Cranelift codegen backend for rust
The goal of this project is to create an alternative codegen backend for the rust compiler based on Cranelift. This has the potential to improve compilation times in debug mode. If your project doesn't use any of the things listed under "Not yet supported", it should work fine. If not please open an issue.
Building and testing
$ git clone https://github.com/bjorn3/rustc_codegen_cranelift
$ cd rustc_codegen_cranelift
$ ./y.sh prepare
$ ./y.sh build
To run the test suite replace the last command with:
$ ./test.sh
For more docs on how to build and test see build_system/usage.txt or the help message of ./y.sh
.
Precompiled builds
Alternatively you can download a pre built version from the releases page.
Extract the dist
directory in the archive anywhere you want.
If you want to use cargo clif build
instead of having to specify the full path to the cargo-clif
executable, you can add the bin
subdirectory of the extracted dist
directory to your PATH
.
(tutorial for Windows, and for Linux/MacOS).
Usage
rustc_codegen_cranelift can be used as a near-drop-in replacement for cargo build
or cargo run
for existing projects.
Assuming $cg_clif_dir
is the directory you cloned this repo into and you followed the instructions (y.sh prepare
and y.sh build
or test.sh
).
In the directory with your project (where you can do the usual cargo build
), run:
$ $cg_clif_dir/dist/cargo-clif build
This will build your project with rustc_codegen_cranelift instead of the usual LLVM backend.
For additional ways to use rustc_codegen_cranelift like the JIT mode see usage.md.
Building and testing with changes in rustc code
This is useful when changing code in rustc_codegen_cranelift
as part of changing main Rust repository.
This can happen, for example, when you are implementing a new compiler intrinsic.
Instruction below uses $RustCheckoutDir
as substitute for any folder where you cloned Rust repository.
You need to do this steps to successfully compile and use the cranelift backend with your changes in rustc code:
cd $RustCheckoutDir
- Run
python x.py setup
and choose option for compiler (b
). - Build compiler and necessary tools:
python x.py build --stage=2 compiler library/std src/tools/rustdoc src/tools/rustfmt
- (Optional) You can also build cargo by adding
src/tools/cargo
to previous command.
- (Optional) You can also build cargo by adding
- Copy exectutable files from
./build/host/stage2-tools/<your hostname triple>/release
to./build/host/stage2/bin/
. Note that you would need to do this every time you rebuiltrust
repository. - Copy cargo from another toolchain:
cp $(rustup which cargo) .build/<your hostname triple>/stage2/bin/cargo
- Another option is to build it at step 3 and copy with other executables at step 4.
- Link your new
rustc
to toolchain:rustup toolchain link stage2 ./build/host/stage2/
. - (Windows only) compile the build system:
rustc +stage2 -O build_system/main.rs -o y.exe
. - You need to prefix every
./y.sh
(ory
if you builtbuild_system/main.rs
asy
) command byrustup run stage2
to make cg_clif use your local changes in rustc.
rustup run stage2 ./y.sh prepare
rustup run stage2 ./y.sh build
- (Optional) run tests:
rustup run stage2 ./y.sh test
- Now you can use your cg_clif build to compile other Rust programs, e.g. you can open any Rust crate and run commands like
$RustCheckoutDir/compiler/rustc_codegen_cranelift/dist/cargo-clif build --release
.
Configuration
See the documentation on the BackendConfig
struct in config.rs for all
configuration options.
Not yet supported
- Inline assembly (no cranelift support)
- On UNIX there is support for invoking an external assembler for
global_asm!
andasm!
.
- On UNIX there is support for invoking an external assembler for
- SIMD (tracked here,
std::simd
fully works,std::arch
is partially supported) - Unwinding on panics (no cranelift support,
-Cpanic=abort
is enabled by default)
License
Licensed under either of
- Apache License, Version 2.0 (LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
- MIT license (LICENSE-MIT or http://opensource.org/licenses/MIT)
at your option.
Contribution
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you shall be dual licensed as above, without any additional terms or conditions.