649 lines
26 KiB
Rust
649 lines
26 KiB
Rust
use rustc::ty::{self, Ty};
|
|
use rustc::hir::def_id::{DefId, CRATE_DEF_INDEX};
|
|
use rustc::mir;
|
|
use syntax::attr;
|
|
use syntax::abi::Abi;
|
|
use syntax::codemap::Span;
|
|
|
|
use std::mem;
|
|
|
|
use rustc_miri::interpret::*;
|
|
|
|
use super::{TlsKey, EvalContext};
|
|
|
|
use tls::MemoryExt;
|
|
|
|
use super::memory::MemoryKind;
|
|
|
|
pub trait EvalContextExt<'tcx> {
|
|
fn call_c_abi(
|
|
&mut self,
|
|
def_id: DefId,
|
|
args: &[ValTy<'tcx>],
|
|
dest: Lvalue,
|
|
dest_ty: Ty<'tcx>,
|
|
dest_block: mir::BasicBlock,
|
|
) -> EvalResult<'tcx>;
|
|
|
|
fn resolve_path(&self, path: &[&str]) -> EvalResult<'tcx, ty::Instance<'tcx>>;
|
|
|
|
fn call_missing_fn(
|
|
&mut self,
|
|
instance: ty::Instance<'tcx>,
|
|
destination: Option<(Lvalue, mir::BasicBlock)>,
|
|
args: &[ValTy<'tcx>],
|
|
sig: ty::FnSig<'tcx>,
|
|
path: String,
|
|
) -> EvalResult<'tcx>;
|
|
|
|
fn eval_fn_call(
|
|
&mut self,
|
|
instance: ty::Instance<'tcx>,
|
|
destination: Option<(Lvalue, mir::BasicBlock)>,
|
|
args: &[ValTy<'tcx>],
|
|
span: Span,
|
|
sig: ty::FnSig<'tcx>,
|
|
) -> EvalResult<'tcx, bool>;
|
|
}
|
|
|
|
impl<'a, 'tcx> EvalContextExt<'tcx> for EvalContext<'a, 'tcx, super::Evaluator> {
|
|
fn eval_fn_call(
|
|
&mut self,
|
|
instance: ty::Instance<'tcx>,
|
|
destination: Option<(Lvalue, mir::BasicBlock)>,
|
|
args: &[ValTy<'tcx>],
|
|
span: Span,
|
|
sig: ty::FnSig<'tcx>,
|
|
) -> EvalResult<'tcx, bool> {
|
|
trace!("eval_fn_call: {:#?}, {:#?}", instance, destination);
|
|
|
|
let mir = match self.load_mir(instance.def) {
|
|
Ok(mir) => mir,
|
|
Err(EvalError { kind: EvalErrorKind::NoMirFor(path), .. }) => {
|
|
self.call_missing_fn(
|
|
instance,
|
|
destination,
|
|
args,
|
|
sig,
|
|
path,
|
|
)?;
|
|
return Ok(true);
|
|
}
|
|
Err(other) => return Err(other),
|
|
};
|
|
|
|
let (return_lvalue, return_to_block) = match destination {
|
|
Some((lvalue, block)) => (lvalue, StackPopCleanup::Goto(block)),
|
|
None => (Lvalue::undef(), StackPopCleanup::None),
|
|
};
|
|
|
|
self.push_stack_frame(
|
|
instance,
|
|
span,
|
|
mir,
|
|
return_lvalue,
|
|
return_to_block,
|
|
)?;
|
|
|
|
Ok(false)
|
|
}
|
|
|
|
fn call_c_abi(
|
|
&mut self,
|
|
def_id: DefId,
|
|
args: &[ValTy<'tcx>],
|
|
dest: Lvalue,
|
|
dest_ty: Ty<'tcx>,
|
|
dest_block: mir::BasicBlock,
|
|
) -> EvalResult<'tcx> {
|
|
let name = self.tcx.item_name(def_id);
|
|
let attrs = self.tcx.get_attrs(def_id);
|
|
let link_name = attr::first_attr_value_str_by_name(&attrs, "link_name")
|
|
.unwrap_or(name)
|
|
.as_str();
|
|
|
|
match &link_name[..] {
|
|
"malloc" => {
|
|
let size = self.value_to_primval(args[0])?.to_u64()?;
|
|
if size == 0 {
|
|
self.write_null(dest, dest_ty)?;
|
|
} else {
|
|
let align = self.memory.pointer_size();
|
|
let ptr = self.memory.allocate(size, align, MemoryKind::C.into())?;
|
|
self.write_primval(dest, PrimVal::Ptr(ptr), dest_ty)?;
|
|
}
|
|
}
|
|
|
|
"free" => {
|
|
let ptr = args[0].into_ptr(&mut self.memory)?;
|
|
if !ptr.is_null()? {
|
|
self.memory.deallocate(
|
|
ptr.to_ptr()?,
|
|
None,
|
|
MemoryKind::C.into(),
|
|
)?;
|
|
}
|
|
}
|
|
|
|
"syscall" => {
|
|
// TODO: read `syscall` ids like `sysconf` ids and
|
|
// figure out some way to actually process some of them
|
|
//
|
|
// libc::syscall(NR_GETRANDOM, buf.as_mut_ptr(), buf.len(), GRND_NONBLOCK)
|
|
// is called if a `HashMap` is created the regular way.
|
|
match self.value_to_primval(args[0])?.to_u64()? {
|
|
318 | 511 => {
|
|
return err!(Unimplemented(
|
|
"miri does not support random number generators".to_owned(),
|
|
))
|
|
}
|
|
id => {
|
|
return err!(Unimplemented(
|
|
format!("miri does not support syscall id {}", id),
|
|
))
|
|
}
|
|
}
|
|
}
|
|
|
|
"dlsym" => {
|
|
let _handle = args[0].into_ptr(&mut self.memory)?;
|
|
let symbol = args[1].into_ptr(&mut self.memory)?.to_ptr()?;
|
|
let symbol_name = self.memory.read_c_str(symbol)?;
|
|
let err = format!("bad c unicode symbol: {:?}", symbol_name);
|
|
let symbol_name = ::std::str::from_utf8(symbol_name).unwrap_or(&err);
|
|
return err!(Unimplemented(format!(
|
|
"miri does not support dynamically loading libraries (requested symbol: {})",
|
|
symbol_name
|
|
)));
|
|
}
|
|
|
|
"__rust_maybe_catch_panic" => {
|
|
// fn __rust_maybe_catch_panic(f: fn(*mut u8), data: *mut u8, data_ptr: *mut usize, vtable_ptr: *mut usize) -> u32
|
|
// We abort on panic, so not much is going on here, but we still have to call the closure
|
|
let u8_ptr_ty = self.tcx.mk_mut_ptr(self.tcx.types.u8);
|
|
let f = args[0].into_ptr(&mut self.memory)?.to_ptr()?;
|
|
let data = args[1].into_ptr(&mut self.memory)?;
|
|
let f_instance = self.memory.get_fn(f)?;
|
|
self.write_null(dest, dest_ty)?;
|
|
|
|
// Now we make a function call. TODO: Consider making this re-usable? EvalContext::step does sth. similar for the TLS dtors,
|
|
// and of course eval_main.
|
|
let mir = self.load_mir(f_instance.def)?;
|
|
self.push_stack_frame(
|
|
f_instance,
|
|
mir.span,
|
|
mir,
|
|
Lvalue::undef(),
|
|
StackPopCleanup::Goto(dest_block),
|
|
)?;
|
|
|
|
let arg_local = self.frame().mir.args_iter().next().ok_or(
|
|
EvalErrorKind::AbiViolation(
|
|
"Argument to __rust_maybe_catch_panic does not take enough arguments."
|
|
.to_owned(),
|
|
),
|
|
)?;
|
|
let arg_dest = self.eval_lvalue(&mir::Lvalue::Local(arg_local))?;
|
|
self.write_ptr(arg_dest, data, u8_ptr_ty)?;
|
|
|
|
// We ourselves return 0
|
|
self.write_null(dest, dest_ty)?;
|
|
|
|
// Don't fall through
|
|
return Ok(());
|
|
}
|
|
|
|
"__rust_start_panic" => {
|
|
return err!(Panic);
|
|
}
|
|
|
|
"memcmp" => {
|
|
let left = args[0].into_ptr(&mut self.memory)?;
|
|
let right = args[1].into_ptr(&mut self.memory)?;
|
|
let n = self.value_to_primval(args[2])?.to_u64()?;
|
|
|
|
let result = {
|
|
let left_bytes = self.memory.read_bytes(left, n)?;
|
|
let right_bytes = self.memory.read_bytes(right, n)?;
|
|
|
|
use std::cmp::Ordering::*;
|
|
match left_bytes.cmp(right_bytes) {
|
|
Less => -1i8,
|
|
Equal => 0,
|
|
Greater => 1,
|
|
}
|
|
};
|
|
|
|
self.write_primval(
|
|
dest,
|
|
PrimVal::Bytes(result as u128),
|
|
dest_ty,
|
|
)?;
|
|
}
|
|
|
|
"memrchr" => {
|
|
let ptr = args[0].into_ptr(&mut self.memory)?;
|
|
let val = self.value_to_primval(args[1])?.to_u64()? as u8;
|
|
let num = self.value_to_primval(args[2])?.to_u64()?;
|
|
if let Some(idx) = self.memory.read_bytes(ptr, num)?.iter().rev().position(
|
|
|&c| c == val,
|
|
)
|
|
{
|
|
let new_ptr = ptr.offset(num - idx as u64 - 1, &self)?;
|
|
self.write_ptr(dest, new_ptr, dest_ty)?;
|
|
} else {
|
|
self.write_null(dest, dest_ty)?;
|
|
}
|
|
}
|
|
|
|
"memchr" => {
|
|
let ptr = args[0].into_ptr(&mut self.memory)?;
|
|
let val = self.value_to_primval(args[1])?.to_u64()? as u8;
|
|
let num = self.value_to_primval(args[2])?.to_u64()?;
|
|
if let Some(idx) = self.memory.read_bytes(ptr, num)?.iter().position(
|
|
|&c| c == val,
|
|
)
|
|
{
|
|
let new_ptr = ptr.offset(idx as u64, &self)?;
|
|
self.write_ptr(dest, new_ptr, dest_ty)?;
|
|
} else {
|
|
self.write_null(dest, dest_ty)?;
|
|
}
|
|
}
|
|
|
|
"getenv" => {
|
|
let result = {
|
|
let name_ptr = args[0].into_ptr(&mut self.memory)?.to_ptr()?;
|
|
let name = self.memory.read_c_str(name_ptr)?;
|
|
match self.machine_data.env_vars.get(name) {
|
|
Some(&var) => PrimVal::Ptr(var),
|
|
None => PrimVal::Bytes(0),
|
|
}
|
|
};
|
|
self.write_primval(dest, result, dest_ty)?;
|
|
}
|
|
|
|
"unsetenv" => {
|
|
let mut success = None;
|
|
{
|
|
let name_ptr = args[0].into_ptr(&mut self.memory)?;
|
|
if !name_ptr.is_null()? {
|
|
let name = self.memory.read_c_str(name_ptr.to_ptr()?)?;
|
|
if !name.is_empty() && !name.contains(&b'=') {
|
|
success = Some(self.machine_data.env_vars.remove(name));
|
|
}
|
|
}
|
|
}
|
|
if let Some(old) = success {
|
|
if let Some(var) = old {
|
|
self.memory.deallocate(var, None, MemoryKind::Env.into())?;
|
|
}
|
|
self.write_null(dest, dest_ty)?;
|
|
} else {
|
|
self.write_primval(dest, PrimVal::from_i128(-1), dest_ty)?;
|
|
}
|
|
}
|
|
|
|
"setenv" => {
|
|
let mut new = None;
|
|
{
|
|
let name_ptr = args[0].into_ptr(&mut self.memory)?;
|
|
let value_ptr = args[1].into_ptr(&mut self.memory)?.to_ptr()?;
|
|
let value = self.memory.read_c_str(value_ptr)?;
|
|
if !name_ptr.is_null()? {
|
|
let name = self.memory.read_c_str(name_ptr.to_ptr()?)?;
|
|
if !name.is_empty() && !name.contains(&b'=') {
|
|
new = Some((name.to_owned(), value.to_owned()));
|
|
}
|
|
}
|
|
}
|
|
if let Some((name, value)) = new {
|
|
// +1 for the null terminator
|
|
let value_copy = self.memory.allocate(
|
|
(value.len() + 1) as u64,
|
|
1,
|
|
MemoryKind::Env.into(),
|
|
)?;
|
|
self.memory.write_bytes(value_copy.into(), &value)?;
|
|
let trailing_zero_ptr = value_copy.offset(value.len() as u64, &self)?.into();
|
|
self.memory.write_bytes(trailing_zero_ptr, &[0])?;
|
|
if let Some(var) = self.machine_data.env_vars.insert(
|
|
name.to_owned(),
|
|
value_copy,
|
|
)
|
|
{
|
|
self.memory.deallocate(var, None, MemoryKind::Env.into())?;
|
|
}
|
|
self.write_null(dest, dest_ty)?;
|
|
} else {
|
|
self.write_primval(dest, PrimVal::from_i128(-1), dest_ty)?;
|
|
}
|
|
}
|
|
|
|
"write" => {
|
|
let fd = self.value_to_primval(args[0])?.to_u64()?;
|
|
let buf = args[1].into_ptr(&mut self.memory)?;
|
|
let n = self.value_to_primval(args[2])?.to_u64()?;
|
|
trace!("Called write({:?}, {:?}, {:?})", fd, buf, n);
|
|
let result = if fd == 1 || fd == 2 {
|
|
// stdout/stderr
|
|
use std::io::{self, Write};
|
|
|
|
let buf_cont = self.memory.read_bytes(buf, n)?;
|
|
let res = if fd == 1 {
|
|
io::stdout().write(buf_cont)
|
|
} else {
|
|
io::stderr().write(buf_cont)
|
|
};
|
|
match res {
|
|
Ok(n) => n as isize,
|
|
Err(_) => -1,
|
|
}
|
|
} else {
|
|
info!("Ignored output to FD {}", fd);
|
|
n as isize // pretend it all went well
|
|
}; // now result is the value we return back to the program
|
|
self.write_primval(
|
|
dest,
|
|
PrimVal::Bytes(result as u128),
|
|
dest_ty,
|
|
)?;
|
|
}
|
|
|
|
"strlen" => {
|
|
let ptr = args[0].into_ptr(&mut self.memory)?.to_ptr()?;
|
|
let n = self.memory.read_c_str(ptr)?.len();
|
|
self.write_primval(dest, PrimVal::Bytes(n as u128), dest_ty)?;
|
|
}
|
|
|
|
// Some things needed for sys::thread initialization to go through
|
|
"signal" | "sigaction" | "sigaltstack" => {
|
|
self.write_primval(dest, PrimVal::Bytes(0), dest_ty)?;
|
|
}
|
|
|
|
"sysconf" => {
|
|
let name = self.value_to_primval(args[0])?.to_u64()?;
|
|
trace!("sysconf() called with name {}", name);
|
|
// cache the sysconf integers via miri's global cache
|
|
let paths = &[
|
|
(&["libc", "_SC_PAGESIZE"], PrimVal::Bytes(4096)),
|
|
(&["libc", "_SC_GETPW_R_SIZE_MAX"], PrimVal::from_i128(-1)),
|
|
];
|
|
let mut result = None;
|
|
for &(path, path_value) in paths {
|
|
if let Ok(instance) = self.resolve_path(path) {
|
|
let cid = GlobalId {
|
|
instance,
|
|
promoted: None,
|
|
};
|
|
// compute global if not cached
|
|
let val = match self.globals.get(&cid).cloned() {
|
|
Some(ptr) => self.value_to_primval(ValTy { value: Value::ByRef(ptr), ty: args[0].ty })?.to_u64()?,
|
|
None => eval_body_as_primval(self.tcx, instance)?.0.to_u64()?,
|
|
};
|
|
if val == name {
|
|
result = Some(path_value);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if let Some(result) = result {
|
|
self.write_primval(dest, result, dest_ty)?;
|
|
} else {
|
|
return err!(Unimplemented(
|
|
format!("Unimplemented sysconf name: {}", name),
|
|
));
|
|
}
|
|
}
|
|
|
|
// Hook pthread calls that go to the thread-local storage memory subsystem
|
|
"pthread_key_create" => {
|
|
let key_ptr = args[0].into_ptr(&mut self.memory)?;
|
|
|
|
// Extract the function type out of the signature (that seems easier than constructing it ourselves...)
|
|
let dtor = match args[1].into_ptr(&mut self.memory)?.into_inner_primval() {
|
|
PrimVal::Ptr(dtor_ptr) => Some(self.memory.get_fn(dtor_ptr)?),
|
|
PrimVal::Bytes(0) => None,
|
|
PrimVal::Bytes(_) => return err!(ReadBytesAsPointer),
|
|
PrimVal::Undef => return err!(ReadUndefBytes),
|
|
};
|
|
|
|
// Figure out how large a pthread TLS key actually is. This is libc::pthread_key_t.
|
|
let key_type = args[0].ty.builtin_deref(true, ty::LvaluePreference::NoPreference)
|
|
.ok_or(EvalErrorKind::AbiViolation("Wrong signature used for pthread_key_create: First argument must be a raw pointer.".to_owned()))?.ty;
|
|
let key_size = {
|
|
let layout = self.type_layout(key_type)?;
|
|
layout.size(&self.tcx.data_layout)
|
|
};
|
|
|
|
// Create key and write it into the memory where key_ptr wants it
|
|
let key = self.memory.create_tls_key(dtor) as u128;
|
|
if key_size.bits() < 128 && key >= (1u128 << key_size.bits() as u128) {
|
|
return err!(OutOfTls);
|
|
}
|
|
// TODO: Does this need checking for alignment?
|
|
self.memory.write_uint(
|
|
key_ptr.to_ptr()?,
|
|
key,
|
|
key_size.bytes(),
|
|
)?;
|
|
|
|
// Return success (0)
|
|
self.write_null(dest, dest_ty)?;
|
|
}
|
|
"pthread_key_delete" => {
|
|
// The conversion into TlsKey here is a little fishy, but should work as long as usize >= libc::pthread_key_t
|
|
let key = self.value_to_primval(args[0])?.to_u64()? as TlsKey;
|
|
self.memory.delete_tls_key(key)?;
|
|
// Return success (0)
|
|
self.write_null(dest, dest_ty)?;
|
|
}
|
|
"pthread_getspecific" => {
|
|
// The conversion into TlsKey here is a little fishy, but should work as long as usize >= libc::pthread_key_t
|
|
let key = self.value_to_primval(args[0])?.to_u64()? as TlsKey;
|
|
let ptr = self.memory.load_tls(key)?;
|
|
self.write_ptr(dest, ptr, dest_ty)?;
|
|
}
|
|
"pthread_setspecific" => {
|
|
// The conversion into TlsKey here is a little fishy, but should work as long as usize >= libc::pthread_key_t
|
|
let key = self.value_to_primval(args[0])?.to_u64()? as TlsKey;
|
|
let new_ptr = args[1].into_ptr(&mut self.memory)?;
|
|
self.memory.store_tls(key, new_ptr)?;
|
|
|
|
// Return success (0)
|
|
self.write_null(dest, dest_ty)?;
|
|
}
|
|
|
|
// Stub out all the other pthread calls to just return 0
|
|
link_name if link_name.starts_with("pthread_") => {
|
|
warn!("ignoring C ABI call: {}", link_name);
|
|
self.write_null(dest, dest_ty)?;
|
|
}
|
|
|
|
_ => {
|
|
return err!(Unimplemented(
|
|
format!("can't call C ABI function: {}", link_name),
|
|
));
|
|
}
|
|
}
|
|
|
|
// Since we pushed no stack frame, the main loop will act
|
|
// as if the call just completed and it's returning to the
|
|
// current frame.
|
|
self.dump_local(dest);
|
|
self.goto_block(dest_block);
|
|
Ok(())
|
|
}
|
|
|
|
/// Get an instance for a path.
|
|
fn resolve_path(&self, path: &[&str]) -> EvalResult<'tcx, ty::Instance<'tcx>> {
|
|
let cstore = &self.tcx.sess.cstore;
|
|
|
|
let crates = cstore.crates();
|
|
crates
|
|
.iter()
|
|
.find(|&&krate| cstore.crate_name(krate) == path[0])
|
|
.and_then(|krate| {
|
|
let krate = DefId {
|
|
krate: *krate,
|
|
index: CRATE_DEF_INDEX,
|
|
};
|
|
let mut items = cstore.item_children(krate, self.tcx.sess);
|
|
let mut path_it = path.iter().skip(1).peekable();
|
|
|
|
while let Some(segment) = path_it.next() {
|
|
for item in &mem::replace(&mut items, vec![]) {
|
|
if item.ident.name == *segment {
|
|
if path_it.peek().is_none() {
|
|
return Some(ty::Instance::mono(self.tcx, item.def.def_id()));
|
|
}
|
|
|
|
items = cstore.item_children(item.def.def_id(), self.tcx.sess);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
None
|
|
})
|
|
.ok_or_else(|| {
|
|
let path = path.iter().map(|&s| s.to_owned()).collect();
|
|
EvalErrorKind::PathNotFound(path).into()
|
|
})
|
|
}
|
|
|
|
fn call_missing_fn(
|
|
&mut self,
|
|
instance: ty::Instance<'tcx>,
|
|
destination: Option<(Lvalue, mir::BasicBlock)>,
|
|
args: &[ValTy<'tcx>],
|
|
sig: ty::FnSig<'tcx>,
|
|
path: String,
|
|
) -> EvalResult<'tcx> {
|
|
// In some cases in non-MIR libstd-mode, not having a destination is legit. Handle these early.
|
|
match &path[..] {
|
|
"std::panicking::rust_panic_with_hook" |
|
|
"std::rt::begin_panic_fmt" => return err!(Panic),
|
|
_ => {}
|
|
}
|
|
|
|
let dest_ty = sig.output();
|
|
let (dest, dest_block) = destination.ok_or_else(
|
|
|| EvalErrorKind::NoMirFor(path.clone()),
|
|
)?;
|
|
|
|
if sig.abi == Abi::C {
|
|
// An external C function
|
|
// TODO: That functions actually has a similar preamble to what follows here. May make sense to
|
|
// unify these two mechanisms for "hooking into missing functions".
|
|
self.call_c_abi(
|
|
instance.def_id(),
|
|
args,
|
|
dest,
|
|
dest_ty,
|
|
dest_block,
|
|
)?;
|
|
return Ok(());
|
|
}
|
|
|
|
match &path[..] {
|
|
// Allocators are magic. They have no MIR, even when the rest of libstd does.
|
|
"alloc::heap::::__rust_alloc" => {
|
|
let size = self.value_to_primval(args[0])?.to_u64()?;
|
|
let align = self.value_to_primval(args[1])?.to_u64()?;
|
|
if size == 0 {
|
|
return err!(HeapAllocZeroBytes);
|
|
}
|
|
if !align.is_power_of_two() {
|
|
return err!(HeapAllocNonPowerOfTwoAlignment(align));
|
|
}
|
|
let ptr = self.memory.allocate(size, align, MemoryKind::Rust.into())?;
|
|
self.write_primval(dest, PrimVal::Ptr(ptr), dest_ty)?;
|
|
}
|
|
"alloc::heap::::__rust_alloc_zeroed" => {
|
|
let size = self.value_to_primval(args[0])?.to_u64()?;
|
|
let align = self.value_to_primval(args[1])?.to_u64()?;
|
|
if size == 0 {
|
|
return err!(HeapAllocZeroBytes);
|
|
}
|
|
if !align.is_power_of_two() {
|
|
return err!(HeapAllocNonPowerOfTwoAlignment(align));
|
|
}
|
|
let ptr = self.memory.allocate(size, align, MemoryKind::Rust.into())?;
|
|
self.memory.write_repeat(ptr.into(), 0, size)?;
|
|
self.write_primval(dest, PrimVal::Ptr(ptr), dest_ty)?;
|
|
}
|
|
"alloc::heap::::__rust_dealloc" => {
|
|
let ptr = args[0].into_ptr(&mut self.memory)?.to_ptr()?;
|
|
let old_size = self.value_to_primval(args[1])?.to_u64()?;
|
|
let align = self.value_to_primval(args[2])?.to_u64()?;
|
|
if old_size == 0 {
|
|
return err!(HeapAllocZeroBytes);
|
|
}
|
|
if !align.is_power_of_two() {
|
|
return err!(HeapAllocNonPowerOfTwoAlignment(align));
|
|
}
|
|
self.memory.deallocate(
|
|
ptr,
|
|
Some((old_size, align)),
|
|
MemoryKind::Rust.into(),
|
|
)?;
|
|
}
|
|
"alloc::heap::::__rust_realloc" => {
|
|
let ptr = args[0].into_ptr(&mut self.memory)?.to_ptr()?;
|
|
let old_size = self.value_to_primval(args[1])?.to_u64()?;
|
|
let old_align = self.value_to_primval(args[2])?.to_u64()?;
|
|
let new_size = self.value_to_primval(args[3])?.to_u64()?;
|
|
let new_align = self.value_to_primval(args[4])?.to_u64()?;
|
|
if old_size == 0 || new_size == 0 {
|
|
return err!(HeapAllocZeroBytes);
|
|
}
|
|
if !old_align.is_power_of_two() {
|
|
return err!(HeapAllocNonPowerOfTwoAlignment(old_align));
|
|
}
|
|
if !new_align.is_power_of_two() {
|
|
return err!(HeapAllocNonPowerOfTwoAlignment(new_align));
|
|
}
|
|
let new_ptr = self.memory.reallocate(
|
|
ptr,
|
|
old_size,
|
|
old_align,
|
|
new_size,
|
|
new_align,
|
|
MemoryKind::Rust.into(),
|
|
)?;
|
|
self.write_primval(dest, PrimVal::Ptr(new_ptr), dest_ty)?;
|
|
}
|
|
|
|
// A Rust function is missing, which means we are running with MIR missing for libstd (or other dependencies).
|
|
// Still, we can make many things mostly work by "emulating" or ignoring some functions.
|
|
"std::io::_print" => {
|
|
trace!(
|
|
"Ignoring output. To run programs that print, make sure you have a libstd with full MIR."
|
|
);
|
|
}
|
|
"std::thread::Builder::new" => {
|
|
return err!(Unimplemented("miri does not support threading".to_owned()))
|
|
}
|
|
"std::env::args" => {
|
|
return err!(Unimplemented(
|
|
"miri does not support program arguments".to_owned(),
|
|
))
|
|
}
|
|
"std::panicking::panicking" |
|
|
"std::rt::panicking" => {
|
|
// we abort on panic -> `std::rt::panicking` always returns false
|
|
let bool = self.tcx.types.bool;
|
|
self.write_primval(dest, PrimVal::from_bool(false), bool)?;
|
|
}
|
|
_ => return err!(NoMirFor(path)),
|
|
}
|
|
|
|
// Since we pushed no stack frame, the main loop will act
|
|
// as if the call just completed and it's returning to the
|
|
// current frame.
|
|
self.dump_local(dest);
|
|
self.goto_block(dest_block);
|
|
return Ok(());
|
|
}
|
|
}
|