition(def) | ImportNameDefinition(def) => {
return Some(def);
}
}
}
/// Invariant: This must be called only during main resolution, not during
/// import resolution.
fn resolve_crate_relative_path(@mut self,
path: @path,
+xray: XrayFlag,
namespace: Namespace)
-> Option<def> {
let module_path_idents = self.intern_module_part_of_path(path);
let root_module = self.graph_root.get_module();
let mut containing_module;
match self.resolve_module_path_from_root(root_module,
module_path_idents,
0,
path.span,
SearchItemsAndAllImports) {
Failed => {
self.session.span_err(path.span,
fmt!("use of undeclared module `::%s`",
self.idents_to_str(
module_path_idents)));
return None;
}
Indeterminate => {
fail!(~"indeterminate unexpected");
}
Success(resulting_module) => {
containing_module = resulting_module;
}
}
let name = *path.idents.last();
match self.resolve_definition_of_name_in_module(containing_module,
name,
namespace,
xray) {
NoNameDefinition => {
// We failed to resolve the name. Report an error.
return None;
}
ChildNameDefinition(def) | ImportNameDefinition(def) => {
return Some(def);
}
}
}
fn resolve_identifier_in_local_ribs(@mut self,
ident: ident,
namespace: Namespace,
span: span)
-> Option<def> {
// Check the local set of ribs.
let mut search_result;
match namespace {
ValueNS => {
search_result = self.search_ribs(&mut self.value_ribs, ident,
span,
DontAllowCapturingSelf);
}
TypeNS => {
search_result = self.search_ribs(&mut self.type_ribs, ident,
span, AllowCapturingSelf);
}
}
match search_result {
Some(dl_def(def)) => {
debug!("(resolving path in local ribs) resolved `%s` to \
local: %?",
*self.session.str_of(ident),
def);
return Some(def);
}
Some(dl_field) | Some(dl_impl(_)) | None => {
return None;
}
}
}
fn resolve_item_by_identifier_in_lexical_scope(@mut self,
ident: ident,
namespace: Namespace)
-> Option<def> {
// Check the items.
match self.resolve_item_in_lexical_scope(self.current_module,
ident,
namespace,
DontSearchThroughModules) {
Success(target) => {
match (*target.bindings).def_for_namespace(namespace) {
None => {
// This can happen if we were looking for a type and
// found a module instead. Modules don't have defs.
return None;
}
Some(def) => {
debug!("(resolving item path in lexical scope) \
resolved `%s` to item",
*self.session.str_of(ident));
return Some(def);
}
}
}
Indeterminate => {
fail!(~"unexpected indeterminate result");
}
Failed => {
return None;
}
}
}
fn find_best_match_for_name(@mut self, name: &str) -> Option<~str> {
let this = &mut *self;
let mut maybes: ~[~str] = ~[];
let mut values: ~[uint] = ~[];
let mut j = this.value_ribs.len();
while j != 0 {
j -= 1;
for this.value_ribs[j].bindings.each_key |&k| {
vec::push(&mut maybes, copy *this.session.str_of(k));
vec::push(&mut values, uint::max_value);
}
}
let mut smallest = 0;
for vec::eachi(maybes) |i, &other| {
values[i] = str::levdistance(name, other);
if values[i] <= values[smallest] {
smallest = i;
}
}
if vec::len(values) > 0 &&
values[smallest] != uint::max_value &&
values[smallest] < str::len(name) + 2 &&
maybes[smallest] != name.to_owned() {
Some(vec::swap_remove(&mut maybes, smallest))
} else {
None
}
}
fn name_exists_in_scope_struct(@mut self, name: &str) -> bool {
let this = &mut *self;
let mut i = this.type_ribs.len();
while i != 0 {
i -= 1;
match this.type_ribs[i].kind {
MethodRibKind(node_id, _) =>
for this.crate.node.module.items.each |item| {
if item.id == node_id {
match item.node {
item_struct(class_def, _) => {
for vec::each(class_def.fields) |field| {
match field.node.kind {
unnamed_field => {},
named_field(ident, _, _) => {
if str::eq_slice(*this.session.str_of(ident),
name) {
return true
}
}
}
}
}
_ => {}
}
}
},
_ => {}
}
}
return false;
}
fn resolve_expr(@mut self, expr: @expr, visitor: ResolveVisitor) {
// First, record candidate traits for this expression if it could
// result in the invocation of a method call.
self.record_candidate_traits_for_expr_if_necessary(expr);
// Next, resolve the node.
match expr.node {
// The interpretation of paths depends on whether the path has
// multiple elements in it or not.
expr_path(path) => {
// This is a local path in the value namespace. Walk through
// scopes looking for it.
match self.resolve_path(path, ValueNS, true, visitor) {
Some(def) => {
// Write the result into the def map.
debug!("(resolving expr) resolved `%s`",
self.idents_to_str(path.idents));
self.record_def(expr.id, def);
}
None => {
let wrong_name = self.idents_to_str(
path.idents);
if self.name_exists_in_scope_struct(wrong_name) {
self.session.span_err(expr.span,
fmt!("unresolved name: `%s`. \
Did you mean: `self.%s`?",
wrong_name,
wrong_name));
}
else {
match self.find_best_match_for_name(wrong_name) {
Some(m) => {
self.session.span_err(expr.span,
fmt!("unresolved name: `%s`. \
Did you mean: `%s`?",
wrong_name, m));
}
None => {
self.session.span_err(expr.span,
fmt!("unresolved name: `%s`.",
wrong_name));
}
}
}
}
}
visit_expr(expr, (), visitor);
}
expr_fn_block(ref fn_decl, ref block) => {
self.resolve_function(FunctionRibKind(expr.id, block.node.id),
Some(fn_decl),
NoTypeParameters,
block,
NoSelfBinding,
visitor);
}
expr_struct(path, _, _) => {
// Resolve the path to the structure it goes to.
let structs: &mut LinearSet<def_id> = &mut self.structs;
match self.resolve_path(path, TypeNS, false, visitor) {
Some(def_ty(class_id)) | Some(def_struct(class_id))
if structs.contains(&class_id) => {
let class_def = def_struct(class_id);
self.record_def(expr.id, class_def);
}
Some(definition @ def_variant(_, class_id))
if structs.contains(&class_id) => {
self.record_def(expr.id, definition);
}
_ => {
self.session.span_err(
path.span,
fmt!("`%s` does not name a structure",
self.idents_to_str(path.idents)));
}
}
visit_expr(expr, (), visitor);
}
expr_loop(_, Some(label)) => {
do self.with_label_rib {
let this = &mut *self;
let def_like = dl_def(def_label(expr.id));
let rib = this.label_ribs[this.label_ribs.len() - 1];
rib.bindings.insert(label, def_like);
visit_expr(expr, (), visitor);
}
}
expr_break(Some(label)) | expr_again(Some(label)) => {
match self.search_ribs(&mut self.label_ribs, label, expr.span,
DontAllowCapturingSelf) {
None =>
self.session.span_err(expr.span,
fmt!("use of undeclared label \
`%s`",
*self.session.str_of(
label))),
Some(dl_def(def @ def_label(_))) =>
self.record_def(expr.id, def),
Some(_) =>
self.session.span_bug(expr.span,
~"label wasn't mapped to a \
label def!")
}
}
_ => {
visit_expr(expr, (), visitor);
}
}
}
fn record_candidate_traits_for_expr_if_necessary(@mut self, expr: @expr) {
match expr.node {
expr_field(_, ident, _) => {
let traits = self.search_for_traits_containing_method(ident);
self.trait_map.insert(expr.id, @mut traits);
}
expr_method_call(_, ident, _, _, _) => {
let traits = self.search_for_traits_containing_method(ident);
self.trait_map.insert(expr.id, @mut traits);
}
expr_binary(add, _, _) | expr_assign_op(add, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.add_trait());
}
expr_binary(subtract, _, _) | expr_assign_op(subtract, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.sub_trait());
}
expr_binary(mul, _, _) | expr_assign_op(mul, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.mul_trait());
}
expr_binary(div, _, _) | expr_assign_op(div, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.div_trait());
}
expr_binary(rem, _, _) | expr_assign_op(rem, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.modulo_trait());
}
expr_binary(bitxor, _, _) | expr_assign_op(bitxor, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.bitxor_trait());
}
expr_binary(bitand, _, _) | expr_assign_op(bitand, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.bitand_trait());
}
expr_binary(bitor, _, _) | expr_assign_op(bitor, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.bitor_trait());
}
expr_binary(shl, _, _) | expr_assign_op(shl, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.shl_trait());
}
expr_binary(shr, _, _) | expr_assign_op(shr, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.shr_trait());
}
expr_binary(lt, _, _) | expr_binary(le, _, _) |
expr_binary(ge, _, _) | expr_binary(gt, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.ord_trait());
}
expr_binary(eq, _, _) | expr_binary(ne, _, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.eq_trait());
}
expr_unary(neg, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.neg_trait());
}
expr_unary(not, _) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.not_trait());
}
expr_index(*) => {
self.add_fixed_trait_for_expr(expr.id,
self.lang_items.index_trait());
}
_ => {
// Nothing to do.
}
}
}
fn search_for_traits_containing_method(@mut self,
name: ident)
-> ~[def_id] {
debug!("(searching for traits containing method) looking for '%s'",
*self.session.str_of(name));
let mut found_traits = ~[];
let mut search_module = self.current_module;
loop {
// Look for the current trait.
match /*bad*/copy self.current_trait_refs {
Some(trait_def_ids) => {
for trait_def_ids.each |trait_def_id| {
self.add_trait_info_if_containing_method(
&mut found_traits, *trait_def_id, name);
}
}
None => {
// Nothing to do.
}
}
// Look for trait children.
for search_module.children.each_value |&child_name_bindings| {
match child_name_bindings.def_for_namespace(TypeNS) {
Some(def) => {
match def {
def_ty(trait_def_id) => {
self.add_trait_info_if_containing_method(
&mut found_traits, trait_def_id, name);
}
_ => {
// Continue.
}
}
}
None => {
// Continue.
}
}
}
// Look for imports.
for search_module.import_resolutions.each_value
|&import_resolution| {
match import_resolution.target_for_namespace(TypeNS) {
None => {
// Continue.
}
Some(target) => {
match target.bindings.def_for_namespace(TypeNS) {
Some(def) => {
match def {
def_ty(trait_def_id) => {
let added = self.
add_trait_info_if_containing_method(
&mut found_traits,
trait_def_id, name);
if added {
import_resolution.state.used =
true;
}
}
_ => {
// Continue.
}
}
}
None => {
// Continue.
}
}
}
}
}
// Move to the next parent.
match search_module.parent_link {
NoParentLink => {
// Done.
break;
}
ModuleParentLink(parent_module, _) |
BlockParentLink(parent_module, _) => {
search_module = parent_module;
}
}
}
return found_traits;
}
fn add_trait_info_if_containing_method(&self,
found_traits: &mut ~[def_id],
trait_def_id: def_id,
name: ident)
-> bool {
debug!("(adding trait info if containing method) trying trait %d:%d \
for method '%s'",
trait_def_id.crate,
trait_def_id.node,
*self.session.str_of(name));
match self.trait_info.find(&trait_def_id) {
Some(trait_info) if trait_info.contains(&name) => {
debug!("(adding trait info if containing method) found trait \
%d:%d for method '%s'",
trait_def_id.crate,
trait_def_id.node,
*self.session.str_of(name));
found_traits.push(trait_def_id);
true
}
Some(_) | None => {
false
}
}
}
fn add_fixed_trait_for_expr(@mut self,
expr_id: node_id,
+trait_id: def_id) {
self.trait_map.insert(expr_id, @mut ~[trait_id]);
}
fn record_def(@mut self, node_id: node_id, def: def) {
debug!("(recording def) recording %? for %?", def, node_id);
self.def_map.insert(node_id, def);
}
fn enforce_default_binding_mode(@mut self,
pat: @pat,
pat_binding_mode: binding_mode,
descr: &str) {
match pat_binding_mode {
bind_infer => {}
bind_by_copy => {
self.session.span_err(
pat.span,
fmt!("cannot use `copy` binding mode with %s",
descr));
}
bind_by_ref(*) => {
self.session.span_err(
pat.span,
fmt!("cannot use `ref` binding mode with %s",
descr));
}
}
}
//
// main function checking
//
// be sure that there is only one main function
//
fn check_duplicate_main(@mut self) {
let this = &mut *self;
if this.attr_main_fn.is_none() {
if this.main_fns.len() >= 1u {
let mut i = 1u;
while i < this.main_fns.len() {
let (_, dup_main_span) = this.main_fns[i].unwrap();
this.session.span_err(
dup_main_span,
~"multiple 'main' functions");
i += 1;
}
*this.session.main_fn = this.main_fns[0];
}
} else {
*this.session.main_fn = this.attr_main_fn;
}
}
//
// Unused import checking
//
// Although this is a lint pass, it lives in here because it depends on
// resolve data structures.
//
fn unused_import_lint_level(@mut self, m: @mut Module) -> level {
let settings = self.session.lint_settings;
match m.def_id {
Some(def) => get_lint_settings_level(settings, unused_imports,
def.node, def.node),
None => get_lint_level(settings.default_settings, unused_imports)
}
}
fn check_for_unused_imports_if_necessary(@mut self) {
if self.unused_import_lint_level(self.current_module) == allow {
return;
}
let root_module = self.graph_root.get_module();
self.check_for_unused_imports_in_module_subtree(root_module);
}
fn check_for_unused_imports_in_module_subtree(@mut self,
module_: @mut Module) {
// If this isn't a local crate, then bail out. We don't need to check
// for unused imports in external crates.
match module_.def_id {
Some(def_id) if def_id.crate == local_crate => {
// OK. Continue.
}
None => {
// Check for unused imports in the root module.
}
Some(_) => {
// Bail out.
debug!("(checking for unused imports in module subtree) not \
checking for unused imports for `%s`",
self.module_to_str(module_));
return;
}
}
self.check_for_unused_imports_in_module(module_);
for module_.children.each_value |&child_name_bindings| {
match (*child_name_bindings).get_module_if_available() {
None => {
// Nothing to do.
}
Some(child_module) => {
self.check_for_unused_imports_in_module_subtree
(child_module);
}
}
}
for module_.anonymous_children.each_value |&child_module| {
self.check_for_unused_imports_in_module_subtree(child_module);
}
}
fn check_for_unused_imports_in_module(@mut self, module_: @mut Module) {
for module_.import_resolutions.each_value |&import_resolution| {
// Ignore dummy spans for things like automatically injected
// imports for the prelude, and also don't warn about the same
// import statement being unused more than once. Furthermore, if
// the import is public, then we can't be sure whether it's unused
// or not so don't warn about it.
if !import_resolution.state.used &&
!import_resolution.state.warned &&
import_resolution.span != dummy_sp() &&
import_resolution.privacy != Public {
import_resolution.state.warned = true;
match self.unused_import_lint_level(module_) {
warn => {
self.session.span_warn(copy import_resolution.span,
~"unused import");
}
deny | forbid => {
self.session.span_err(copy import_resolution.span,
~"unused import");
}
allow => ()
}
}
}
}
//
// Diagnostics
//
// Diagnostics are not particularly efficient, because they're rarely
// hit.
//
/// A somewhat inefficient routine to obtain the name of a module.
fn module_to_str(@mut self, module_: @mut Module) -> ~str {
let mut idents = ~[];
let mut current_module = module_;
loop {
match current_module.parent_link {
NoParentLink => {
break;
}
ModuleParentLink(module_, name) => {
idents.push(name);
current_module = module_;
}
BlockParentLink(module_, _) => {
idents.push(special_idents::opaque);
current_module = module_;
}
}
}
if idents.len() == 0 {
return ~"???";
}
return self.idents_to_str(vec::reversed(idents));
}
fn dump_module(@mut self, module_: @mut Module) {
debug!("Dump of module `%s`:", self.module_to_str(module_));
debug!("Children:");
for module_.children.each_key |&name| {
debug!("* %s", *self.session.str_of(name));
}
debug!("Import resolutions:");
for module_.import_resolutions.each |&(name, import_resolution)| {
let mut value_repr;
match import_resolution.target_for_namespace(ValueNS) {
None => { value_repr = ~""; }
Some(_) => {
value_repr = ~" value:?";
// FIXME #4954
}
}
let mut type_repr;
match import_resolution.target_for_namespace(TypeNS) {
None => { type_repr = ~""; }
Some(_) => {
type_repr = ~" type:?";
// FIXME #4954
}
}
debug!("* %s:%s%s", *self.session.str_of(*name),
value_repr, type_repr);
}
}
}
pub struct CrateMap {
def_map: DefMap,
exp_map2: ExportMap2,
trait_map: TraitMap
}
/// Entry point to crate resolution.
pub fn resolve_crate(session: Session,
lang_items: LanguageItems,
crate: @crate)
-> CrateMap {
let resolver = @mut Resolver(session, lang_items, crate);
resolver.resolve();
let @Resolver{def_map, export_map2, trait_map, _} = resolver;
CrateMap {
def_map: def_map,
exp_map2: export_map2,
trait_map: trait_map
}
}