rust/src/libsyntax/parse/mod.rs
2018-06-09 16:57:19 -06:00

1156 lines
44 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The main parser interface
use rustc_data_structures::sync::{Lrc, Lock};
use ast::{self, CrateConfig};
use codemap::{CodeMap, FilePathMapping};
use syntax_pos::{self, Span, FileMap, NO_EXPANSION, FileName};
use errors::{Handler, ColorConfig, DiagnosticBuilder};
use feature_gate::UnstableFeatures;
use parse::parser::Parser;
use ptr::P;
use str::char_at;
use symbol::Symbol;
use tokenstream::{TokenStream, TokenTree};
use diagnostics::plugin::ErrorMap;
use std::borrow::Cow;
use std::collections::HashSet;
use std::iter;
use std::path::{Path, PathBuf};
use std::str;
pub type PResult<'a, T> = Result<T, DiagnosticBuilder<'a>>;
#[macro_use]
pub mod parser;
pub mod lexer;
pub mod token;
pub mod attr;
pub mod classify;
/// Info about a parsing session.
pub struct ParseSess {
pub span_diagnostic: Handler,
pub unstable_features: UnstableFeatures,
pub config: CrateConfig,
pub missing_fragment_specifiers: Lock<HashSet<Span>>,
/// Places where raw identifiers were used. This is used for feature gating
/// raw identifiers
pub raw_identifier_spans: Lock<Vec<Span>>,
/// The registered diagnostics codes
crate registered_diagnostics: Lock<ErrorMap>,
// Spans where a `mod foo;` statement was included in a non-mod.rs file.
// These are used to issue errors if the non_modrs_mods feature is not enabled.
pub non_modrs_mods: Lock<Vec<(ast::Ident, Span)>>,
/// Used to determine and report recursive mod inclusions
included_mod_stack: Lock<Vec<PathBuf>>,
code_map: Lrc<CodeMap>,
}
impl ParseSess {
pub fn new(file_path_mapping: FilePathMapping) -> Self {
let cm = Lrc::new(CodeMap::new(file_path_mapping));
let handler = Handler::with_tty_emitter(ColorConfig::Auto,
true,
false,
Some(cm.clone()));
ParseSess::with_span_handler(handler, cm)
}
pub fn with_span_handler(handler: Handler, code_map: Lrc<CodeMap>) -> ParseSess {
ParseSess {
span_diagnostic: handler,
unstable_features: UnstableFeatures::from_environment(),
config: HashSet::new(),
missing_fragment_specifiers: Lock::new(HashSet::new()),
raw_identifier_spans: Lock::new(Vec::new()),
registered_diagnostics: Lock::new(ErrorMap::new()),
included_mod_stack: Lock::new(vec![]),
code_map,
non_modrs_mods: Lock::new(vec![]),
}
}
pub fn codemap(&self) -> &CodeMap {
&self.code_map
}
}
#[derive(Clone)]
pub struct Directory<'a> {
pub path: Cow<'a, Path>,
pub ownership: DirectoryOwnership,
}
#[derive(Copy, Clone)]
pub enum DirectoryOwnership {
Owned {
// None if `mod.rs`, `Some("foo")` if we're in `foo.rs`
relative: Option<ast::Ident>,
},
UnownedViaBlock,
UnownedViaMod(bool /* legacy warnings? */),
}
// a bunch of utility functions of the form parse_<thing>_from_<source>
// where <thing> includes crate, expr, item, stmt, tts, and one that
// uses a HOF to parse anything, and <source> includes file and
// source_str.
pub fn parse_crate_from_file<'a>(input: &Path, sess: &'a ParseSess) -> PResult<'a, ast::Crate> {
let mut parser = new_parser_from_file(sess, input);
parser.parse_crate_mod()
}
pub fn parse_crate_attrs_from_file<'a>(input: &Path, sess: &'a ParseSess)
-> PResult<'a, Vec<ast::Attribute>> {
let mut parser = new_parser_from_file(sess, input);
parser.parse_inner_attributes()
}
pub fn parse_crate_from_source_str(name: FileName, source: String, sess: &ParseSess)
-> PResult<ast::Crate> {
new_parser_from_source_str(sess, name, source).parse_crate_mod()
}
pub fn parse_crate_attrs_from_source_str(name: FileName, source: String, sess: &ParseSess)
-> PResult<Vec<ast::Attribute>> {
new_parser_from_source_str(sess, name, source).parse_inner_attributes()
}
crate fn parse_expr_from_source_str(name: FileName, source: String, sess: &ParseSess)
-> PResult<P<ast::Expr>> {
new_parser_from_source_str(sess, name, source).parse_expr()
}
/// Parses an item.
///
/// Returns `Ok(Some(item))` when successful, `Ok(None)` when no item was found, and `Err`
/// when a syntax error occurred.
crate fn parse_item_from_source_str(name: FileName, source: String, sess: &ParseSess)
-> PResult<Option<P<ast::Item>>> {
new_parser_from_source_str(sess, name, source).parse_item()
}
crate fn parse_stmt_from_source_str(name: FileName, source: String, sess: &ParseSess)
-> PResult<Option<ast::Stmt>> {
new_parser_from_source_str(sess, name, source).parse_stmt()
}
pub fn parse_stream_from_source_str(name: FileName, source: String, sess: &ParseSess,
override_span: Option<Span>)
-> TokenStream {
filemap_to_stream(sess, sess.codemap().new_filemap(name, source), override_span)
}
// Create a new parser from a source string
pub fn new_parser_from_source_str(sess: &ParseSess, name: FileName, source: String)
-> Parser {
let mut parser = filemap_to_parser(sess, sess.codemap().new_filemap(name, source));
parser.recurse_into_file_modules = false;
parser
}
/// Create a new parser, handling errors as appropriate
/// if the file doesn't exist
pub fn new_parser_from_file<'a>(sess: &'a ParseSess, path: &Path) -> Parser<'a> {
filemap_to_parser(sess, file_to_filemap(sess, path, None))
}
/// Given a session, a crate config, a path, and a span, add
/// the file at the given path to the codemap, and return a parser.
/// On an error, use the given span as the source of the problem.
crate fn new_sub_parser_from_file<'a>(sess: &'a ParseSess,
path: &Path,
directory_ownership: DirectoryOwnership,
module_name: Option<String>,
sp: Span) -> Parser<'a> {
let mut p = filemap_to_parser(sess, file_to_filemap(sess, path, Some(sp)));
p.directory.ownership = directory_ownership;
p.root_module_name = module_name;
p
}
/// Given a filemap and config, return a parser
fn filemap_to_parser(sess: & ParseSess, filemap: Lrc<FileMap>) -> Parser {
let end_pos = filemap.end_pos;
let mut parser = stream_to_parser(sess, filemap_to_stream(sess, filemap, None));
if parser.token == token::Eof && parser.span == syntax_pos::DUMMY_SP {
parser.span = Span::new(end_pos, end_pos, NO_EXPANSION);
}
parser
}
// must preserve old name for now, because quote! from the *existing*
// compiler expands into it
pub fn new_parser_from_tts(sess: &ParseSess, tts: Vec<TokenTree>) -> Parser {
stream_to_parser(sess, tts.into_iter().collect())
}
// base abstractions
/// Given a session and a path and an optional span (for error reporting),
/// add the path to the session's codemap and return the new filemap.
fn file_to_filemap(sess: &ParseSess, path: &Path, spanopt: Option<Span>)
-> Lrc<FileMap> {
match sess.codemap().load_file(path) {
Ok(filemap) => filemap,
Err(e) => {
let msg = format!("couldn't read {:?}: {}", path.display(), e);
match spanopt {
Some(sp) => sess.span_diagnostic.span_fatal(sp, &msg).raise(),
None => sess.span_diagnostic.fatal(&msg).raise()
}
}
}
}
/// Given a filemap, produce a sequence of token-trees
pub fn filemap_to_stream(sess: &ParseSess, filemap: Lrc<FileMap>, override_span: Option<Span>)
-> TokenStream {
let mut srdr = lexer::StringReader::new(sess, filemap, override_span);
srdr.real_token();
panictry!(srdr.parse_all_token_trees())
}
/// Given stream and the `ParseSess`, produce a parser
pub fn stream_to_parser(sess: &ParseSess, stream: TokenStream) -> Parser {
Parser::new(sess, stream, None, true, false)
}
/// Parse a string representing a character literal into its final form.
/// Rather than just accepting/rejecting a given literal, unescapes it as
/// well. Can take any slice prefixed by a character escape. Returns the
/// character and the number of characters consumed.
fn char_lit(lit: &str, diag: Option<(Span, &Handler)>) -> (char, isize) {
use std::char;
// Handle non-escaped chars first.
if lit.as_bytes()[0] != b'\\' {
// If the first byte isn't '\\' it might part of a multi-byte char, so
// get the char with chars().
let c = lit.chars().next().unwrap();
return (c, 1);
}
// Handle escaped chars.
match lit.as_bytes()[1] as char {
'"' => ('"', 2),
'n' => ('\n', 2),
'r' => ('\r', 2),
't' => ('\t', 2),
'\\' => ('\\', 2),
'\'' => ('\'', 2),
'0' => ('\0', 2),
'x' => {
let v = u32::from_str_radix(&lit[2..4], 16).unwrap();
let c = char::from_u32(v).unwrap();
(c, 4)
}
'u' => {
assert_eq!(lit.as_bytes()[2], b'{');
let idx = lit.find('}').unwrap();
// All digits and '_' are ascii, so treat each byte as a char.
let mut v: u32 = 0;
for c in lit[3..idx].bytes() {
let c = char::from(c);
if c != '_' {
let x = c.to_digit(16).unwrap();
v = v.checked_mul(16).unwrap().checked_add(x).unwrap();
}
}
let c = char::from_u32(v).unwrap_or_else(|| {
if let Some((span, diag)) = diag {
let mut diag = diag.struct_span_err(span, "invalid unicode character escape");
if v > 0x10FFFF {
diag.help("unicode escape must be at most 10FFFF").emit();
} else {
diag.help("unicode escape must not be a surrogate").emit();
}
}
'\u{FFFD}'
});
(c, (idx + 1) as isize)
}
_ => panic!("lexer should have rejected a bad character escape {}", lit)
}
}
/// Parse a string representing a string literal into its final form. Does
/// unescaping.
fn str_lit(lit: &str, diag: Option<(Span, &Handler)>) -> String {
debug!("str_lit: given {}", lit.escape_default());
let mut res = String::with_capacity(lit.len());
let error = |i| format!("lexer should have rejected {} at {}", lit, i);
/// Eat everything up to a non-whitespace
fn eat<'a>(it: &mut iter::Peekable<str::CharIndices<'a>>) {
loop {
match it.peek().map(|x| x.1) {
Some(' ') | Some('\n') | Some('\r') | Some('\t') => {
it.next();
},
_ => { break; }
}
}
}
let mut chars = lit.char_indices().peekable();
while let Some((i, c)) = chars.next() {
match c {
'\\' => {
let ch = chars.peek().unwrap_or_else(|| {
panic!("{}", error(i))
}).1;
if ch == '\n' {
eat(&mut chars);
} else if ch == '\r' {
chars.next();
let ch = chars.peek().unwrap_or_else(|| {
panic!("{}", error(i))
}).1;
if ch != '\n' {
panic!("lexer accepted bare CR");
}
eat(&mut chars);
} else {
// otherwise, a normal escape
let (c, n) = char_lit(&lit[i..], diag);
for _ in 0..n - 1 { // we don't need to move past the first \
chars.next();
}
res.push(c);
}
},
'\r' => {
let ch = chars.peek().unwrap_or_else(|| {
panic!("{}", error(i))
}).1;
if ch != '\n' {
panic!("lexer accepted bare CR");
}
chars.next();
res.push('\n');
}
c => res.push(c),
}
}
res.shrink_to_fit(); // probably not going to do anything, unless there was an escape.
debug!("parse_str_lit: returning {}", res);
res
}
/// Parse a string representing a raw string literal into its final form. The
/// only operation this does is convert embedded CRLF into a single LF.
fn raw_str_lit(lit: &str) -> String {
debug!("raw_str_lit: given {}", lit.escape_default());
let mut res = String::with_capacity(lit.len());
let mut chars = lit.chars().peekable();
while let Some(c) = chars.next() {
if c == '\r' {
if *chars.peek().unwrap() != '\n' {
panic!("lexer accepted bare CR");
}
chars.next();
res.push('\n');
} else {
res.push(c);
}
}
res.shrink_to_fit();
res
}
// check if `s` looks like i32 or u1234 etc.
fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
s.len() > 1 &&
first_chars.contains(&char_at(s, 0)) &&
s[1..].chars().all(|c| '0' <= c && c <= '9')
}
macro_rules! err {
($opt_diag:expr, |$span:ident, $diag:ident| $($body:tt)*) => {
match $opt_diag {
Some(($span, $diag)) => { $($body)* }
None => return None,
}
}
}
crate fn lit_token(lit: token::Lit, suf: Option<Symbol>, diag: Option<(Span, &Handler)>)
-> (bool /* suffix illegal? */, Option<ast::LitKind>) {
use ast::LitKind;
match lit {
token::Byte(i) => (true, Some(LitKind::Byte(byte_lit(&i.as_str()).0))),
token::Char(i) => (true, Some(LitKind::Char(char_lit(&i.as_str(), diag).0))),
// There are some valid suffixes for integer and float literals,
// so all the handling is done internally.
token::Integer(s) => (false, integer_lit(&s.as_str(), suf, diag)),
token::Float(s) => (false, float_lit(&s.as_str(), suf, diag)),
token::Str_(mut sym) => {
// If there are no characters requiring special treatment we can
// reuse the symbol from the Token. Otherwise, we must generate a
// new symbol because the string in the LitKind is different to the
// string in the Token.
let s = &sym.as_str();
if s.as_bytes().iter().any(|&c| c == b'\\' || c == b'\r') {
sym = Symbol::intern(&str_lit(s, diag));
}
(true, Some(LitKind::Str(sym, ast::StrStyle::Cooked)))
}
token::StrRaw(mut sym, n) => {
// Ditto.
let s = &sym.as_str();
if s.contains('\r') {
sym = Symbol::intern(&raw_str_lit(s));
}
(true, Some(LitKind::Str(sym, ast::StrStyle::Raw(n))))
}
token::ByteStr(i) => {
(true, Some(LitKind::ByteStr(byte_str_lit(&i.as_str()))))
}
token::ByteStrRaw(i, _) => {
(true, Some(LitKind::ByteStr(Lrc::new(i.to_string().into_bytes()))))
}
}
}
fn filtered_float_lit(data: Symbol, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
-> Option<ast::LitKind> {
debug!("filtered_float_lit: {}, {:?}", data, suffix);
let suffix = match suffix {
Some(suffix) => suffix,
None => return Some(ast::LitKind::FloatUnsuffixed(data)),
};
Some(match &*suffix.as_str() {
"f32" => ast::LitKind::Float(data, ast::FloatTy::F32),
"f64" => ast::LitKind::Float(data, ast::FloatTy::F64),
suf => {
err!(diag, |span, diag| {
if suf.len() >= 2 && looks_like_width_suffix(&['f'], suf) {
// if it looks like a width, lets try to be helpful.
let msg = format!("invalid width `{}` for float literal", &suf[1..]);
diag.struct_span_err(span, &msg).help("valid widths are 32 and 64").emit()
} else {
let msg = format!("invalid suffix `{}` for float literal", suf);
diag.struct_span_err(span, &msg)
.help("valid suffixes are `f32` and `f64`")
.emit();
}
});
ast::LitKind::FloatUnsuffixed(data)
}
})
}
fn float_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
-> Option<ast::LitKind> {
debug!("float_lit: {:?}, {:?}", s, suffix);
// FIXME #2252: bounds checking float literals is deferred until trans
let s = s.chars().filter(|&c| c != '_').collect::<String>();
filtered_float_lit(Symbol::intern(&s), suffix, diag)
}
/// Parse a string representing a byte literal into its final form. Similar to `char_lit`
fn byte_lit(lit: &str) -> (u8, usize) {
let err = |i| format!("lexer accepted invalid byte literal {} step {}", lit, i);
if lit.len() == 1 {
(lit.as_bytes()[0], 1)
} else {
assert_eq!(lit.as_bytes()[0], b'\\', "{}", err(0));
let b = match lit.as_bytes()[1] {
b'"' => b'"',
b'n' => b'\n',
b'r' => b'\r',
b't' => b'\t',
b'\\' => b'\\',
b'\'' => b'\'',
b'0' => b'\0',
_ => {
match u64::from_str_radix(&lit[2..4], 16).ok() {
Some(c) =>
if c > 0xFF {
panic!(err(2))
} else {
return (c as u8, 4)
},
None => panic!(err(3))
}
}
};
(b, 2)
}
}
fn byte_str_lit(lit: &str) -> Lrc<Vec<u8>> {
let mut res = Vec::with_capacity(lit.len());
let error = |i| format!("lexer should have rejected {} at {}", lit, i);
/// Eat everything up to a non-whitespace
fn eat<I: Iterator<Item=(usize, u8)>>(it: &mut iter::Peekable<I>) {
loop {
match it.peek().map(|x| x.1) {
Some(b' ') | Some(b'\n') | Some(b'\r') | Some(b'\t') => {
it.next();
},
_ => { break; }
}
}
}
// byte string literals *must* be ASCII, but the escapes don't have to be
let mut chars = lit.bytes().enumerate().peekable();
loop {
match chars.next() {
Some((i, b'\\')) => {
let em = error(i);
match chars.peek().expect(&em).1 {
b'\n' => eat(&mut chars),
b'\r' => {
chars.next();
if chars.peek().expect(&em).1 != b'\n' {
panic!("lexer accepted bare CR");
}
eat(&mut chars);
}
_ => {
// otherwise, a normal escape
let (c, n) = byte_lit(&lit[i..]);
// we don't need to move past the first \
for _ in 0..n - 1 {
chars.next();
}
res.push(c);
}
}
},
Some((i, b'\r')) => {
let em = error(i);
if chars.peek().expect(&em).1 != b'\n' {
panic!("lexer accepted bare CR");
}
chars.next();
res.push(b'\n');
}
Some((_, c)) => res.push(c),
None => break,
}
}
Lrc::new(res)
}
fn integer_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
-> Option<ast::LitKind> {
// s can only be ascii, byte indexing is fine
let s2 = s.chars().filter(|&c| c != '_').collect::<String>();
let mut s = &s2[..];
debug!("integer_lit: {}, {:?}", s, suffix);
let mut base = 10;
let orig = s;
let mut ty = ast::LitIntType::Unsuffixed;
if char_at(s, 0) == '0' && s.len() > 1 {
match char_at(s, 1) {
'x' => base = 16,
'o' => base = 8,
'b' => base = 2,
_ => { }
}
}
// 1f64 and 2f32 etc. are valid float literals.
if let Some(suf) = suffix {
if looks_like_width_suffix(&['f'], &suf.as_str()) {
let err = match base {
16 => Some("hexadecimal float literal is not supported"),
8 => Some("octal float literal is not supported"),
2 => Some("binary float literal is not supported"),
_ => None,
};
if let Some(err) = err {
err!(diag, |span, diag| diag.span_err(span, err));
}
return filtered_float_lit(Symbol::intern(s), Some(suf), diag)
}
}
if base != 10 {
s = &s[2..];
}
if let Some(suf) = suffix {
if suf.as_str().is_empty() {
err!(diag, |span, diag| diag.span_bug(span, "found empty literal suffix in Some"));
}
ty = match &*suf.as_str() {
"isize" => ast::LitIntType::Signed(ast::IntTy::Isize),
"i8" => ast::LitIntType::Signed(ast::IntTy::I8),
"i16" => ast::LitIntType::Signed(ast::IntTy::I16),
"i32" => ast::LitIntType::Signed(ast::IntTy::I32),
"i64" => ast::LitIntType::Signed(ast::IntTy::I64),
"i128" => ast::LitIntType::Signed(ast::IntTy::I128),
"usize" => ast::LitIntType::Unsigned(ast::UintTy::Usize),
"u8" => ast::LitIntType::Unsigned(ast::UintTy::U8),
"u16" => ast::LitIntType::Unsigned(ast::UintTy::U16),
"u32" => ast::LitIntType::Unsigned(ast::UintTy::U32),
"u64" => ast::LitIntType::Unsigned(ast::UintTy::U64),
"u128" => ast::LitIntType::Unsigned(ast::UintTy::U128),
suf => {
// i<digits> and u<digits> look like widths, so lets
// give an error message along those lines
err!(diag, |span, diag| {
if looks_like_width_suffix(&['i', 'u'], suf) {
let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
diag.struct_span_err(span, &msg)
.help("valid widths are 8, 16, 32, 64 and 128")
.emit();
} else {
let msg = format!("invalid suffix `{}` for numeric literal", suf);
diag.struct_span_err(span, &msg)
.help("the suffix must be one of the integral types \
(`u32`, `isize`, etc)")
.emit();
}
});
ty
}
}
}
debug!("integer_lit: the type is {:?}, base {:?}, the new string is {:?}, the original \
string was {:?}, the original suffix was {:?}", ty, base, s, orig, suffix);
Some(match u128::from_str_radix(s, base) {
Ok(r) => ast::LitKind::Int(r, ty),
Err(_) => {
// small bases are lexed as if they were base 10, e.g, the string
// might be `0b10201`. This will cause the conversion above to fail,
// but these cases have errors in the lexer: we don't want to emit
// two errors, and we especially don't want to emit this error since
// it isn't necessarily true.
let already_errored = base < 10 &&
s.chars().any(|c| c.to_digit(10).map_or(false, |d| d >= base));
if !already_errored {
err!(diag, |span, diag| diag.span_err(span, "int literal is too large"));
}
ast::LitKind::Int(0, ty)
}
})
}
#[cfg(test)]
mod tests {
use super::*;
use syntax_pos::{self, Span, BytePos, Pos, NO_EXPANSION};
use codemap::{respan, Spanned};
use ast::{self, Ident, PatKind};
use rustc_target::spec::abi::Abi;
use attr::first_attr_value_str_by_name;
use parse;
use parse::parser::Parser;
use print::pprust::item_to_string;
use ptr::P;
use tokenstream::{self, TokenTree};
use util::parser_testing::{string_to_stream, string_to_parser};
use util::parser_testing::{string_to_expr, string_to_item, string_to_stmt};
use util::ThinVec;
use with_globals;
// produce a syntax_pos::span
fn sp(a: u32, b: u32) -> Span {
Span::new(BytePos(a), BytePos(b), NO_EXPANSION)
}
fn str2seg(s: &str, lo: u32, hi: u32) -> ast::PathSegment {
ast::PathSegment::from_ident(Ident::new(Symbol::intern(s), sp(lo, hi)))
}
#[test] fn path_exprs_1() {
with_globals(|| {
assert!(string_to_expr("a".to_string()) ==
P(ast::Expr{
id: ast::DUMMY_NODE_ID,
node: ast::ExprKind::Path(None, ast::Path {
span: sp(0, 1),
segments: vec![str2seg("a", 0, 1)],
}),
span: sp(0, 1),
attrs: ThinVec::new(),
}))
})
}
#[test] fn path_exprs_2 () {
with_globals(|| {
assert!(string_to_expr("::a::b".to_string()) ==
P(ast::Expr {
id: ast::DUMMY_NODE_ID,
node: ast::ExprKind::Path(None, ast::Path {
span: sp(0, 6),
segments: vec![ast::PathSegment::crate_root(sp(0, 0)),
str2seg("a", 2, 3),
str2seg("b", 5, 6)]
}),
span: sp(0, 6),
attrs: ThinVec::new(),
}))
})
}
#[should_panic]
#[test] fn bad_path_expr_1() {
with_globals(|| {
string_to_expr("::abc::def::return".to_string());
})
}
// check the token-tree-ization of macros
#[test]
fn string_to_tts_macro () {
with_globals(|| {
let tts: Vec<_> =
string_to_stream("macro_rules! zip (($a)=>($a))".to_string()).trees().collect();
let tts: &[TokenTree] = &tts[..];
match (tts.len(), tts.get(0), tts.get(1), tts.get(2), tts.get(3)) {
(
4,
Some(&TokenTree::Token(_, token::Ident(name_macro_rules, false))),
Some(&TokenTree::Token(_, token::Not)),
Some(&TokenTree::Token(_, token::Ident(name_zip, false))),
Some(&TokenTree::Delimited(_, ref macro_delimed)),
)
if name_macro_rules.name == "macro_rules"
&& name_zip.name == "zip" => {
let tts = &macro_delimed.stream().trees().collect::<Vec<_>>();
match (tts.len(), tts.get(0), tts.get(1), tts.get(2)) {
(
3,
Some(&TokenTree::Delimited(_, ref first_delimed)),
Some(&TokenTree::Token(_, token::FatArrow)),
Some(&TokenTree::Delimited(_, ref second_delimed)),
)
if macro_delimed.delim == token::Paren => {
let tts = &first_delimed.stream().trees().collect::<Vec<_>>();
match (tts.len(), tts.get(0), tts.get(1)) {
(
2,
Some(&TokenTree::Token(_, token::Dollar)),
Some(&TokenTree::Token(_, token::Ident(ident, false))),
)
if first_delimed.delim == token::Paren && ident.name == "a" => {},
_ => panic!("value 3: {:?}", *first_delimed),
}
let tts = &second_delimed.stream().trees().collect::<Vec<_>>();
match (tts.len(), tts.get(0), tts.get(1)) {
(
2,
Some(&TokenTree::Token(_, token::Dollar)),
Some(&TokenTree::Token(_, token::Ident(ident, false))),
)
if second_delimed.delim == token::Paren
&& ident.name == "a" => {},
_ => panic!("value 4: {:?}", *second_delimed),
}
},
_ => panic!("value 2: {:?}", *macro_delimed),
}
},
_ => panic!("value: {:?}",tts),
}
})
}
#[test]
fn string_to_tts_1() {
with_globals(|| {
let tts = string_to_stream("fn a (b : i32) { b; }".to_string());
let expected = TokenStream::concat(vec![
TokenTree::Token(sp(0, 2), token::Ident(Ident::from_str("fn"), false)).into(),
TokenTree::Token(sp(3, 4), token::Ident(Ident::from_str("a"), false)).into(),
TokenTree::Delimited(
sp(5, 14),
tokenstream::Delimited {
delim: token::DelimToken::Paren,
tts: TokenStream::concat(vec![
TokenTree::Token(sp(6, 7),
token::Ident(Ident::from_str("b"), false)).into(),
TokenTree::Token(sp(8, 9), token::Colon).into(),
TokenTree::Token(sp(10, 13),
token::Ident(Ident::from_str("i32"), false)).into(),
]).into(),
}).into(),
TokenTree::Delimited(
sp(15, 21),
tokenstream::Delimited {
delim: token::DelimToken::Brace,
tts: TokenStream::concat(vec![
TokenTree::Token(sp(17, 18),
token::Ident(Ident::from_str("b"), false)).into(),
TokenTree::Token(sp(18, 19), token::Semi).into(),
]).into(),
}).into()
]);
assert_eq!(tts, expected);
})
}
#[test] fn ret_expr() {
with_globals(|| {
assert!(string_to_expr("return d".to_string()) ==
P(ast::Expr{
id: ast::DUMMY_NODE_ID,
node:ast::ExprKind::Ret(Some(P(ast::Expr{
id: ast::DUMMY_NODE_ID,
node:ast::ExprKind::Path(None, ast::Path{
span: sp(7, 8),
segments: vec![str2seg("d", 7, 8)],
}),
span:sp(7,8),
attrs: ThinVec::new(),
}))),
span:sp(0,8),
attrs: ThinVec::new(),
}))
})
}
#[test] fn parse_stmt_1 () {
with_globals(|| {
assert!(string_to_stmt("b;".to_string()) ==
Some(ast::Stmt {
node: ast::StmtKind::Expr(P(ast::Expr {
id: ast::DUMMY_NODE_ID,
node: ast::ExprKind::Path(None, ast::Path {
span:sp(0,1),
segments: vec![str2seg("b", 0, 1)],
}),
span: sp(0,1),
attrs: ThinVec::new()})),
id: ast::DUMMY_NODE_ID,
span: sp(0,1)}))
})
}
fn parser_done(p: Parser){
assert_eq!(p.token.clone(), token::Eof);
}
#[test] fn parse_ident_pat () {
with_globals(|| {
let sess = ParseSess::new(FilePathMapping::empty());
let mut parser = string_to_parser(&sess, "b".to_string());
assert!(panictry!(parser.parse_pat())
== P(ast::Pat{
id: ast::DUMMY_NODE_ID,
node: PatKind::Ident(ast::BindingMode::ByValue(ast::Mutability::Immutable),
Ident::new(Symbol::intern("b"), sp(0, 1)),
None),
span: sp(0,1)}));
parser_done(parser);
})
}
// check the contents of the tt manually:
#[test] fn parse_fundecl () {
with_globals(|| {
// this test depends on the intern order of "fn" and "i32"
let item = string_to_item("fn a (b : i32) { b; }".to_string()).map(|m| {
m.map(|mut m| {
m.tokens = None;
m
})
});
assert_eq!(item,
Some(
P(ast::Item{ident:Ident::from_str("a"),
attrs:Vec::new(),
id: ast::DUMMY_NODE_ID,
tokens: None,
node: ast::ItemKind::Fn(P(ast::FnDecl {
inputs: vec![ast::Arg{
ty: P(ast::Ty{id: ast::DUMMY_NODE_ID,
node: ast::TyKind::Path(None, ast::Path{
span:sp(10,13),
segments: vec![str2seg("i32", 10, 13)],
}),
span:sp(10,13)
}),
pat: P(ast::Pat {
id: ast::DUMMY_NODE_ID,
node: PatKind::Ident(
ast::BindingMode::ByValue(
ast::Mutability::Immutable),
Ident::new(Symbol::intern("b"), sp(6, 7)),
None
),
span: sp(6,7)
}),
id: ast::DUMMY_NODE_ID
}],
output: ast::FunctionRetTy::Default(sp(15, 15)),
variadic: false
}),
ast::Unsafety::Normal,
Spanned {
span: sp(0,2),
node: ast::Constness::NotConst,
},
Abi::Rust,
ast::Generics{
params: Vec::new(),
where_clause: ast::WhereClause {
id: ast::DUMMY_NODE_ID,
predicates: Vec::new(),
span: syntax_pos::DUMMY_SP,
},
span: syntax_pos::DUMMY_SP,
},
P(ast::Block {
stmts: vec![ast::Stmt {
node: ast::StmtKind::Semi(P(ast::Expr{
id: ast::DUMMY_NODE_ID,
node: ast::ExprKind::Path(None,
ast::Path{
span:sp(17,18),
segments: vec![str2seg("b", 17, 18)],
}),
span: sp(17,18),
attrs: ThinVec::new()})),
id: ast::DUMMY_NODE_ID,
span: sp(17,19)}],
id: ast::DUMMY_NODE_ID,
rules: ast::BlockCheckMode::Default, // no idea
span: sp(15,21),
recovered: false,
})),
vis: respan(sp(0, 0), ast::VisibilityKind::Inherited),
span: sp(0,21)})));
})
}
#[test] fn parse_use() {
with_globals(|| {
let use_s = "use foo::bar::baz;";
let vitem = string_to_item(use_s.to_string()).unwrap();
let vitem_s = item_to_string(&vitem);
assert_eq!(&vitem_s[..], use_s);
let use_s = "use foo::bar as baz;";
let vitem = string_to_item(use_s.to_string()).unwrap();
let vitem_s = item_to_string(&vitem);
assert_eq!(&vitem_s[..], use_s);
})
}
#[test] fn parse_extern_crate() {
with_globals(|| {
let ex_s = "extern crate foo;";
let vitem = string_to_item(ex_s.to_string()).unwrap();
let vitem_s = item_to_string(&vitem);
assert_eq!(&vitem_s[..], ex_s);
let ex_s = "extern crate foo as bar;";
let vitem = string_to_item(ex_s.to_string()).unwrap();
let vitem_s = item_to_string(&vitem);
assert_eq!(&vitem_s[..], ex_s);
})
}
fn get_spans_of_pat_idents(src: &str) -> Vec<Span> {
let item = string_to_item(src.to_string()).unwrap();
struct PatIdentVisitor {
spans: Vec<Span>
}
impl<'a> ::visit::Visitor<'a> for PatIdentVisitor {
fn visit_pat(&mut self, p: &'a ast::Pat) {
match p.node {
PatKind::Ident(_ , ref spannedident, _) => {
self.spans.push(spannedident.span.clone());
}
_ => {
::visit::walk_pat(self, p);
}
}
}
}
let mut v = PatIdentVisitor { spans: Vec::new() };
::visit::walk_item(&mut v, &item);
return v.spans;
}
#[test] fn span_of_self_arg_pat_idents_are_correct() {
with_globals(|| {
let srcs = ["impl z { fn a (&self, &myarg: i32) {} }",
"impl z { fn a (&mut self, &myarg: i32) {} }",
"impl z { fn a (&'a self, &myarg: i32) {} }",
"impl z { fn a (self, &myarg: i32) {} }",
"impl z { fn a (self: Foo, &myarg: i32) {} }",
];
for &src in &srcs {
let spans = get_spans_of_pat_idents(src);
let (lo, hi) = (spans[0].lo(), spans[0].hi());
assert!("self" == &src[lo.to_usize()..hi.to_usize()],
"\"{}\" != \"self\". src=\"{}\"",
&src[lo.to_usize()..hi.to_usize()], src)
}
})
}
#[test] fn parse_exprs () {
with_globals(|| {
// just make sure that they parse....
string_to_expr("3 + 4".to_string());
string_to_expr("a::z.froob(b,&(987+3))".to_string());
})
}
#[test] fn attrs_fix_bug () {
with_globals(|| {
string_to_item("pub fn mk_file_writer(path: &Path, flags: &[FileFlag])
-> Result<Box<Writer>, String> {
#[cfg(windows)]
fn wb() -> c_int {
(O_WRONLY | libc::consts::os::extra::O_BINARY) as c_int
}
#[cfg(unix)]
fn wb() -> c_int { O_WRONLY as c_int }
let mut fflags: c_int = wb();
}".to_string());
})
}
#[test] fn crlf_doc_comments() {
with_globals(|| {
let sess = ParseSess::new(FilePathMapping::empty());
let name = FileName::Custom("source".to_string());
let source = "/// doc comment\r\nfn foo() {}".to_string();
let item = parse_item_from_source_str(name.clone(), source, &sess)
.unwrap().unwrap();
let doc = first_attr_value_str_by_name(&item.attrs, "doc").unwrap();
assert_eq!(doc, "/// doc comment");
let source = "/// doc comment\r\n/// line 2\r\nfn foo() {}".to_string();
let item = parse_item_from_source_str(name.clone(), source, &sess)
.unwrap().unwrap();
let docs = item.attrs.iter().filter(|a| a.path == "doc")
.map(|a| a.value_str().unwrap().to_string()).collect::<Vec<_>>();
let b: &[_] = &["/// doc comment".to_string(), "/// line 2".to_string()];
assert_eq!(&docs[..], b);
let source = "/** doc comment\r\n * with CRLF */\r\nfn foo() {}".to_string();
let item = parse_item_from_source_str(name, source, &sess).unwrap().unwrap();
let doc = first_attr_value_str_by_name(&item.attrs, "doc").unwrap();
assert_eq!(doc, "/** doc comment\n * with CRLF */");
});
}
#[test]
fn ttdelim_span() {
with_globals(|| {
let sess = ParseSess::new(FilePathMapping::empty());
let expr = parse::parse_expr_from_source_str(PathBuf::from("foo").into(),
"foo!( fn main() { body } )".to_string(), &sess).unwrap();
let tts: Vec<_> = match expr.node {
ast::ExprKind::Mac(ref mac) => mac.node.stream().trees().collect(),
_ => panic!("not a macro"),
};
let span = tts.iter().rev().next().unwrap().span();
match sess.codemap().span_to_snippet(span) {
Ok(s) => assert_eq!(&s[..], "{ body }"),
Err(_) => panic!("could not get snippet"),
}
});
}
// This tests that when parsing a string (rather than a file) we don't try
// and read in a file for a module declaration and just parse a stub.
// See `recurse_into_file_modules` in the parser.
#[test]
fn out_of_line_mod() {
with_globals(|| {
let sess = ParseSess::new(FilePathMapping::empty());
let item = parse_item_from_source_str(
PathBuf::from("foo").into(),
"mod foo { struct S; mod this_does_not_exist; }".to_owned(),
&sess,
).unwrap().unwrap();
if let ast::ItemKind::Mod(ref m) = item.node {
assert!(m.items.len() == 2);
} else {
panic!();
}
});
}
}
/// `SeqSep` : a sequence separator (token)
/// and whether a trailing separator is allowed.
pub struct SeqSep {
pub sep: Option<token::Token>,
pub trailing_sep_allowed: bool,
}
impl SeqSep {
pub fn trailing_allowed(t: token::Token) -> SeqSep {
SeqSep {
sep: Some(t),
trailing_sep_allowed: true,
}
}
pub fn none() -> SeqSep {
SeqSep {
sep: None,
trailing_sep_allowed: false,
}
}
}