a4844a65e2
The for loop would *always* exaust the iterator previously, which seems like behavior that was not intended. It's still kind of a weird function.
2323 lines
67 KiB
Rust
2323 lines
67 KiB
Rust
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
/*!
|
|
|
|
Composable external iterators
|
|
|
|
# The `Iterator` trait
|
|
|
|
This module defines Rust's core iteration trait. The `Iterator` trait has one
|
|
unimplemented method, `next`. All other methods are derived through default
|
|
methods to perform operations such as `zip`, `chain`, `enumerate`, and `fold`.
|
|
|
|
The goal of this module is to unify iteration across all containers in Rust.
|
|
An iterator can be considered as a state machine which is used to track which
|
|
element will be yielded next.
|
|
|
|
There are various extensions also defined in this module to assist with various
|
|
types of iteration, such as the `DoubleEndedIterator` for iterating in reverse,
|
|
the `FromIterator` trait for creating a container from an iterator, and much
|
|
more.
|
|
|
|
## Rust's `for` loop
|
|
|
|
The special syntax used by rust's `for` loop is based around the `Iterator`
|
|
trait defined in this module. For loops can be viewed as a syntactical expansion
|
|
into a `loop`, for example, the `for` loop in this example is essentially
|
|
translated to the `loop` below.
|
|
|
|
```rust
|
|
let values = vec![1i, 2, 3];
|
|
|
|
// "Syntactical sugar" taking advantage of an iterator
|
|
for &x in values.iter() {
|
|
println!("{}", x);
|
|
}
|
|
|
|
// Rough translation of the iteration without a `for` iterator.
|
|
let mut it = values.iter();
|
|
loop {
|
|
match it.next() {
|
|
Some(&x) => {
|
|
println!("{}", x);
|
|
}
|
|
None => { break }
|
|
}
|
|
}
|
|
```
|
|
|
|
This `for` loop syntax can be applied to any iterator over any type.
|
|
|
|
*/
|
|
|
|
use clone::Clone;
|
|
use cmp;
|
|
use cmp::{PartialEq, PartialOrd, Ord};
|
|
use mem;
|
|
use num::{Zero, One, CheckedAdd, CheckedSub, Saturating, ToPrimitive, Int};
|
|
use ops::{Add, Mul, Sub};
|
|
use option::{Option, Some, None};
|
|
use uint;
|
|
|
|
/// Conversion from an `Iterator`
|
|
pub trait FromIterator<A> {
|
|
/// Build a container with elements from an external iterator.
|
|
fn from_iter<T: Iterator<A>>(iterator: T) -> Self;
|
|
}
|
|
|
|
/// A type growable from an `Iterator` implementation
|
|
pub trait Extendable<A>: FromIterator<A> {
|
|
/// Extend a container with the elements yielded by an iterator
|
|
fn extend<T: Iterator<A>>(&mut self, iterator: T);
|
|
}
|
|
|
|
/// An interface for dealing with "external iterators". These types of iterators
|
|
/// can be resumed at any time as all state is stored internally as opposed to
|
|
/// being located on the call stack.
|
|
///
|
|
/// The Iterator protocol states that an iterator yields a (potentially-empty,
|
|
/// potentially-infinite) sequence of values, and returns `None` to signal that
|
|
/// it's finished. The Iterator protocol does not define behavior after `None`
|
|
/// is returned. A concrete Iterator implementation may choose to behave however
|
|
/// it wishes, either by returning `None` infinitely, or by doing something
|
|
/// else.
|
|
#[lang="iterator"]
|
|
pub trait Iterator<A> {
|
|
/// Advance the iterator and return the next value. Return `None` when the end is reached.
|
|
fn next(&mut self) -> Option<A>;
|
|
|
|
/// Returns a lower and upper bound on the remaining length of the iterator.
|
|
///
|
|
/// An upper bound of `None` means either there is no known upper bound, or the upper bound
|
|
/// does not fit within a `uint`.
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) { (0, None) }
|
|
|
|
/// Chain this iterator with another, returning a new iterator which will
|
|
/// finish iterating over the current iterator, and then it will iterate
|
|
/// over the other specified iterator.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [0i];
|
|
/// let b = [1i];
|
|
/// let mut it = a.iter().chain(b.iter());
|
|
/// assert_eq!(it.next().unwrap(), &0);
|
|
/// assert_eq!(it.next().unwrap(), &1);
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
fn chain<U: Iterator<A>>(self, other: U) -> Chain<Self, U> {
|
|
Chain{a: self, b: other, flag: false}
|
|
}
|
|
|
|
/// Creates an iterator which iterates over both this and the specified
|
|
/// iterators simultaneously, yielding the two elements as pairs. When
|
|
/// either iterator returns None, all further invocations of next() will
|
|
/// return None.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [0i];
|
|
/// let b = [1i];
|
|
/// let mut it = a.iter().zip(b.iter());
|
|
/// let (x0, x1) = (0i, 1i);
|
|
/// assert_eq!(it.next().unwrap(), (&x0, &x1));
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
fn zip<B, U: Iterator<B>>(self, other: U) -> Zip<Self, U> {
|
|
Zip{a: self, b: other}
|
|
}
|
|
|
|
/// Creates a new iterator which will apply the specified function to each
|
|
/// element returned by the first, yielding the mapped element instead.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [1i, 2];
|
|
/// let mut it = a.iter().map(|&x| 2 * x);
|
|
/// assert_eq!(it.next().unwrap(), 2);
|
|
/// assert_eq!(it.next().unwrap(), 4);
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
fn map<'r, B>(self, f: |A|: 'r -> B) -> Map<'r, A, B, Self> {
|
|
Map{iter: self, f: f}
|
|
}
|
|
|
|
/// Creates an iterator which applies the predicate to each element returned
|
|
/// by this iterator. Only elements which have the predicate evaluate to
|
|
/// `true` will be yielded.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [1i, 2];
|
|
/// let mut it = a.iter().filter(|&x| *x > 1);
|
|
/// assert_eq!(it.next().unwrap(), &2);
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
fn filter<'r>(self, predicate: |&A|: 'r -> bool) -> Filter<'r, A, Self> {
|
|
Filter{iter: self, predicate: predicate}
|
|
}
|
|
|
|
/// Creates an iterator which both filters and maps elements.
|
|
/// If the specified function returns None, the element is skipped.
|
|
/// Otherwise the option is unwrapped and the new value is yielded.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [1i, 2];
|
|
/// let mut it = a.iter().filter_map(|&x| if x > 1 {Some(2 * x)} else {None});
|
|
/// assert_eq!(it.next().unwrap(), 4);
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
fn filter_map<'r, B>(self, f: |A|: 'r -> Option<B>) -> FilterMap<'r, A, B, Self> {
|
|
FilterMap { iter: self, f: f }
|
|
}
|
|
|
|
/// Creates an iterator which yields a pair of the value returned by this
|
|
/// iterator plus the current index of iteration.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [100i, 200];
|
|
/// let mut it = a.iter().enumerate();
|
|
/// let (x100, x200) = (100i, 200i);
|
|
/// assert_eq!(it.next().unwrap(), (0, &x100));
|
|
/// assert_eq!(it.next().unwrap(), (1, &x200));
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
fn enumerate(self) -> Enumerate<Self> {
|
|
Enumerate{iter: self, count: 0}
|
|
}
|
|
|
|
|
|
/// Creates an iterator that has a `.peek()` method
|
|
/// that returns an optional reference to the next element.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let xs = [100i, 200, 300];
|
|
/// let mut it = xs.iter().map(|x| *x).peekable();
|
|
/// assert_eq!(*it.peek().unwrap(), 100);
|
|
/// assert_eq!(it.next().unwrap(), 100);
|
|
/// assert_eq!(it.next().unwrap(), 200);
|
|
/// assert_eq!(*it.peek().unwrap(), 300);
|
|
/// assert_eq!(*it.peek().unwrap(), 300);
|
|
/// assert_eq!(it.next().unwrap(), 300);
|
|
/// assert!(it.peek().is_none());
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
fn peekable(self) -> Peekable<A, Self> {
|
|
Peekable{iter: self, peeked: None}
|
|
}
|
|
|
|
/// Creates an iterator which invokes the predicate on elements until it
|
|
/// returns false. Once the predicate returns false, all further elements are
|
|
/// yielded.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [1i, 2, 3, 2, 1];
|
|
/// let mut it = a.iter().skip_while(|&a| *a < 3);
|
|
/// assert_eq!(it.next().unwrap(), &3);
|
|
/// assert_eq!(it.next().unwrap(), &2);
|
|
/// assert_eq!(it.next().unwrap(), &1);
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
fn skip_while<'r>(self, predicate: |&A|: 'r -> bool) -> SkipWhile<'r, A, Self> {
|
|
SkipWhile{iter: self, flag: false, predicate: predicate}
|
|
}
|
|
|
|
/// Creates an iterator which yields elements so long as the predicate
|
|
/// returns true. After the predicate returns false for the first time, no
|
|
/// further elements will be yielded.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [1i, 2, 3, 2, 1];
|
|
/// let mut it = a.iter().take_while(|&a| *a < 3);
|
|
/// assert_eq!(it.next().unwrap(), &1);
|
|
/// assert_eq!(it.next().unwrap(), &2);
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
fn take_while<'r>(self, predicate: |&A|: 'r -> bool) -> TakeWhile<'r, A, Self> {
|
|
TakeWhile{iter: self, flag: false, predicate: predicate}
|
|
}
|
|
|
|
/// Creates an iterator which skips the first `n` elements of this iterator,
|
|
/// and then it yields all further items.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [1i, 2, 3, 4, 5];
|
|
/// let mut it = a.iter().skip(3);
|
|
/// assert_eq!(it.next().unwrap(), &4);
|
|
/// assert_eq!(it.next().unwrap(), &5);
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
fn skip(self, n: uint) -> Skip<Self> {
|
|
Skip{iter: self, n: n}
|
|
}
|
|
|
|
/// Creates an iterator which yields the first `n` elements of this
|
|
/// iterator, and then it will always return None.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [1i, 2, 3, 4, 5];
|
|
/// let mut it = a.iter().take(3);
|
|
/// assert_eq!(it.next().unwrap(), &1);
|
|
/// assert_eq!(it.next().unwrap(), &2);
|
|
/// assert_eq!(it.next().unwrap(), &3);
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
fn take(self, n: uint) -> Take<Self> {
|
|
Take{iter: self, n: n}
|
|
}
|
|
|
|
/// Creates a new iterator which behaves in a similar fashion to fold.
|
|
/// There is a state which is passed between each iteration and can be
|
|
/// mutated as necessary. The yielded values from the closure are yielded
|
|
/// from the Scan instance when not None.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [1i, 2, 3, 4, 5];
|
|
/// let mut it = a.iter().scan(1, |fac, &x| {
|
|
/// *fac = *fac * x;
|
|
/// Some(*fac)
|
|
/// });
|
|
/// assert_eq!(it.next().unwrap(), 1);
|
|
/// assert_eq!(it.next().unwrap(), 2);
|
|
/// assert_eq!(it.next().unwrap(), 6);
|
|
/// assert_eq!(it.next().unwrap(), 24);
|
|
/// assert_eq!(it.next().unwrap(), 120);
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
fn scan<'r, St, B>(self, initial_state: St, f: |&mut St, A|: 'r -> Option<B>)
|
|
-> Scan<'r, A, B, Self, St> {
|
|
Scan{iter: self, f: f, state: initial_state}
|
|
}
|
|
|
|
/// Creates an iterator that maps each element to an iterator,
|
|
/// and yields the elements of the produced iterators
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// use std::iter::count;
|
|
///
|
|
/// let xs = [2u, 3];
|
|
/// let ys = [0u, 1, 0, 1, 2];
|
|
/// let mut it = xs.iter().flat_map(|&x| count(0u, 1).take(x));
|
|
/// // Check that `it` has the same elements as `ys`
|
|
/// let mut i = 0;
|
|
/// for x in it {
|
|
/// assert_eq!(x, ys[i]);
|
|
/// i += 1;
|
|
/// }
|
|
/// ```
|
|
#[inline]
|
|
fn flat_map<'r, B, U: Iterator<B>>(self, f: |A|: 'r -> U)
|
|
-> FlatMap<'r, A, Self, U> {
|
|
FlatMap{iter: self, f: f, frontiter: None, backiter: None }
|
|
}
|
|
|
|
/// Creates an iterator that yields `None` forever after the underlying
|
|
/// iterator yields `None`. Random-access iterator behavior is not
|
|
/// affected, only single and double-ended iterator behavior.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// fn process<U: Iterator<int>>(it: U) -> int {
|
|
/// let mut it = it.fuse();
|
|
/// let mut sum = 0;
|
|
/// for x in it {
|
|
/// if x > 5 {
|
|
/// break;
|
|
/// }
|
|
/// sum += x;
|
|
/// }
|
|
/// // did we exhaust the iterator?
|
|
/// if it.next().is_none() {
|
|
/// sum += 1000;
|
|
/// }
|
|
/// sum
|
|
/// }
|
|
/// let x = vec![1i,2,3,7,8,9];
|
|
/// assert_eq!(process(x.into_iter()), 6);
|
|
/// let x = vec![1i,2,3];
|
|
/// assert_eq!(process(x.into_iter()), 1006);
|
|
/// ```
|
|
#[inline]
|
|
fn fuse(self) -> Fuse<Self> {
|
|
Fuse{iter: self, done: false}
|
|
}
|
|
|
|
/// Creates an iterator that calls a function with a reference to each
|
|
/// element before yielding it. This is often useful for debugging an
|
|
/// iterator pipeline.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// use std::iter::AdditiveIterator;
|
|
///
|
|
/// let xs = [1u, 4, 2, 3, 8, 9, 6];
|
|
/// let sum = xs.iter()
|
|
/// .map(|&x| x)
|
|
/// .inspect(|&x| println!("filtering {}", x))
|
|
/// .filter(|&x| x % 2 == 0)
|
|
/// .inspect(|&x| println!("{} made it through", x))
|
|
/// .sum();
|
|
/// println!("{}", sum);
|
|
/// ```
|
|
#[inline]
|
|
fn inspect<'r>(self, f: |&A|: 'r) -> Inspect<'r, A, Self> {
|
|
Inspect{iter: self, f: f}
|
|
}
|
|
|
|
/// Creates a wrapper around a mutable reference to the iterator.
|
|
///
|
|
/// This is useful to allow applying iterator adaptors while still
|
|
/// retaining ownership of the original iterator value.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let mut xs = range(0u, 10);
|
|
/// // sum the first five values
|
|
/// let partial_sum = xs.by_ref().take(5).fold(0, |a, b| a + b);
|
|
/// assert!(partial_sum == 10);
|
|
/// // xs.next() is now `5`
|
|
/// assert!(xs.next() == Some(5));
|
|
/// ```
|
|
fn by_ref<'r>(&'r mut self) -> ByRef<'r, Self> {
|
|
ByRef{iter: self}
|
|
}
|
|
|
|
/// Apply a function to each element, or stop iterating if the
|
|
/// function returns `false`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust,ignore
|
|
/// range(0u, 5).advance(|x| {print!("{} ", x); true});
|
|
/// ```
|
|
#[deprecated = "use the `all` method instead"]
|
|
#[inline]
|
|
fn advance(&mut self, f: |A| -> bool) -> bool {
|
|
loop {
|
|
match self.next() {
|
|
Some(x) => {
|
|
if !f(x) { return false; }
|
|
}
|
|
None => { return true; }
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Loops through the entire iterator, collecting all of the elements into
|
|
/// a container implementing `FromIterator`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [1i, 2, 3, 4, 5];
|
|
/// let b: Vec<int> = a.iter().map(|&x| x).collect();
|
|
/// assert!(a.as_slice() == b.as_slice());
|
|
/// ```
|
|
#[inline]
|
|
fn collect<B: FromIterator<A>>(&mut self) -> B {
|
|
FromIterator::from_iter(self.by_ref())
|
|
}
|
|
|
|
/// Loops through `n` iterations, returning the `n`th element of the
|
|
/// iterator.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [1i, 2, 3, 4, 5];
|
|
/// let mut it = a.iter();
|
|
/// assert!(it.nth(2).unwrap() == &3);
|
|
/// assert!(it.nth(2) == None);
|
|
/// ```
|
|
#[inline]
|
|
fn nth(&mut self, mut n: uint) -> Option<A> {
|
|
for x in *self {
|
|
if n == 0 { return Some(x) }
|
|
n -= 1;
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Loops through the entire iterator, returning the last element of the
|
|
/// iterator.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [1i, 2, 3, 4, 5];
|
|
/// assert!(a.iter().last().unwrap() == &5);
|
|
/// ```
|
|
#[inline]
|
|
fn last(&mut self) -> Option<A> {
|
|
let mut last = None;
|
|
for x in *self { last = Some(x); }
|
|
last
|
|
}
|
|
|
|
/// Performs a fold operation over the entire iterator, returning the
|
|
/// eventual state at the end of the iteration.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [1i, 2, 3, 4, 5];
|
|
/// assert!(a.iter().fold(0, |a, &b| a + b) == 15);
|
|
/// ```
|
|
#[inline]
|
|
fn fold<B>(&mut self, init: B, f: |B, A| -> B) -> B {
|
|
let mut accum = init;
|
|
for x in *self {
|
|
accum = f(accum, x);
|
|
}
|
|
accum
|
|
}
|
|
|
|
/// Counts the number of elements in this iterator.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [1i, 2, 3, 4, 5];
|
|
/// let mut it = a.iter();
|
|
/// assert!(it.count() == 5);
|
|
/// assert!(it.count() == 0);
|
|
/// ```
|
|
#[inline]
|
|
fn count(&mut self) -> uint {
|
|
self.fold(0, |cnt, _x| cnt + 1)
|
|
}
|
|
|
|
/// Tests whether the predicate holds true for all elements in the iterator.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [1i, 2, 3, 4, 5];
|
|
/// assert!(a.iter().all(|x| *x > 0));
|
|
/// assert!(!a.iter().all(|x| *x > 2));
|
|
/// ```
|
|
#[inline]
|
|
fn all(&mut self, f: |A| -> bool) -> bool {
|
|
for x in *self { if !f(x) { return false; } }
|
|
true
|
|
}
|
|
|
|
/// Tests whether any element of an iterator satisfies the specified
|
|
/// predicate.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [1i, 2, 3, 4, 5];
|
|
/// let mut it = a.iter();
|
|
/// assert!(it.any(|x| *x == 3));
|
|
/// assert!(!it.any(|x| *x == 3));
|
|
/// ```
|
|
#[inline]
|
|
fn any(&mut self, f: |A| -> bool) -> bool {
|
|
for x in *self { if f(x) { return true; } }
|
|
false
|
|
}
|
|
|
|
/// Return the first element satisfying the specified predicate
|
|
#[inline]
|
|
fn find(&mut self, predicate: |&A| -> bool) -> Option<A> {
|
|
for x in *self {
|
|
if predicate(&x) { return Some(x) }
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Return the index of the first element satisfying the specified predicate
|
|
#[inline]
|
|
fn position(&mut self, predicate: |A| -> bool) -> Option<uint> {
|
|
let mut i = 0;
|
|
for x in *self {
|
|
if predicate(x) {
|
|
return Some(i);
|
|
}
|
|
i += 1;
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Return the element that gives the maximum value from the
|
|
/// specified function.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let xs = [-3i, 0, 1, 5, -10];
|
|
/// assert_eq!(*xs.iter().max_by(|x| x.abs()).unwrap(), -10);
|
|
/// ```
|
|
#[inline]
|
|
fn max_by<B: Ord>(&mut self, f: |&A| -> B) -> Option<A> {
|
|
self.fold(None, |max: Option<(A, B)>, x| {
|
|
let x_val = f(&x);
|
|
match max {
|
|
None => Some((x, x_val)),
|
|
Some((y, y_val)) => if x_val > y_val {
|
|
Some((x, x_val))
|
|
} else {
|
|
Some((y, y_val))
|
|
}
|
|
}
|
|
}).map(|(x, _)| x)
|
|
}
|
|
|
|
/// Return the element that gives the minimum value from the
|
|
/// specified function.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let xs = [-3i, 0, 1, 5, -10];
|
|
/// assert_eq!(*xs.iter().min_by(|x| x.abs()).unwrap(), 0);
|
|
/// ```
|
|
#[inline]
|
|
fn min_by<B: Ord>(&mut self, f: |&A| -> B) -> Option<A> {
|
|
self.fold(None, |min: Option<(A, B)>, x| {
|
|
let x_val = f(&x);
|
|
match min {
|
|
None => Some((x, x_val)),
|
|
Some((y, y_val)) => if x_val < y_val {
|
|
Some((x, x_val))
|
|
} else {
|
|
Some((y, y_val))
|
|
}
|
|
}
|
|
}).map(|(x, _)| x)
|
|
}
|
|
}
|
|
|
|
/// A range iterator able to yield elements from both ends
|
|
///
|
|
/// A `DoubleEndedIterator` can be thought of as a deque in that `next()` and `next_back()` exhaust
|
|
/// elements from the *same* range, and do not work independently of each other.
|
|
pub trait DoubleEndedIterator<A>: Iterator<A> {
|
|
/// Yield an element from the end of the range, returning `None` if the range is empty.
|
|
fn next_back(&mut self) -> Option<A>;
|
|
|
|
/// Change the direction of the iterator
|
|
///
|
|
/// The flipped iterator swaps the ends on an iterator that can already
|
|
/// be iterated from the front and from the back.
|
|
///
|
|
///
|
|
/// If the iterator also implements RandomAccessIterator, the flipped
|
|
/// iterator is also random access, with the indices starting at the back
|
|
/// of the original iterator.
|
|
///
|
|
/// Note: Random access with flipped indices still only applies to the first
|
|
/// `uint::MAX` elements of the original iterator.
|
|
#[inline]
|
|
fn rev(self) -> Rev<Self> {
|
|
Rev{iter: self}
|
|
}
|
|
}
|
|
|
|
/// A double-ended iterator yielding mutable references
|
|
pub trait MutableDoubleEndedIterator {
|
|
// FIXME: #5898: should be called `reverse`
|
|
/// Use an iterator to reverse a container in-place
|
|
fn reverse_(&mut self);
|
|
}
|
|
|
|
impl<'a, A:'a, T: DoubleEndedIterator<&'a mut A>> MutableDoubleEndedIterator for T {
|
|
// FIXME: #5898: should be called `reverse`
|
|
/// Use an iterator to reverse a container in-place
|
|
fn reverse_(&mut self) {
|
|
loop {
|
|
match (self.next(), self.next_back()) {
|
|
(Some(x), Some(y)) => mem::swap(x, y),
|
|
_ => break
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// An object implementing random access indexing by `uint`
|
|
///
|
|
/// A `RandomAccessIterator` should be either infinite or a `DoubleEndedIterator`.
|
|
/// Calling `next()` or `next_back()` on a `RandomAccessIterator`
|
|
/// reduces the indexable range accordingly. That is, `it.idx(1)` will become `it.idx(0)`
|
|
/// after `it.next()` is called.
|
|
pub trait RandomAccessIterator<A>: Iterator<A> {
|
|
/// Return the number of indexable elements. At most `std::uint::MAX`
|
|
/// elements are indexable, even if the iterator represents a longer range.
|
|
fn indexable(&self) -> uint;
|
|
|
|
/// Return an element at an index, or `None` if the index is out of bounds
|
|
fn idx(&mut self, index: uint) -> Option<A>;
|
|
}
|
|
|
|
/// An iterator that knows its exact length
|
|
///
|
|
/// This trait is a helper for iterators like the vector iterator, so that
|
|
/// it can support double-ended enumeration.
|
|
///
|
|
/// `Iterator::size_hint` *must* return the exact size of the iterator.
|
|
/// Note that the size must fit in `uint`.
|
|
pub trait ExactSize<A> : DoubleEndedIterator<A> {
|
|
/// Return the index of the last element satisfying the specified predicate
|
|
///
|
|
/// If no element matches, None is returned.
|
|
#[inline]
|
|
fn rposition(&mut self, predicate: |A| -> bool) -> Option<uint> {
|
|
let len = self.len();
|
|
for i in range(0, len).rev() {
|
|
if predicate(self.next_back().expect("rposition: incorrect ExactSize")) {
|
|
return Some(i);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
#[inline]
|
|
/// Return the exact length of the iterator.
|
|
fn len(&self) -> uint {
|
|
let (lower, upper) = self.size_hint();
|
|
// Note: This assertion is overly defensive, but it checks the invariant
|
|
// guaranteed by the trait. If this trait were rust-internal,
|
|
// we could use debug_assert!; assert_eq! will check all Rust user
|
|
// implementations too.
|
|
assert_eq!(upper, Some(lower));
|
|
lower
|
|
}
|
|
}
|
|
|
|
// All adaptors that preserve the size of the wrapped iterator are fine
|
|
// Adaptors that may overflow in `size_hint` are not, i.e. `Chain`.
|
|
impl<A, T: ExactSize<A>> ExactSize<(uint, A)> for Enumerate<T> {}
|
|
impl<'a, A, T: ExactSize<A>> ExactSize<A> for Inspect<'a, A, T> {}
|
|
impl<A, T: ExactSize<A>> ExactSize<A> for Rev<T> {}
|
|
impl<'a, A, B, T: ExactSize<A>> ExactSize<B> for Map<'a, A, B, T> {}
|
|
impl<A, B, T: ExactSize<A>, U: ExactSize<B>> ExactSize<(A, B)> for Zip<T, U> {}
|
|
|
|
/// An double-ended iterator with the direction inverted
|
|
#[deriving(Clone)]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct Rev<T> {
|
|
iter: T
|
|
}
|
|
|
|
impl<A, T: DoubleEndedIterator<A>> Iterator<A> for Rev<T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> { self.iter.next_back() }
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) { self.iter.size_hint() }
|
|
}
|
|
|
|
impl<A, T: DoubleEndedIterator<A>> DoubleEndedIterator<A> for Rev<T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<A> { self.iter.next() }
|
|
}
|
|
|
|
impl<A, T: DoubleEndedIterator<A> + RandomAccessIterator<A>> RandomAccessIterator<A>
|
|
for Rev<T> {
|
|
#[inline]
|
|
fn indexable(&self) -> uint { self.iter.indexable() }
|
|
#[inline]
|
|
fn idx(&mut self, index: uint) -> Option<A> {
|
|
let amt = self.indexable();
|
|
self.iter.idx(amt - index - 1)
|
|
}
|
|
}
|
|
|
|
/// A mutable reference to an iterator
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct ByRef<'a, T:'a> {
|
|
iter: &'a mut T
|
|
}
|
|
|
|
impl<'a, A, T: Iterator<A>+'a> Iterator<A> for ByRef<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> { self.iter.next() }
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) { self.iter.size_hint() }
|
|
}
|
|
|
|
impl<'a, A, T: DoubleEndedIterator<A>+'a> DoubleEndedIterator<A> for ByRef<'a, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<A> { self.iter.next_back() }
|
|
}
|
|
|
|
/// A trait for iterators over elements which can be added together
|
|
pub trait AdditiveIterator<A> {
|
|
/// Iterates over the entire iterator, summing up all the elements
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// use std::iter::AdditiveIterator;
|
|
///
|
|
/// let a = [1i, 2, 3, 4, 5];
|
|
/// let mut it = a.iter().map(|&x| x);
|
|
/// assert!(it.sum() == 15);
|
|
/// ```
|
|
fn sum(&mut self) -> A;
|
|
}
|
|
|
|
impl<A: Add<A, A> + Zero, T: Iterator<A>> AdditiveIterator<A> for T {
|
|
#[inline]
|
|
fn sum(&mut self) -> A {
|
|
let zero: A = Zero::zero();
|
|
self.fold(zero, |s, x| s + x)
|
|
}
|
|
}
|
|
|
|
/// A trait for iterators over elements which can be multiplied together.
|
|
pub trait MultiplicativeIterator<A> {
|
|
/// Iterates over the entire iterator, multiplying all the elements
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// use std::iter::{count, MultiplicativeIterator};
|
|
///
|
|
/// fn factorial(n: uint) -> uint {
|
|
/// count(1u, 1).take_while(|&i| i <= n).product()
|
|
/// }
|
|
/// assert!(factorial(0) == 1);
|
|
/// assert!(factorial(1) == 1);
|
|
/// assert!(factorial(5) == 120);
|
|
/// ```
|
|
fn product(&mut self) -> A;
|
|
}
|
|
|
|
impl<A: Mul<A, A> + One, T: Iterator<A>> MultiplicativeIterator<A> for T {
|
|
#[inline]
|
|
fn product(&mut self) -> A {
|
|
let one: A = One::one();
|
|
self.fold(one, |p, x| p * x)
|
|
}
|
|
}
|
|
|
|
/// A trait for iterators over elements which can be compared to one another.
|
|
pub trait OrdIterator<A> {
|
|
/// Consumes the entire iterator to return the maximum element.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [1i, 2, 3, 4, 5];
|
|
/// assert!(a.iter().max().unwrap() == &5);
|
|
/// ```
|
|
fn max(&mut self) -> Option<A>;
|
|
|
|
/// Consumes the entire iterator to return the minimum element.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let a = [1i, 2, 3, 4, 5];
|
|
/// assert!(a.iter().min().unwrap() == &1);
|
|
/// ```
|
|
fn min(&mut self) -> Option<A>;
|
|
|
|
/// `min_max` finds the minimum and maximum elements in the iterator.
|
|
///
|
|
/// The return type `MinMaxResult` is an enum of three variants:
|
|
///
|
|
/// - `NoElements` if the iterator is empty.
|
|
/// - `OneElement(x)` if the iterator has exactly one element.
|
|
/// - `MinMax(x, y)` is returned otherwise, where `x <= y`. Two
|
|
/// values are equal if and only if there is more than one
|
|
/// element in the iterator and all elements are equal.
|
|
///
|
|
/// On an iterator of length `n`, `min_max` does `1.5 * n` comparisons,
|
|
/// and so faster than calling `min` and `max separately which does `2 * n` comparisons.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// use std::iter::{NoElements, OneElement, MinMax};
|
|
///
|
|
/// let v: [int, ..0] = [];
|
|
/// assert_eq!(v.iter().min_max(), NoElements);
|
|
///
|
|
/// let v = [1i];
|
|
/// assert!(v.iter().min_max() == OneElement(&1));
|
|
///
|
|
/// let v = [1i, 2, 3, 4, 5];
|
|
/// assert!(v.iter().min_max() == MinMax(&1, &5));
|
|
///
|
|
/// let v = [1i, 2, 3, 4, 5, 6];
|
|
/// assert!(v.iter().min_max() == MinMax(&1, &6));
|
|
///
|
|
/// let v = [1i, 1, 1, 1];
|
|
/// assert!(v.iter().min_max() == MinMax(&1, &1));
|
|
/// ```
|
|
fn min_max(&mut self) -> MinMaxResult<A>;
|
|
}
|
|
|
|
impl<A: Ord, T: Iterator<A>> OrdIterator<A> for T {
|
|
#[inline]
|
|
fn max(&mut self) -> Option<A> {
|
|
self.fold(None, |max, x| {
|
|
match max {
|
|
None => Some(x),
|
|
Some(y) => Some(cmp::max(x, y))
|
|
}
|
|
})
|
|
}
|
|
|
|
#[inline]
|
|
fn min(&mut self) -> Option<A> {
|
|
self.fold(None, |min, x| {
|
|
match min {
|
|
None => Some(x),
|
|
Some(y) => Some(cmp::min(x, y))
|
|
}
|
|
})
|
|
}
|
|
|
|
fn min_max(&mut self) -> MinMaxResult<A> {
|
|
let (mut min, mut max) = match self.next() {
|
|
None => return NoElements,
|
|
Some(x) => {
|
|
match self.next() {
|
|
None => return OneElement(x),
|
|
Some(y) => if x < y {(x, y)} else {(y,x)}
|
|
}
|
|
}
|
|
};
|
|
|
|
loop {
|
|
// `first` and `second` are the two next elements we want to look at.
|
|
// We first compare `first` and `second` (#1). The smaller one is then compared to
|
|
// current minimum (#2). The larger one is compared to current maximum (#3). This
|
|
// way we do 3 comparisons for 2 elements.
|
|
let first = match self.next() {
|
|
None => break,
|
|
Some(x) => x
|
|
};
|
|
let second = match self.next() {
|
|
None => {
|
|
if first < min {
|
|
min = first;
|
|
} else if first > max {
|
|
max = first;
|
|
}
|
|
break;
|
|
}
|
|
Some(x) => x
|
|
};
|
|
if first < second {
|
|
if first < min {min = first;}
|
|
if max < second {max = second;}
|
|
} else {
|
|
if second < min {min = second;}
|
|
if max < first {max = first;}
|
|
}
|
|
}
|
|
|
|
MinMax(min, max)
|
|
}
|
|
}
|
|
|
|
/// `MinMaxResult` is an enum returned by `min_max`. See `OrdIterator::min_max` for more detail.
|
|
#[deriving(Clone, PartialEq, Show)]
|
|
pub enum MinMaxResult<T> {
|
|
/// Empty iterator
|
|
NoElements,
|
|
|
|
/// Iterator with one element, so the minimum and maximum are the same
|
|
OneElement(T),
|
|
|
|
/// More than one element in the iterator, the first element is not larger than the second
|
|
MinMax(T, T)
|
|
}
|
|
|
|
impl<T: Clone> MinMaxResult<T> {
|
|
/// `into_option` creates an `Option` of type `(T,T)`. The returned `Option` has variant
|
|
/// `None` if and only if the `MinMaxResult` has variant `NoElements`. Otherwise variant
|
|
/// `Some(x,y)` is returned where `x <= y`. If `MinMaxResult` has variant `OneElement(x)`,
|
|
/// performing this operation will make one clone of `x`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// use std::iter::{NoElements, OneElement, MinMax, MinMaxResult};
|
|
///
|
|
/// let r: MinMaxResult<int> = NoElements;
|
|
/// assert_eq!(r.into_option(), None)
|
|
///
|
|
/// let r = OneElement(1i);
|
|
/// assert_eq!(r.into_option(), Some((1,1)));
|
|
///
|
|
/// let r = MinMax(1i,2i);
|
|
/// assert_eq!(r.into_option(), Some((1,2)));
|
|
/// ```
|
|
pub fn into_option(self) -> Option<(T,T)> {
|
|
match self {
|
|
NoElements => None,
|
|
OneElement(x) => Some((x.clone(), x)),
|
|
MinMax(x, y) => Some((x, y))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A trait for iterators that are cloneable.
|
|
pub trait CloneableIterator {
|
|
/// Repeats an iterator endlessly
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// use std::iter::{CloneableIterator, count};
|
|
///
|
|
/// let a = count(1i,1i).take(1);
|
|
/// let mut cy = a.cycle();
|
|
/// assert_eq!(cy.next(), Some(1));
|
|
/// assert_eq!(cy.next(), Some(1));
|
|
/// ```
|
|
fn cycle(self) -> Cycle<Self>;
|
|
}
|
|
|
|
impl<A, T: Clone + Iterator<A>> CloneableIterator for T {
|
|
#[inline]
|
|
fn cycle(self) -> Cycle<T> {
|
|
Cycle{orig: self.clone(), iter: self}
|
|
}
|
|
}
|
|
|
|
/// An iterator that repeats endlessly
|
|
#[deriving(Clone)]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct Cycle<T> {
|
|
orig: T,
|
|
iter: T,
|
|
}
|
|
|
|
impl<A, T: Clone + Iterator<A>> Iterator<A> for Cycle<T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
match self.iter.next() {
|
|
None => { self.iter = self.orig.clone(); self.iter.next() }
|
|
y => y
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
// the cycle iterator is either empty or infinite
|
|
match self.orig.size_hint() {
|
|
sz @ (0, Some(0)) => sz,
|
|
(0, _) => (0, None),
|
|
_ => (uint::MAX, None)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<A, T: Clone + RandomAccessIterator<A>> RandomAccessIterator<A> for Cycle<T> {
|
|
#[inline]
|
|
fn indexable(&self) -> uint {
|
|
if self.orig.indexable() > 0 {
|
|
uint::MAX
|
|
} else {
|
|
0
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn idx(&mut self, index: uint) -> Option<A> {
|
|
let liter = self.iter.indexable();
|
|
let lorig = self.orig.indexable();
|
|
if lorig == 0 {
|
|
None
|
|
} else if index < liter {
|
|
self.iter.idx(index)
|
|
} else {
|
|
self.orig.idx((index - liter) % lorig)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator which strings two iterators together
|
|
#[deriving(Clone)]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct Chain<T, U> {
|
|
a: T,
|
|
b: U,
|
|
flag: bool,
|
|
}
|
|
|
|
impl<A, T: Iterator<A>, U: Iterator<A>> Iterator<A> for Chain<T, U> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
if self.flag {
|
|
self.b.next()
|
|
} else {
|
|
match self.a.next() {
|
|
Some(x) => return Some(x),
|
|
_ => ()
|
|
}
|
|
self.flag = true;
|
|
self.b.next()
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
let (a_lower, a_upper) = self.a.size_hint();
|
|
let (b_lower, b_upper) = self.b.size_hint();
|
|
|
|
let lower = a_lower.saturating_add(b_lower);
|
|
|
|
let upper = match (a_upper, b_upper) {
|
|
(Some(x), Some(y)) => x.checked_add(&y),
|
|
_ => None
|
|
};
|
|
|
|
(lower, upper)
|
|
}
|
|
}
|
|
|
|
impl<A, T: DoubleEndedIterator<A>, U: DoubleEndedIterator<A>> DoubleEndedIterator<A>
|
|
for Chain<T, U> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<A> {
|
|
match self.b.next_back() {
|
|
Some(x) => Some(x),
|
|
None => self.a.next_back()
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<A, T: RandomAccessIterator<A>, U: RandomAccessIterator<A>> RandomAccessIterator<A>
|
|
for Chain<T, U> {
|
|
#[inline]
|
|
fn indexable(&self) -> uint {
|
|
let (a, b) = (self.a.indexable(), self.b.indexable());
|
|
a.saturating_add(b)
|
|
}
|
|
|
|
#[inline]
|
|
fn idx(&mut self, index: uint) -> Option<A> {
|
|
let len = self.a.indexable();
|
|
if index < len {
|
|
self.a.idx(index)
|
|
} else {
|
|
self.b.idx(index - len)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator which iterates two other iterators simultaneously
|
|
#[deriving(Clone)]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct Zip<T, U> {
|
|
a: T,
|
|
b: U
|
|
}
|
|
|
|
impl<A, B, T: Iterator<A>, U: Iterator<B>> Iterator<(A, B)> for Zip<T, U> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<(A, B)> {
|
|
match self.a.next() {
|
|
None => None,
|
|
Some(x) => match self.b.next() {
|
|
None => None,
|
|
Some(y) => Some((x, y))
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
let (a_lower, a_upper) = self.a.size_hint();
|
|
let (b_lower, b_upper) = self.b.size_hint();
|
|
|
|
let lower = cmp::min(a_lower, b_lower);
|
|
|
|
let upper = match (a_upper, b_upper) {
|
|
(Some(x), Some(y)) => Some(cmp::min(x,y)),
|
|
(Some(x), None) => Some(x),
|
|
(None, Some(y)) => Some(y),
|
|
(None, None) => None
|
|
};
|
|
|
|
(lower, upper)
|
|
}
|
|
}
|
|
|
|
impl<A, B, T: ExactSize<A>, U: ExactSize<B>> DoubleEndedIterator<(A, B)>
|
|
for Zip<T, U> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<(A, B)> {
|
|
let a_sz = self.a.len();
|
|
let b_sz = self.b.len();
|
|
if a_sz != b_sz {
|
|
// Adjust a, b to equal length
|
|
if a_sz > b_sz {
|
|
for _ in range(0, a_sz - b_sz) { self.a.next_back(); }
|
|
} else {
|
|
for _ in range(0, b_sz - a_sz) { self.b.next_back(); }
|
|
}
|
|
}
|
|
match (self.a.next_back(), self.b.next_back()) {
|
|
(Some(x), Some(y)) => Some((x, y)),
|
|
(None, None) => None,
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<A, B, T: RandomAccessIterator<A>, U: RandomAccessIterator<B>>
|
|
RandomAccessIterator<(A, B)> for Zip<T, U> {
|
|
#[inline]
|
|
fn indexable(&self) -> uint {
|
|
cmp::min(self.a.indexable(), self.b.indexable())
|
|
}
|
|
|
|
#[inline]
|
|
fn idx(&mut self, index: uint) -> Option<(A, B)> {
|
|
match self.a.idx(index) {
|
|
None => None,
|
|
Some(x) => match self.b.idx(index) {
|
|
None => None,
|
|
Some(y) => Some((x, y))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator which maps the values of `iter` with `f`
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct Map<'a, A, B, T> {
|
|
iter: T,
|
|
f: |A|: 'a -> B
|
|
}
|
|
|
|
impl<'a, A, B, T> Map<'a, A, B, T> {
|
|
#[inline]
|
|
fn do_map(&mut self, elt: Option<A>) -> Option<B> {
|
|
match elt {
|
|
Some(a) => Some((self.f)(a)),
|
|
_ => None
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, A, B, T: Iterator<A>> Iterator<B> for Map<'a, A, B, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<B> {
|
|
let next = self.iter.next();
|
|
self.do_map(next)
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
self.iter.size_hint()
|
|
}
|
|
}
|
|
|
|
impl<'a, A, B, T: DoubleEndedIterator<A>> DoubleEndedIterator<B> for Map<'a, A, B, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<B> {
|
|
let next = self.iter.next_back();
|
|
self.do_map(next)
|
|
}
|
|
}
|
|
|
|
impl<'a, A, B, T: RandomAccessIterator<A>> RandomAccessIterator<B> for Map<'a, A, B, T> {
|
|
#[inline]
|
|
fn indexable(&self) -> uint {
|
|
self.iter.indexable()
|
|
}
|
|
|
|
#[inline]
|
|
fn idx(&mut self, index: uint) -> Option<B> {
|
|
let elt = self.iter.idx(index);
|
|
self.do_map(elt)
|
|
}
|
|
}
|
|
|
|
/// An iterator which filters the elements of `iter` with `predicate`
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct Filter<'a, A, T> {
|
|
iter: T,
|
|
predicate: |&A|: 'a -> bool
|
|
}
|
|
|
|
impl<'a, A, T: Iterator<A>> Iterator<A> for Filter<'a, A, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
for x in self.iter {
|
|
if (self.predicate)(&x) {
|
|
return Some(x);
|
|
} else {
|
|
continue
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
let (_, upper) = self.iter.size_hint();
|
|
(0, upper) // can't know a lower bound, due to the predicate
|
|
}
|
|
}
|
|
|
|
impl<'a, A, T: DoubleEndedIterator<A>> DoubleEndedIterator<A> for Filter<'a, A, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<A> {
|
|
for x in self.iter.by_ref().rev() {
|
|
if (self.predicate)(&x) {
|
|
return Some(x);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
}
|
|
|
|
/// An iterator which uses `f` to both filter and map elements from `iter`
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct FilterMap<'a, A, B, T> {
|
|
iter: T,
|
|
f: |A|: 'a -> Option<B>
|
|
}
|
|
|
|
impl<'a, A, B, T: Iterator<A>> Iterator<B> for FilterMap<'a, A, B, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<B> {
|
|
for x in self.iter {
|
|
match (self.f)(x) {
|
|
Some(y) => return Some(y),
|
|
None => ()
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
let (_, upper) = self.iter.size_hint();
|
|
(0, upper) // can't know a lower bound, due to the predicate
|
|
}
|
|
}
|
|
|
|
impl<'a, A, B, T: DoubleEndedIterator<A>> DoubleEndedIterator<B>
|
|
for FilterMap<'a, A, B, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<B> {
|
|
for x in self.iter.by_ref().rev() {
|
|
match (self.f)(x) {
|
|
Some(y) => return Some(y),
|
|
None => ()
|
|
}
|
|
}
|
|
None
|
|
}
|
|
}
|
|
|
|
/// An iterator which yields the current count and the element during iteration
|
|
#[deriving(Clone)]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct Enumerate<T> {
|
|
iter: T,
|
|
count: uint
|
|
}
|
|
|
|
impl<A, T: Iterator<A>> Iterator<(uint, A)> for Enumerate<T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<(uint, A)> {
|
|
match self.iter.next() {
|
|
Some(a) => {
|
|
let ret = Some((self.count, a));
|
|
self.count += 1;
|
|
ret
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
self.iter.size_hint()
|
|
}
|
|
}
|
|
|
|
impl<A, T: ExactSize<A>> DoubleEndedIterator<(uint, A)> for Enumerate<T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<(uint, A)> {
|
|
match self.iter.next_back() {
|
|
Some(a) => {
|
|
let len = self.iter.len();
|
|
Some((self.count + len, a))
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<A, T: RandomAccessIterator<A>> RandomAccessIterator<(uint, A)> for Enumerate<T> {
|
|
#[inline]
|
|
fn indexable(&self) -> uint {
|
|
self.iter.indexable()
|
|
}
|
|
|
|
#[inline]
|
|
fn idx(&mut self, index: uint) -> Option<(uint, A)> {
|
|
match self.iter.idx(index) {
|
|
Some(a) => Some((self.count + index, a)),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator with a `peek()` that returns an optional reference to the next element.
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct Peekable<A, T> {
|
|
iter: T,
|
|
peeked: Option<A>,
|
|
}
|
|
|
|
impl<A, T: Iterator<A>> Iterator<A> for Peekable<A, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
if self.peeked.is_some() { self.peeked.take() }
|
|
else { self.iter.next() }
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
let (lo, hi) = self.iter.size_hint();
|
|
if self.peeked.is_some() {
|
|
let lo = lo.saturating_add(1);
|
|
let hi = match hi {
|
|
Some(x) => x.checked_add(&1),
|
|
None => None
|
|
};
|
|
(lo, hi)
|
|
} else {
|
|
(lo, hi)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, A, T: Iterator<A>> Peekable<A, T> {
|
|
/// Return a reference to the next element of the iterator with out advancing it,
|
|
/// or None if the iterator is exhausted.
|
|
#[inline]
|
|
pub fn peek(&'a mut self) -> Option<&'a A> {
|
|
if self.peeked.is_none() {
|
|
self.peeked = self.iter.next();
|
|
}
|
|
match self.peeked {
|
|
Some(ref value) => Some(value),
|
|
None => None,
|
|
}
|
|
}
|
|
|
|
/// Check whether peekable iterator is empty or not.
|
|
#[inline]
|
|
pub fn is_empty(&mut self) -> bool {
|
|
self.peek().is_none()
|
|
}
|
|
}
|
|
|
|
/// An iterator which rejects elements while `predicate` is true
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct SkipWhile<'a, A, T> {
|
|
iter: T,
|
|
flag: bool,
|
|
predicate: |&A|: 'a -> bool
|
|
}
|
|
|
|
impl<'a, A, T: Iterator<A>> Iterator<A> for SkipWhile<'a, A, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
for x in self.iter {
|
|
if self.flag || !(self.predicate)(&x) {
|
|
self.flag = true;
|
|
return Some(x);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
let (_, upper) = self.iter.size_hint();
|
|
(0, upper) // can't know a lower bound, due to the predicate
|
|
}
|
|
}
|
|
|
|
/// An iterator which only accepts elements while `predicate` is true
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct TakeWhile<'a, A, T> {
|
|
iter: T,
|
|
flag: bool,
|
|
predicate: |&A|: 'a -> bool
|
|
}
|
|
|
|
impl<'a, A, T: Iterator<A>> Iterator<A> for TakeWhile<'a, A, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
if self.flag {
|
|
None
|
|
} else {
|
|
match self.iter.next() {
|
|
Some(x) => {
|
|
if (self.predicate)(&x) {
|
|
Some(x)
|
|
} else {
|
|
self.flag = true;
|
|
None
|
|
}
|
|
}
|
|
None => None
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
let (_, upper) = self.iter.size_hint();
|
|
(0, upper) // can't know a lower bound, due to the predicate
|
|
}
|
|
}
|
|
|
|
/// An iterator which skips over `n` elements of `iter`.
|
|
#[deriving(Clone)]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct Skip<T> {
|
|
iter: T,
|
|
n: uint
|
|
}
|
|
|
|
impl<A, T: Iterator<A>> Iterator<A> for Skip<T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
let mut next = self.iter.next();
|
|
if self.n == 0 {
|
|
next
|
|
} else {
|
|
let mut n = self.n;
|
|
while n > 0 {
|
|
n -= 1;
|
|
match next {
|
|
Some(_) => {
|
|
next = self.iter.next();
|
|
continue
|
|
}
|
|
None => {
|
|
self.n = 0;
|
|
return None
|
|
}
|
|
}
|
|
}
|
|
self.n = 0;
|
|
next
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
let (lower, upper) = self.iter.size_hint();
|
|
|
|
let lower = lower.saturating_sub(self.n);
|
|
|
|
let upper = match upper {
|
|
Some(x) => Some(x.saturating_sub(self.n)),
|
|
None => None
|
|
};
|
|
|
|
(lower, upper)
|
|
}
|
|
}
|
|
|
|
impl<A, T: RandomAccessIterator<A>> RandomAccessIterator<A> for Skip<T> {
|
|
#[inline]
|
|
fn indexable(&self) -> uint {
|
|
self.iter.indexable().saturating_sub(self.n)
|
|
}
|
|
|
|
#[inline]
|
|
fn idx(&mut self, index: uint) -> Option<A> {
|
|
if index >= self.indexable() {
|
|
None
|
|
} else {
|
|
self.iter.idx(index + self.n)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator which only iterates over the first `n` iterations of `iter`.
|
|
#[deriving(Clone)]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct Take<T> {
|
|
iter: T,
|
|
n: uint
|
|
}
|
|
|
|
impl<A, T: Iterator<A>> Iterator<A> for Take<T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
if self.n != 0 {
|
|
self.n -= 1;
|
|
self.iter.next()
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
let (lower, upper) = self.iter.size_hint();
|
|
|
|
let lower = cmp::min(lower, self.n);
|
|
|
|
let upper = match upper {
|
|
Some(x) if x < self.n => Some(x),
|
|
_ => Some(self.n)
|
|
};
|
|
|
|
(lower, upper)
|
|
}
|
|
}
|
|
|
|
impl<A, T: RandomAccessIterator<A>> RandomAccessIterator<A> for Take<T> {
|
|
#[inline]
|
|
fn indexable(&self) -> uint {
|
|
cmp::min(self.iter.indexable(), self.n)
|
|
}
|
|
|
|
#[inline]
|
|
fn idx(&mut self, index: uint) -> Option<A> {
|
|
if index >= self.n {
|
|
None
|
|
} else {
|
|
self.iter.idx(index)
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// An iterator to maintain state while iterating another iterator
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct Scan<'a, A, B, T, St> {
|
|
iter: T,
|
|
f: |&mut St, A|: 'a -> Option<B>,
|
|
|
|
/// The current internal state to be passed to the closure next.
|
|
pub state: St,
|
|
}
|
|
|
|
impl<'a, A, B, T: Iterator<A>, St> Iterator<B> for Scan<'a, A, B, T, St> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<B> {
|
|
self.iter.next().and_then(|a| (self.f)(&mut self.state, a))
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
let (_, upper) = self.iter.size_hint();
|
|
(0, upper) // can't know a lower bound, due to the scan function
|
|
}
|
|
}
|
|
|
|
/// An iterator that maps each element to an iterator,
|
|
/// and yields the elements of the produced iterators
|
|
///
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct FlatMap<'a, A, T, U> {
|
|
iter: T,
|
|
f: |A|: 'a -> U,
|
|
frontiter: Option<U>,
|
|
backiter: Option<U>,
|
|
}
|
|
|
|
impl<'a, A, T: Iterator<A>, B, U: Iterator<B>> Iterator<B> for FlatMap<'a, A, T, U> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<B> {
|
|
loop {
|
|
for inner in self.frontiter.iter_mut() {
|
|
for x in *inner {
|
|
return Some(x)
|
|
}
|
|
}
|
|
match self.iter.next().map(|x| (self.f)(x)) {
|
|
None => return self.backiter.as_mut().and_then(|it| it.next()),
|
|
next => self.frontiter = next,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
let (flo, fhi) = self.frontiter.as_ref().map_or((0, Some(0)), |it| it.size_hint());
|
|
let (blo, bhi) = self.backiter.as_ref().map_or((0, Some(0)), |it| it.size_hint());
|
|
let lo = flo.saturating_add(blo);
|
|
match (self.iter.size_hint(), fhi, bhi) {
|
|
((0, Some(0)), Some(a), Some(b)) => (lo, a.checked_add(&b)),
|
|
_ => (lo, None)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a,
|
|
A, T: DoubleEndedIterator<A>,
|
|
B, U: DoubleEndedIterator<B>> DoubleEndedIterator<B>
|
|
for FlatMap<'a, A, T, U> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<B> {
|
|
loop {
|
|
for inner in self.backiter.iter_mut() {
|
|
match inner.next_back() {
|
|
None => (),
|
|
y => return y
|
|
}
|
|
}
|
|
match self.iter.next_back().map(|x| (self.f)(x)) {
|
|
None => return self.frontiter.as_mut().and_then(|it| it.next_back()),
|
|
next => self.backiter = next,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator that yields `None` forever after the underlying iterator
|
|
/// yields `None` once.
|
|
#[deriving(Clone)]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct Fuse<T> {
|
|
iter: T,
|
|
done: bool
|
|
}
|
|
|
|
impl<A, T: Iterator<A>> Iterator<A> for Fuse<T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
if self.done {
|
|
None
|
|
} else {
|
|
match self.iter.next() {
|
|
None => {
|
|
self.done = true;
|
|
None
|
|
}
|
|
x => x
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
if self.done {
|
|
(0, Some(0))
|
|
} else {
|
|
self.iter.size_hint()
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<A, T: DoubleEndedIterator<A>> DoubleEndedIterator<A> for Fuse<T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<A> {
|
|
if self.done {
|
|
None
|
|
} else {
|
|
match self.iter.next_back() {
|
|
None => {
|
|
self.done = true;
|
|
None
|
|
}
|
|
x => x
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Allow RandomAccessIterators to be fused without affecting random-access behavior
|
|
impl<A, T: RandomAccessIterator<A>> RandomAccessIterator<A> for Fuse<T> {
|
|
#[inline]
|
|
fn indexable(&self) -> uint {
|
|
self.iter.indexable()
|
|
}
|
|
|
|
#[inline]
|
|
fn idx(&mut self, index: uint) -> Option<A> {
|
|
self.iter.idx(index)
|
|
}
|
|
}
|
|
|
|
impl<T> Fuse<T> {
|
|
/// Resets the fuse such that the next call to .next() or .next_back() will
|
|
/// call the underlying iterator again even if it previously returned None.
|
|
#[inline]
|
|
pub fn reset_fuse(&mut self) {
|
|
self.done = false
|
|
}
|
|
}
|
|
|
|
/// An iterator that calls a function with a reference to each
|
|
/// element before yielding it.
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
pub struct Inspect<'a, A, T> {
|
|
iter: T,
|
|
f: |&A|: 'a
|
|
}
|
|
|
|
impl<'a, A, T> Inspect<'a, A, T> {
|
|
#[inline]
|
|
fn do_inspect(&mut self, elt: Option<A>) -> Option<A> {
|
|
match elt {
|
|
Some(ref a) => (self.f)(a),
|
|
None => ()
|
|
}
|
|
|
|
elt
|
|
}
|
|
}
|
|
|
|
impl<'a, A, T: Iterator<A>> Iterator<A> for Inspect<'a, A, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
let next = self.iter.next();
|
|
self.do_inspect(next)
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
self.iter.size_hint()
|
|
}
|
|
}
|
|
|
|
impl<'a, A, T: DoubleEndedIterator<A>> DoubleEndedIterator<A>
|
|
for Inspect<'a, A, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<A> {
|
|
let next = self.iter.next_back();
|
|
self.do_inspect(next)
|
|
}
|
|
}
|
|
|
|
impl<'a, A, T: RandomAccessIterator<A>> RandomAccessIterator<A>
|
|
for Inspect<'a, A, T> {
|
|
#[inline]
|
|
fn indexable(&self) -> uint {
|
|
self.iter.indexable()
|
|
}
|
|
|
|
#[inline]
|
|
fn idx(&mut self, index: uint) -> Option<A> {
|
|
let element = self.iter.idx(index);
|
|
self.do_inspect(element)
|
|
}
|
|
}
|
|
|
|
/// An iterator which just modifies the contained state throughout iteration.
|
|
pub struct Unfold<'a, A, St> {
|
|
f: |&mut St|: 'a -> Option<A>,
|
|
/// Internal state that will be yielded on the next iteration
|
|
pub state: St,
|
|
}
|
|
|
|
impl<'a, A, St> Unfold<'a, A, St> {
|
|
/// Creates a new iterator with the specified closure as the "iterator
|
|
/// function" and an initial state to eventually pass to the iterator
|
|
#[inline]
|
|
pub fn new<'a>(initial_state: St, f: |&mut St|: 'a -> Option<A>)
|
|
-> Unfold<'a, A, St> {
|
|
Unfold {
|
|
f: f,
|
|
state: initial_state
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, A, St> Iterator<A> for Unfold<'a, A, St> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
(self.f)(&mut self.state)
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
// no possible known bounds at this point
|
|
(0, None)
|
|
}
|
|
}
|
|
|
|
/// An infinite iterator starting at `start` and advancing by `step` with each
|
|
/// iteration
|
|
#[deriving(Clone)]
|
|
pub struct Counter<A> {
|
|
/// The current state the counter is at (next value to be yielded)
|
|
state: A,
|
|
/// The amount that this iterator is stepping by
|
|
step: A,
|
|
}
|
|
|
|
/// Creates a new counter with the specified start/step
|
|
#[inline]
|
|
pub fn count<A>(start: A, step: A) -> Counter<A> {
|
|
Counter{state: start, step: step}
|
|
}
|
|
|
|
impl<A: Add<A, A> + Clone> Iterator<A> for Counter<A> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
let result = self.state.clone();
|
|
self.state = self.state + self.step;
|
|
Some(result)
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
(uint::MAX, None) // Too bad we can't specify an infinite lower bound
|
|
}
|
|
}
|
|
|
|
/// An iterator over the range [start, stop)
|
|
#[deriving(Clone)]
|
|
pub struct Range<A> {
|
|
state: A,
|
|
stop: A,
|
|
one: A
|
|
}
|
|
|
|
/// Returns an iterator over the given range [start, stop) (that is, starting
|
|
/// at start (inclusive), and ending at stop (exclusive)).
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// let array = [0, 1, 2, 3, 4];
|
|
///
|
|
/// for i in range(0, 5u) {
|
|
/// println!("{}", i);
|
|
/// assert_eq!(i, array[i]);
|
|
/// }
|
|
/// ```
|
|
#[inline]
|
|
pub fn range<A: Add<A, A> + PartialOrd + Clone + One>(start: A, stop: A) -> Range<A> {
|
|
Range{state: start, stop: stop, one: One::one()}
|
|
}
|
|
|
|
// FIXME: #10414: Unfortunate type bound
|
|
impl<A: Add<A, A> + PartialOrd + Clone + ToPrimitive> Iterator<A> for Range<A> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
if self.state < self.stop {
|
|
let result = self.state.clone();
|
|
self.state = self.state + self.one;
|
|
Some(result)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
// This first checks if the elements are representable as i64. If they aren't, try u64 (to
|
|
// handle cases like range(huge, huger)). We don't use uint/int because the difference of
|
|
// the i64/u64 might lie within their range.
|
|
let bound = match self.state.to_i64() {
|
|
Some(a) => {
|
|
let sz = self.stop.to_i64().map(|b| b.checked_sub(&a));
|
|
match sz {
|
|
Some(Some(bound)) => bound.to_uint(),
|
|
_ => None,
|
|
}
|
|
},
|
|
None => match self.state.to_u64() {
|
|
Some(a) => {
|
|
let sz = self.stop.to_u64().map(|b| b.checked_sub(&a));
|
|
match sz {
|
|
Some(Some(bound)) => bound.to_uint(),
|
|
_ => None
|
|
}
|
|
},
|
|
None => None
|
|
}
|
|
};
|
|
|
|
match bound {
|
|
Some(b) => (b, Some(b)),
|
|
// Standard fallback for unbounded/unrepresentable bounds
|
|
None => (0, None)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// `Int` is required to ensure the range will be the same regardless of
|
|
/// the direction it is consumed.
|
|
impl<A: Int + PartialOrd + Clone + ToPrimitive> DoubleEndedIterator<A> for Range<A> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<A> {
|
|
if self.stop > self.state {
|
|
self.stop = self.stop - self.one;
|
|
Some(self.stop.clone())
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator over the range [start, stop]
|
|
#[deriving(Clone)]
|
|
pub struct RangeInclusive<A> {
|
|
range: Range<A>,
|
|
done: bool,
|
|
}
|
|
|
|
/// Return an iterator over the range [start, stop]
|
|
#[inline]
|
|
pub fn range_inclusive<A: Add<A, A> + PartialOrd + Clone + One>(start: A, stop: A)
|
|
-> RangeInclusive<A> {
|
|
RangeInclusive{range: range(start, stop), done: false}
|
|
}
|
|
|
|
impl<A: Add<A, A> + PartialOrd + Clone + ToPrimitive> Iterator<A> for RangeInclusive<A> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
match self.range.next() {
|
|
Some(x) => Some(x),
|
|
None => {
|
|
if !self.done && self.range.state == self.range.stop {
|
|
self.done = true;
|
|
Some(self.range.stop.clone())
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
let (lo, hi) = self.range.size_hint();
|
|
if self.done {
|
|
(lo, hi)
|
|
} else {
|
|
let lo = lo.saturating_add(1);
|
|
let hi = match hi {
|
|
Some(x) => x.checked_add(&1),
|
|
None => None
|
|
};
|
|
(lo, hi)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<A: Sub<A, A> + Int + PartialOrd + Clone + ToPrimitive> DoubleEndedIterator<A>
|
|
for RangeInclusive<A> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<A> {
|
|
if self.range.stop > self.range.state {
|
|
let result = self.range.stop.clone();
|
|
self.range.stop = self.range.stop - self.range.one;
|
|
Some(result)
|
|
} else if !self.done && self.range.state == self.range.stop {
|
|
self.done = true;
|
|
Some(self.range.stop.clone())
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator over the range [start, stop) by `step`. It handles overflow by stopping.
|
|
#[deriving(Clone)]
|
|
pub struct RangeStep<A> {
|
|
state: A,
|
|
stop: A,
|
|
step: A,
|
|
rev: bool,
|
|
}
|
|
|
|
/// Return an iterator over the range [start, stop) by `step`. It handles overflow by stopping.
|
|
#[inline]
|
|
pub fn range_step<A: CheckedAdd + PartialOrd +
|
|
Clone + Zero>(start: A, stop: A, step: A) -> RangeStep<A> {
|
|
let rev = step < Zero::zero();
|
|
RangeStep{state: start, stop: stop, step: step, rev: rev}
|
|
}
|
|
|
|
impl<A: CheckedAdd + PartialOrd + Clone> Iterator<A> for RangeStep<A> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
if (self.rev && self.state > self.stop) || (!self.rev && self.state < self.stop) {
|
|
let result = self.state.clone();
|
|
match self.state.checked_add(&self.step) {
|
|
Some(x) => self.state = x,
|
|
None => self.state = self.stop.clone()
|
|
}
|
|
Some(result)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator over the range [start, stop] by `step`. It handles overflow by stopping.
|
|
#[deriving(Clone)]
|
|
pub struct RangeStepInclusive<A> {
|
|
state: A,
|
|
stop: A,
|
|
step: A,
|
|
rev: bool,
|
|
done: bool,
|
|
}
|
|
|
|
/// Return an iterator over the range [start, stop] by `step`. It handles overflow by stopping.
|
|
#[inline]
|
|
pub fn range_step_inclusive<A: CheckedAdd + PartialOrd + Clone + Zero>(start: A, stop: A,
|
|
step: A) -> RangeStepInclusive<A> {
|
|
let rev = step < Zero::zero();
|
|
RangeStepInclusive{state: start, stop: stop, step: step, rev: rev, done: false}
|
|
}
|
|
|
|
impl<A: CheckedAdd + PartialOrd + Clone + PartialEq> Iterator<A> for RangeStepInclusive<A> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
if !self.done && ((self.rev && self.state >= self.stop) ||
|
|
(!self.rev && self.state <= self.stop)) {
|
|
let result = self.state.clone();
|
|
match self.state.checked_add(&self.step) {
|
|
Some(x) => self.state = x,
|
|
None => self.done = true
|
|
}
|
|
Some(result)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator that repeats an element endlessly
|
|
#[deriving(Clone)]
|
|
pub struct Repeat<A> {
|
|
element: A
|
|
}
|
|
|
|
impl<A: Clone> Repeat<A> {
|
|
/// Create a new `Repeat` that endlessly repeats the element `elt`.
|
|
#[inline]
|
|
pub fn new(elt: A) -> Repeat<A> {
|
|
Repeat{element: elt}
|
|
}
|
|
}
|
|
|
|
impl<A: Clone> Iterator<A> for Repeat<A> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> { self.idx(0) }
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) { (uint::MAX, None) }
|
|
}
|
|
|
|
impl<A: Clone> DoubleEndedIterator<A> for Repeat<A> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<A> { self.idx(0) }
|
|
}
|
|
|
|
impl<A: Clone> RandomAccessIterator<A> for Repeat<A> {
|
|
#[inline]
|
|
fn indexable(&self) -> uint { uint::MAX }
|
|
#[inline]
|
|
fn idx(&mut self, _: uint) -> Option<A> { Some(self.element.clone()) }
|
|
}
|
|
|
|
type IterateState<'a, T> = (|T|: 'a -> T, Option<T>, bool);
|
|
|
|
/// An iterator that repeatedly applies a given function, starting
|
|
/// from a given seed value.
|
|
pub type Iterate<'a, T> = Unfold<'a, T, IterateState<'a, T>>;
|
|
|
|
/// Creates a new iterator that produces an infinite sequence of
|
|
/// repeated applications of the given function `f`.
|
|
pub fn iterate<'a, T: Clone>(seed: T, f: |T|: 'a -> T) -> Iterate<'a, T> {
|
|
Unfold::new((f, Some(seed), true), |st| {
|
|
let &(ref mut f, ref mut val, ref mut first) = st;
|
|
if *first {
|
|
*first = false;
|
|
} else {
|
|
match val.take() {
|
|
Some(x) => {
|
|
*val = Some((*f)(x))
|
|
}
|
|
None => {}
|
|
}
|
|
}
|
|
val.clone()
|
|
})
|
|
}
|
|
|
|
/// Functions for lexicographical ordering of sequences.
|
|
///
|
|
/// Lexicographical ordering through `<`, `<=`, `>=`, `>` requires
|
|
/// that the elements implement both `PartialEq` and `PartialOrd`.
|
|
///
|
|
/// If two sequences are equal up until the point where one ends,
|
|
/// the shorter sequence compares less.
|
|
pub mod order {
|
|
use cmp;
|
|
use cmp::{Eq, Ord, PartialOrd, PartialEq};
|
|
use option::{Option, Some, None};
|
|
use super::Iterator;
|
|
|
|
/// Compare `a` and `b` for equality using `Eq`
|
|
pub fn equals<A: Eq, T: Iterator<A>, S: Iterator<A>>(mut a: T, mut b: S) -> bool {
|
|
loop {
|
|
match (a.next(), b.next()) {
|
|
(None, None) => return true,
|
|
(None, _) | (_, None) => return false,
|
|
(Some(x), Some(y)) => if x != y { return false },
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Order `a` and `b` lexicographically using `Ord`
|
|
pub fn cmp<A: Ord, T: Iterator<A>, S: Iterator<A>>(mut a: T, mut b: S) -> cmp::Ordering {
|
|
loop {
|
|
match (a.next(), b.next()) {
|
|
(None, None) => return cmp::Equal,
|
|
(None, _ ) => return cmp::Less,
|
|
(_ , None) => return cmp::Greater,
|
|
(Some(x), Some(y)) => match x.cmp(&y) {
|
|
cmp::Equal => (),
|
|
non_eq => return non_eq,
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Order `a` and `b` lexicographically using `PartialOrd`
|
|
pub fn partial_cmp<A: PartialOrd, T: Iterator<A>, S: Iterator<A>>(mut a: T, mut b: S)
|
|
-> Option<cmp::Ordering> {
|
|
loop {
|
|
match (a.next(), b.next()) {
|
|
(None, None) => return Some(cmp::Equal),
|
|
(None, _ ) => return Some(cmp::Less),
|
|
(_ , None) => return Some(cmp::Greater),
|
|
(Some(x), Some(y)) => match x.partial_cmp(&y) {
|
|
Some(cmp::Equal) => (),
|
|
non_eq => return non_eq,
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Compare `a` and `b` for equality (Using partial equality, `PartialEq`)
|
|
pub fn eq<A: PartialEq, T: Iterator<A>, S: Iterator<A>>(mut a: T, mut b: S) -> bool {
|
|
loop {
|
|
match (a.next(), b.next()) {
|
|
(None, None) => return true,
|
|
(None, _) | (_, None) => return false,
|
|
(Some(x), Some(y)) => if !x.eq(&y) { return false },
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Compare `a` and `b` for nonequality (Using partial equality, `PartialEq`)
|
|
pub fn ne<A: PartialEq, T: Iterator<A>, S: Iterator<A>>(mut a: T, mut b: S) -> bool {
|
|
loop {
|
|
match (a.next(), b.next()) {
|
|
(None, None) => return false,
|
|
(None, _) | (_, None) => return true,
|
|
(Some(x), Some(y)) => if x.ne(&y) { return true },
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return `a` < `b` lexicographically (Using partial order, `PartialOrd`)
|
|
pub fn lt<A: PartialOrd, T: Iterator<A>, S: Iterator<A>>(mut a: T, mut b: S) -> bool {
|
|
loop {
|
|
match (a.next(), b.next()) {
|
|
(None, None) => return false,
|
|
(None, _ ) => return true,
|
|
(_ , None) => return false,
|
|
(Some(x), Some(y)) => if x.ne(&y) { return x.lt(&y) },
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return `a` <= `b` lexicographically (Using partial order, `PartialOrd`)
|
|
pub fn le<A: PartialOrd, T: Iterator<A>, S: Iterator<A>>(mut a: T, mut b: S) -> bool {
|
|
loop {
|
|
match (a.next(), b.next()) {
|
|
(None, None) => return true,
|
|
(None, _ ) => return true,
|
|
(_ , None) => return false,
|
|
(Some(x), Some(y)) => if x.ne(&y) { return x.le(&y) },
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return `a` > `b` lexicographically (Using partial order, `PartialOrd`)
|
|
pub fn gt<A: PartialOrd, T: Iterator<A>, S: Iterator<A>>(mut a: T, mut b: S) -> bool {
|
|
loop {
|
|
match (a.next(), b.next()) {
|
|
(None, None) => return false,
|
|
(None, _ ) => return false,
|
|
(_ , None) => return true,
|
|
(Some(x), Some(y)) => if x.ne(&y) { return x.gt(&y) },
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return `a` >= `b` lexicographically (Using partial order, `PartialOrd`)
|
|
pub fn ge<A: PartialOrd, T: Iterator<A>, S: Iterator<A>>(mut a: T, mut b: S) -> bool {
|
|
loop {
|
|
match (a.next(), b.next()) {
|
|
(None, None) => return true,
|
|
(None, _ ) => return false,
|
|
(_ , None) => return true,
|
|
(Some(x), Some(y)) => if x.ne(&y) { return x.ge(&y) },
|
|
}
|
|
}
|
|
}
|
|
}
|