rust/src/librustc_data_structures/small_vec.rs
2017-08-15 21:56:30 +02:00

216 lines
6.4 KiB
Rust

// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A vector type intended to be used for collecting from iterators onto the stack.
//!
//! Space for up to N elements is provided on the stack. If more elements are collected, Vec is
//! used to store the values on the heap. SmallVec is similar to AccumulateVec, but adds
//! the ability to push elements.
//!
//! The N above is determined by Array's implementor, by way of an associated constant.
use std::ops::{Deref, DerefMut};
use std::iter::{IntoIterator, FromIterator};
use std::fmt::{self, Debug};
use std::mem;
use std::ptr;
use rustc_serialize::{Encodable, Encoder, Decodable, Decoder};
use accumulate_vec::{IntoIter, AccumulateVec};
use array_vec::Array;
pub struct SmallVec<A: Array>(AccumulateVec<A>);
impl<A> Clone for SmallVec<A>
where A: Array,
A::Element: Clone {
fn clone(&self) -> Self {
SmallVec(self.0.clone())
}
}
impl<A> Debug for SmallVec<A>
where A: Array + Debug,
A::Element: Debug {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("SmallVec").field(&self.0).finish()
}
}
impl<A: Array> SmallVec<A> {
pub fn new() -> Self {
SmallVec(AccumulateVec::new())
}
pub fn with_capacity(cap: usize) -> Self {
let mut vec = SmallVec::new();
vec.reserve(cap);
vec
}
pub fn one(el: A::Element) -> Self {
SmallVec(AccumulateVec::one(el))
}
pub fn many<I: IntoIterator<Item=A::Element>>(els: I) -> Self {
SmallVec(AccumulateVec::many(els))
}
pub fn expect_one(self, err: &'static str) -> A::Element {
assert!(self.len() == 1, err);
match self.0 {
AccumulateVec::Array(arr) => arr.into_iter().next().unwrap(),
AccumulateVec::Heap(vec) => vec.into_iter().next().unwrap(),
}
}
/// Will reallocate onto the heap if needed.
pub fn push(&mut self, el: A::Element) {
self.reserve(1);
match self.0 {
AccumulateVec::Array(ref mut array) => array.push(el),
AccumulateVec::Heap(ref mut vec) => vec.push(el),
}
}
pub fn reserve(&mut self, n: usize) {
match self.0 {
AccumulateVec::Array(_) => {
if self.len() + n > A::LEN {
let len = self.len();
let array = mem::replace(&mut self.0,
AccumulateVec::Heap(Vec::with_capacity(len + n)));
if let AccumulateVec::Array(array) = array {
match self.0 {
AccumulateVec::Heap(ref mut vec) => vec.extend(array),
_ => unreachable!()
}
}
}
}
AccumulateVec::Heap(ref mut vec) => vec.reserve(n)
}
}
pub unsafe fn set_len(&mut self, len: usize) {
match self.0 {
AccumulateVec::Array(ref mut arr) => arr.set_len(len),
AccumulateVec::Heap(ref mut vec) => vec.set_len(len),
}
}
pub fn insert(&mut self, index: usize, element: A::Element) {
let len = self.len();
// Reserve space for shifting elements to the right
self.reserve(1);
assert!(index <= len);
unsafe {
// infallible
// The spot to put the new value
{
let p = self.as_mut_ptr().offset(index as isize);
// Shift everything over to make space. (Duplicating the
// `index`th element into two consecutive places.)
ptr::copy(p, p.offset(1), len - index);
// Write it in, overwriting the first copy of the `index`th
// element.
ptr::write(p, element);
}
self.set_len(len + 1);
}
}
pub fn truncate(&mut self, len: usize) {
unsafe {
while len < self.len() {
// Decrement len before the drop_in_place(), so a panic on Drop
// doesn't re-drop the just-failed value.
let newlen = self.len() - 1;
self.set_len(newlen);
::std::ptr::drop_in_place(self.get_unchecked_mut(newlen));
}
}
}
}
impl<A: Array> Deref for SmallVec<A> {
type Target = AccumulateVec<A>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<A: Array> DerefMut for SmallVec<A> {
fn deref_mut(&mut self) -> &mut AccumulateVec<A> {
&mut self.0
}
}
impl<A: Array> FromIterator<A::Element> for SmallVec<A> {
fn from_iter<I>(iter: I) -> Self where I: IntoIterator<Item=A::Element> {
SmallVec(iter.into_iter().collect())
}
}
impl<A: Array> Extend<A::Element> for SmallVec<A> {
fn extend<I: IntoIterator<Item=A::Element>>(&mut self, iter: I) {
let iter = iter.into_iter();
self.reserve(iter.size_hint().0);
for el in iter {
self.push(el);
}
}
}
impl<A: Array> IntoIterator for SmallVec<A> {
type Item = A::Element;
type IntoIter = IntoIter<A>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
impl<A: Array> Default for SmallVec<A> {
fn default() -> SmallVec<A> {
SmallVec::new()
}
}
impl<A> Encodable for SmallVec<A>
where A: Array,
A::Element: Encodable {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_seq(self.len(), |s| {
for (i, e) in self.iter().enumerate() {
try!(s.emit_seq_elt(i, |s| e.encode(s)));
}
Ok(())
})
}
}
impl<A> Decodable for SmallVec<A>
where A: Array,
A::Element: Decodable {
fn decode<D: Decoder>(d: &mut D) -> Result<SmallVec<A>, D::Error> {
d.read_seq(|d, len| {
let mut vec = SmallVec::with_capacity(len);
for i in 0..len {
vec.push(try!(d.read_seq_elt(i, |d| Decodable::decode(d))));
}
Ok(vec)
})
}
}