5fe0bb743a
This commit removes the `IndexMut` impls on `HashMap` and `BTreeMap`, in order to future-proof the API against the eventual inclusion of an `IndexSet` trait. Ideally, we would eventually be able to support: ```rust map[owned_key] = val; map[borrowed_key].mutating_method(arguments); &mut map[borrowed_key]; ``` but to keep the design space as unconstrained as possible, we do not currently want to support `IndexMut`, in case some other strategy will eventually be needed. Code currently using mutating index notation can use `get_mut` instead. [breaking-change] Closes #23448
3589 lines
141 KiB
Rust
3589 lines
141 KiB
Rust
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
// Do not remove on snapshot creation. Needed for bootstrap. (Issue #22364)
|
|
#![cfg_attr(stage0, feature(custom_attribute))]
|
|
#![crate_name = "rustc_resolve"]
|
|
#![unstable(feature = "rustc_private")]
|
|
#![staged_api]
|
|
#![crate_type = "dylib"]
|
|
#![crate_type = "rlib"]
|
|
#![doc(html_logo_url = "http://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
|
|
html_favicon_url = "http://www.rust-lang.org/favicon.ico",
|
|
html_root_url = "http://doc.rust-lang.org/nightly/")]
|
|
|
|
#![feature(alloc)]
|
|
#![feature(collections)]
|
|
#![feature(core)]
|
|
#![feature(int_uint)]
|
|
#![feature(rustc_diagnostic_macros)]
|
|
#![feature(rustc_private)]
|
|
#![feature(staged_api)]
|
|
#![feature(std_misc)]
|
|
|
|
#[macro_use] extern crate log;
|
|
#[macro_use] extern crate syntax;
|
|
#[macro_use] #[no_link] extern crate rustc_bitflags;
|
|
|
|
extern crate rustc;
|
|
|
|
use self::PatternBindingMode::*;
|
|
use self::Namespace::*;
|
|
use self::NamespaceResult::*;
|
|
use self::NameDefinition::*;
|
|
use self::ResolveResult::*;
|
|
use self::FallbackSuggestion::*;
|
|
use self::TypeParameters::*;
|
|
use self::RibKind::*;
|
|
use self::UseLexicalScopeFlag::*;
|
|
use self::ModulePrefixResult::*;
|
|
use self::NameSearchType::*;
|
|
use self::BareIdentifierPatternResolution::*;
|
|
use self::ParentLink::*;
|
|
use self::ModuleKind::*;
|
|
use self::FallbackChecks::*;
|
|
|
|
use rustc::session::Session;
|
|
use rustc::lint;
|
|
use rustc::metadata::csearch;
|
|
use rustc::metadata::decoder::{DefLike, DlDef, DlField, DlImpl};
|
|
use rustc::middle::def::*;
|
|
use rustc::middle::lang_items::LanguageItems;
|
|
use rustc::middle::pat_util::pat_bindings;
|
|
use rustc::middle::privacy::*;
|
|
use rustc::middle::subst::{ParamSpace, FnSpace, TypeSpace};
|
|
use rustc::middle::ty::{Freevar, FreevarMap, TraitMap, GlobMap};
|
|
use rustc::util::nodemap::{NodeMap, NodeSet, DefIdSet, FnvHashMap};
|
|
use rustc::util::lev_distance::lev_distance;
|
|
|
|
use syntax::ast::{Arm, BindByRef, BindByValue, BindingMode, Block, Crate, CrateNum};
|
|
use syntax::ast::{DefId, Expr, ExprAgain, ExprBreak, ExprField};
|
|
use syntax::ast::{ExprLoop, ExprWhile, ExprMethodCall};
|
|
use syntax::ast::{ExprPath, ExprStruct, FnDecl};
|
|
use syntax::ast::{ForeignItemFn, ForeignItemStatic, Generics};
|
|
use syntax::ast::{Ident, ImplItem, Item, ItemConst, ItemEnum, ItemExternCrate};
|
|
use syntax::ast::{ItemFn, ItemForeignMod, ItemImpl, ItemMac, ItemMod, ItemStatic, ItemDefaultImpl};
|
|
use syntax::ast::{ItemStruct, ItemTrait, ItemTy, ItemUse};
|
|
use syntax::ast::{Local, MethodImplItem, Name, NodeId};
|
|
use syntax::ast::{Pat, PatEnum, PatIdent, PatLit};
|
|
use syntax::ast::{PatRange, PatStruct, Path, PrimTy};
|
|
use syntax::ast::{TraitRef, Ty, TyBool, TyChar, TyF32};
|
|
use syntax::ast::{TyF64, TyFloat, TyIs, TyI8, TyI16, TyI32, TyI64, TyInt};
|
|
use syntax::ast::{TyPath, TyPtr};
|
|
use syntax::ast::{TyRptr, TyStr, TyUs, TyU8, TyU16, TyU32, TyU64, TyUint};
|
|
use syntax::ast::{TypeImplItem};
|
|
use syntax::ast;
|
|
use syntax::ast_map;
|
|
use syntax::ast_util::{local_def, walk_pat};
|
|
use syntax::attr::AttrMetaMethods;
|
|
use syntax::ext::mtwt;
|
|
use syntax::parse::token::{self, special_names, special_idents};
|
|
use syntax::ptr::P;
|
|
use syntax::codemap::{self, Span, Pos};
|
|
use syntax::visit::{self, Visitor};
|
|
|
|
use std::collections::{HashMap, HashSet};
|
|
use std::collections::hash_map::Entry::{Occupied, Vacant};
|
|
use std::cell::{Cell, RefCell};
|
|
use std::fmt;
|
|
use std::mem::replace;
|
|
use std::rc::{Rc, Weak};
|
|
use std::usize;
|
|
|
|
use resolve_imports::{Target, ImportDirective, ImportResolution};
|
|
use resolve_imports::Shadowable;
|
|
|
|
|
|
// NB: This module needs to be declared first so diagnostics are
|
|
// registered before they are used.
|
|
pub mod diagnostics;
|
|
|
|
mod check_unused;
|
|
mod record_exports;
|
|
mod build_reduced_graph;
|
|
mod resolve_imports;
|
|
|
|
#[derive(Copy)]
|
|
struct BindingInfo {
|
|
span: Span,
|
|
binding_mode: BindingMode,
|
|
}
|
|
|
|
// Map from the name in a pattern to its binding mode.
|
|
type BindingMap = HashMap<Name, BindingInfo>;
|
|
|
|
#[derive(Copy, PartialEq)]
|
|
enum PatternBindingMode {
|
|
RefutableMode,
|
|
LocalIrrefutableMode,
|
|
ArgumentIrrefutableMode,
|
|
}
|
|
|
|
#[derive(Copy, PartialEq, Eq, Hash, Debug)]
|
|
enum Namespace {
|
|
TypeNS,
|
|
ValueNS
|
|
}
|
|
|
|
/// A NamespaceResult represents the result of resolving an import in
|
|
/// a particular namespace. The result is either definitely-resolved,
|
|
/// definitely- unresolved, or unknown.
|
|
#[derive(Clone)]
|
|
enum NamespaceResult {
|
|
/// Means that resolve hasn't gathered enough information yet to determine
|
|
/// whether the name is bound in this namespace. (That is, it hasn't
|
|
/// resolved all `use` directives yet.)
|
|
UnknownResult,
|
|
/// Means that resolve has determined that the name is definitely
|
|
/// not bound in the namespace.
|
|
UnboundResult,
|
|
/// Means that resolve has determined that the name is bound in the Module
|
|
/// argument, and specified by the NameBindings argument.
|
|
BoundResult(Rc<Module>, Rc<NameBindings>)
|
|
}
|
|
|
|
impl NamespaceResult {
|
|
fn is_unknown(&self) -> bool {
|
|
match *self {
|
|
UnknownResult => true,
|
|
_ => false
|
|
}
|
|
}
|
|
fn is_unbound(&self) -> bool {
|
|
match *self {
|
|
UnboundResult => true,
|
|
_ => false
|
|
}
|
|
}
|
|
}
|
|
|
|
enum NameDefinition {
|
|
NoNameDefinition, //< The name was unbound.
|
|
ChildNameDefinition(Def, LastPrivate), //< The name identifies an immediate child.
|
|
ImportNameDefinition(Def, LastPrivate) //< The name identifies an import.
|
|
}
|
|
|
|
impl<'a, 'v, 'tcx> Visitor<'v> for Resolver<'a, 'tcx> {
|
|
fn visit_item(&mut self, item: &Item) {
|
|
self.resolve_item(item);
|
|
}
|
|
fn visit_arm(&mut self, arm: &Arm) {
|
|
self.resolve_arm(arm);
|
|
}
|
|
fn visit_block(&mut self, block: &Block) {
|
|
self.resolve_block(block);
|
|
}
|
|
fn visit_expr(&mut self, expr: &Expr) {
|
|
self.resolve_expr(expr);
|
|
}
|
|
fn visit_local(&mut self, local: &Local) {
|
|
self.resolve_local(local);
|
|
}
|
|
fn visit_ty(&mut self, ty: &Ty) {
|
|
self.resolve_type(ty);
|
|
}
|
|
fn visit_generics(&mut self, generics: &Generics) {
|
|
self.resolve_generics(generics);
|
|
}
|
|
fn visit_poly_trait_ref(&mut self,
|
|
tref: &ast::PolyTraitRef,
|
|
m: &ast::TraitBoundModifier) {
|
|
match self.resolve_trait_reference(tref.trait_ref.ref_id, &tref.trait_ref.path, 0) {
|
|
Ok(def) => self.record_def(tref.trait_ref.ref_id, def),
|
|
Err(_) => { /* error already reported */ }
|
|
}
|
|
visit::walk_poly_trait_ref(self, tref, m);
|
|
}
|
|
fn visit_variant(&mut self, variant: &ast::Variant, generics: &Generics) {
|
|
if let Some(ref dis_expr) = variant.node.disr_expr {
|
|
// resolve the discriminator expr as a constant
|
|
self.with_constant_rib(|this| {
|
|
this.visit_expr(&**dis_expr);
|
|
});
|
|
}
|
|
|
|
// `visit::walk_variant` without the discriminant expression.
|
|
match variant.node.kind {
|
|
ast::TupleVariantKind(ref variant_arguments) => {
|
|
for variant_argument in variant_arguments.iter() {
|
|
self.visit_ty(&*variant_argument.ty);
|
|
}
|
|
}
|
|
ast::StructVariantKind(ref struct_definition) => {
|
|
self.visit_struct_def(&**struct_definition,
|
|
variant.node.name,
|
|
generics,
|
|
variant.node.id);
|
|
}
|
|
}
|
|
}
|
|
fn visit_foreign_item(&mut self, foreign_item: &ast::ForeignItem) {
|
|
let type_parameters = match foreign_item.node {
|
|
ForeignItemFn(_, ref generics) => {
|
|
HasTypeParameters(generics, FnSpace, ItemRibKind)
|
|
}
|
|
ForeignItemStatic(..) => NoTypeParameters
|
|
};
|
|
self.with_type_parameter_rib(type_parameters, |this| {
|
|
visit::walk_foreign_item(this, foreign_item);
|
|
});
|
|
}
|
|
fn visit_fn(&mut self,
|
|
function_kind: visit::FnKind<'v>,
|
|
declaration: &'v FnDecl,
|
|
block: &'v Block,
|
|
_: Span,
|
|
node_id: NodeId) {
|
|
let rib_kind = match function_kind {
|
|
visit::FkItemFn(_, generics, _, _) => {
|
|
self.visit_generics(generics);
|
|
ItemRibKind
|
|
}
|
|
visit::FkMethod(_, sig) => {
|
|
self.visit_generics(&sig.generics);
|
|
self.visit_explicit_self(&sig.explicit_self);
|
|
MethodRibKind
|
|
}
|
|
visit::FkFnBlock(..) => ClosureRibKind(node_id)
|
|
};
|
|
self.resolve_function(rib_kind, declaration, block);
|
|
}
|
|
}
|
|
|
|
type ErrorMessage = Option<(Span, String)>;
|
|
|
|
enum ResolveResult<T> {
|
|
Failed(ErrorMessage), // Failed to resolve the name, optional helpful error message.
|
|
Indeterminate, // Couldn't determine due to unresolved globs.
|
|
Success(T) // Successfully resolved the import.
|
|
}
|
|
|
|
impl<T> ResolveResult<T> {
|
|
fn indeterminate(&self) -> bool {
|
|
match *self { Indeterminate => true, _ => false }
|
|
}
|
|
}
|
|
|
|
enum FallbackSuggestion {
|
|
NoSuggestion,
|
|
Field,
|
|
Method,
|
|
TraitItem,
|
|
StaticMethod(String),
|
|
TraitMethod(String),
|
|
}
|
|
|
|
#[derive(Copy)]
|
|
enum TypeParameters<'a> {
|
|
NoTypeParameters,
|
|
HasTypeParameters(
|
|
// Type parameters.
|
|
&'a Generics,
|
|
|
|
// Identifies the things that these parameters
|
|
// were declared on (type, fn, etc)
|
|
ParamSpace,
|
|
|
|
// The kind of the rib used for type parameters.
|
|
RibKind)
|
|
}
|
|
|
|
// The rib kind controls the translation of local
|
|
// definitions (`DefLocal`) to upvars (`DefUpvar`).
|
|
#[derive(Copy, Debug)]
|
|
enum RibKind {
|
|
// No translation needs to be applied.
|
|
NormalRibKind,
|
|
|
|
// We passed through a closure scope at the given node ID.
|
|
// Translate upvars as appropriate.
|
|
ClosureRibKind(NodeId /* func id */),
|
|
|
|
// We passed through an impl or trait and are now in one of its
|
|
// methods. Allow references to ty params that impl or trait
|
|
// binds. Disallow any other upvars (including other ty params that are
|
|
// upvars).
|
|
MethodRibKind,
|
|
|
|
// We passed through an item scope. Disallow upvars.
|
|
ItemRibKind,
|
|
|
|
// We're in a constant item. Can't refer to dynamic stuff.
|
|
ConstantItemRibKind
|
|
}
|
|
|
|
#[derive(Copy)]
|
|
enum UseLexicalScopeFlag {
|
|
DontUseLexicalScope,
|
|
UseLexicalScope
|
|
}
|
|
|
|
enum ModulePrefixResult {
|
|
NoPrefixFound,
|
|
PrefixFound(Rc<Module>, uint)
|
|
}
|
|
|
|
#[derive(Copy, PartialEq)]
|
|
enum NameSearchType {
|
|
/// We're doing a name search in order to resolve a `use` directive.
|
|
ImportSearch,
|
|
|
|
/// We're doing a name search in order to resolve a path type, a path
|
|
/// expression, or a path pattern.
|
|
PathSearch,
|
|
}
|
|
|
|
#[derive(Copy)]
|
|
enum BareIdentifierPatternResolution {
|
|
FoundStructOrEnumVariant(Def, LastPrivate),
|
|
FoundConst(Def, LastPrivate),
|
|
BareIdentifierPatternUnresolved
|
|
}
|
|
|
|
/// One local scope.
|
|
#[derive(Debug)]
|
|
struct Rib {
|
|
bindings: HashMap<Name, DefLike>,
|
|
kind: RibKind,
|
|
}
|
|
|
|
impl Rib {
|
|
fn new(kind: RibKind) -> Rib {
|
|
Rib {
|
|
bindings: HashMap::new(),
|
|
kind: kind
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The link from a module up to its nearest parent node.
|
|
#[derive(Clone,Debug)]
|
|
enum ParentLink {
|
|
NoParentLink,
|
|
ModuleParentLink(Weak<Module>, Name),
|
|
BlockParentLink(Weak<Module>, NodeId)
|
|
}
|
|
|
|
/// The type of module this is.
|
|
#[derive(Copy, PartialEq, Debug)]
|
|
enum ModuleKind {
|
|
NormalModuleKind,
|
|
TraitModuleKind,
|
|
EnumModuleKind,
|
|
TypeModuleKind,
|
|
AnonymousModuleKind,
|
|
}
|
|
|
|
/// One node in the tree of modules.
|
|
pub struct Module {
|
|
parent_link: ParentLink,
|
|
def_id: Cell<Option<DefId>>,
|
|
kind: Cell<ModuleKind>,
|
|
is_public: bool,
|
|
|
|
children: RefCell<HashMap<Name, Rc<NameBindings>>>,
|
|
imports: RefCell<Vec<ImportDirective>>,
|
|
|
|
// The external module children of this node that were declared with
|
|
// `extern crate`.
|
|
external_module_children: RefCell<HashMap<Name, Rc<Module>>>,
|
|
|
|
// The anonymous children of this node. Anonymous children are pseudo-
|
|
// modules that are implicitly created around items contained within
|
|
// blocks.
|
|
//
|
|
// For example, if we have this:
|
|
//
|
|
// fn f() {
|
|
// fn g() {
|
|
// ...
|
|
// }
|
|
// }
|
|
//
|
|
// There will be an anonymous module created around `g` with the ID of the
|
|
// entry block for `f`.
|
|
anonymous_children: RefCell<NodeMap<Rc<Module>>>,
|
|
|
|
// The status of resolving each import in this module.
|
|
import_resolutions: RefCell<HashMap<Name, ImportResolution>>,
|
|
|
|
// The number of unresolved globs that this module exports.
|
|
glob_count: Cell<uint>,
|
|
|
|
// The index of the import we're resolving.
|
|
resolved_import_count: Cell<uint>,
|
|
|
|
// Whether this module is populated. If not populated, any attempt to
|
|
// access the children must be preceded with a
|
|
// `populate_module_if_necessary` call.
|
|
populated: Cell<bool>,
|
|
}
|
|
|
|
impl Module {
|
|
fn new(parent_link: ParentLink,
|
|
def_id: Option<DefId>,
|
|
kind: ModuleKind,
|
|
external: bool,
|
|
is_public: bool)
|
|
-> Module {
|
|
Module {
|
|
parent_link: parent_link,
|
|
def_id: Cell::new(def_id),
|
|
kind: Cell::new(kind),
|
|
is_public: is_public,
|
|
children: RefCell::new(HashMap::new()),
|
|
imports: RefCell::new(Vec::new()),
|
|
external_module_children: RefCell::new(HashMap::new()),
|
|
anonymous_children: RefCell::new(NodeMap()),
|
|
import_resolutions: RefCell::new(HashMap::new()),
|
|
glob_count: Cell::new(0),
|
|
resolved_import_count: Cell::new(0),
|
|
populated: Cell::new(!external),
|
|
}
|
|
}
|
|
|
|
fn all_imports_resolved(&self) -> bool {
|
|
self.imports.borrow().len() == self.resolved_import_count.get()
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for Module {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "{:?}, kind: {:?}, {}",
|
|
self.def_id,
|
|
self.kind,
|
|
if self.is_public { "public" } else { "private" } )
|
|
}
|
|
}
|
|
|
|
bitflags! {
|
|
#[derive(Debug)]
|
|
flags DefModifiers: u8 {
|
|
const PUBLIC = 0b0000_0001,
|
|
const IMPORTABLE = 0b0000_0010,
|
|
}
|
|
}
|
|
|
|
// Records a possibly-private type definition.
|
|
#[derive(Clone,Debug)]
|
|
struct TypeNsDef {
|
|
modifiers: DefModifiers, // see note in ImportResolution about how to use this
|
|
module_def: Option<Rc<Module>>,
|
|
type_def: Option<Def>,
|
|
type_span: Option<Span>
|
|
}
|
|
|
|
// Records a possibly-private value definition.
|
|
#[derive(Clone, Copy, Debug)]
|
|
struct ValueNsDef {
|
|
modifiers: DefModifiers, // see note in ImportResolution about how to use this
|
|
def: Def,
|
|
value_span: Option<Span>,
|
|
}
|
|
|
|
// Records the definitions (at most one for each namespace) that a name is
|
|
// bound to.
|
|
#[derive(Debug)]
|
|
pub struct NameBindings {
|
|
type_def: RefCell<Option<TypeNsDef>>, //< Meaning in type namespace.
|
|
value_def: RefCell<Option<ValueNsDef>>, //< Meaning in value namespace.
|
|
}
|
|
|
|
impl NameBindings {
|
|
fn new() -> NameBindings {
|
|
NameBindings {
|
|
type_def: RefCell::new(None),
|
|
value_def: RefCell::new(None),
|
|
}
|
|
}
|
|
|
|
/// Creates a new module in this set of name bindings.
|
|
fn define_module(&self,
|
|
parent_link: ParentLink,
|
|
def_id: Option<DefId>,
|
|
kind: ModuleKind,
|
|
external: bool,
|
|
is_public: bool,
|
|
sp: Span) {
|
|
// Merges the module with the existing type def or creates a new one.
|
|
let modifiers = if is_public { PUBLIC } else { DefModifiers::empty() } | IMPORTABLE;
|
|
let module_ = Rc::new(Module::new(parent_link,
|
|
def_id,
|
|
kind,
|
|
external,
|
|
is_public));
|
|
let type_def = self.type_def.borrow().clone();
|
|
match type_def {
|
|
None => {
|
|
*self.type_def.borrow_mut() = Some(TypeNsDef {
|
|
modifiers: modifiers,
|
|
module_def: Some(module_),
|
|
type_def: None,
|
|
type_span: Some(sp)
|
|
});
|
|
}
|
|
Some(type_def) => {
|
|
*self.type_def.borrow_mut() = Some(TypeNsDef {
|
|
modifiers: modifiers,
|
|
module_def: Some(module_),
|
|
type_span: Some(sp),
|
|
type_def: type_def.type_def
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Sets the kind of the module, creating a new one if necessary.
|
|
fn set_module_kind(&self,
|
|
parent_link: ParentLink,
|
|
def_id: Option<DefId>,
|
|
kind: ModuleKind,
|
|
external: bool,
|
|
is_public: bool,
|
|
_sp: Span) {
|
|
let modifiers = if is_public { PUBLIC } else { DefModifiers::empty() } | IMPORTABLE;
|
|
let type_def = self.type_def.borrow().clone();
|
|
match type_def {
|
|
None => {
|
|
let module = Module::new(parent_link,
|
|
def_id,
|
|
kind,
|
|
external,
|
|
is_public);
|
|
*self.type_def.borrow_mut() = Some(TypeNsDef {
|
|
modifiers: modifiers,
|
|
module_def: Some(Rc::new(module)),
|
|
type_def: None,
|
|
type_span: None,
|
|
});
|
|
}
|
|
Some(type_def) => {
|
|
match type_def.module_def {
|
|
None => {
|
|
let module = Module::new(parent_link,
|
|
def_id,
|
|
kind,
|
|
external,
|
|
is_public);
|
|
*self.type_def.borrow_mut() = Some(TypeNsDef {
|
|
modifiers: modifiers,
|
|
module_def: Some(Rc::new(module)),
|
|
type_def: type_def.type_def,
|
|
type_span: None,
|
|
});
|
|
}
|
|
Some(module_def) => module_def.kind.set(kind),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Records a type definition.
|
|
fn define_type(&self, def: Def, sp: Span, modifiers: DefModifiers) {
|
|
debug!("defining type for def {:?} with modifiers {:?}", def, modifiers);
|
|
// Merges the type with the existing type def or creates a new one.
|
|
let type_def = self.type_def.borrow().clone();
|
|
match type_def {
|
|
None => {
|
|
*self.type_def.borrow_mut() = Some(TypeNsDef {
|
|
module_def: None,
|
|
type_def: Some(def),
|
|
type_span: Some(sp),
|
|
modifiers: modifiers,
|
|
});
|
|
}
|
|
Some(type_def) => {
|
|
*self.type_def.borrow_mut() = Some(TypeNsDef {
|
|
module_def: type_def.module_def,
|
|
type_def: Some(def),
|
|
type_span: Some(sp),
|
|
modifiers: modifiers,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Records a value definition.
|
|
fn define_value(&self, def: Def, sp: Span, modifiers: DefModifiers) {
|
|
debug!("defining value for def {:?} with modifiers {:?}", def, modifiers);
|
|
*self.value_def.borrow_mut() = Some(ValueNsDef {
|
|
def: def,
|
|
value_span: Some(sp),
|
|
modifiers: modifiers,
|
|
});
|
|
}
|
|
|
|
/// Returns the module node if applicable.
|
|
fn get_module_if_available(&self) -> Option<Rc<Module>> {
|
|
match *self.type_def.borrow() {
|
|
Some(ref type_def) => type_def.module_def.clone(),
|
|
None => None
|
|
}
|
|
}
|
|
|
|
/// Returns the module node. Panics if this node does not have a module
|
|
/// definition.
|
|
fn get_module(&self) -> Rc<Module> {
|
|
match self.get_module_if_available() {
|
|
None => {
|
|
panic!("get_module called on a node with no module \
|
|
definition!")
|
|
}
|
|
Some(module_def) => module_def
|
|
}
|
|
}
|
|
|
|
fn defined_in_namespace(&self, namespace: Namespace) -> bool {
|
|
match namespace {
|
|
TypeNS => return self.type_def.borrow().is_some(),
|
|
ValueNS => return self.value_def.borrow().is_some()
|
|
}
|
|
}
|
|
|
|
fn defined_in_public_namespace(&self, namespace: Namespace) -> bool {
|
|
self.defined_in_namespace_with(namespace, PUBLIC)
|
|
}
|
|
|
|
fn defined_in_namespace_with(&self, namespace: Namespace, modifiers: DefModifiers) -> bool {
|
|
match namespace {
|
|
TypeNS => match *self.type_def.borrow() {
|
|
Some(ref def) => def.modifiers.contains(modifiers), None => false
|
|
},
|
|
ValueNS => match *self.value_def.borrow() {
|
|
Some(ref def) => def.modifiers.contains(modifiers), None => false
|
|
}
|
|
}
|
|
}
|
|
|
|
fn def_for_namespace(&self, namespace: Namespace) -> Option<Def> {
|
|
match namespace {
|
|
TypeNS => {
|
|
match *self.type_def.borrow() {
|
|
None => None,
|
|
Some(ref type_def) => {
|
|
match type_def.type_def {
|
|
Some(type_def) => Some(type_def),
|
|
None => {
|
|
match type_def.module_def {
|
|
Some(ref module) => {
|
|
match module.def_id.get() {
|
|
Some(did) => Some(DefMod(did)),
|
|
None => None,
|
|
}
|
|
}
|
|
None => None,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ValueNS => {
|
|
match *self.value_def.borrow() {
|
|
None => None,
|
|
Some(value_def) => Some(value_def.def)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn span_for_namespace(&self, namespace: Namespace) -> Option<Span> {
|
|
if self.defined_in_namespace(namespace) {
|
|
match namespace {
|
|
TypeNS => {
|
|
match *self.type_def.borrow() {
|
|
None => None,
|
|
Some(ref type_def) => type_def.type_span
|
|
}
|
|
}
|
|
ValueNS => {
|
|
match *self.value_def.borrow() {
|
|
None => None,
|
|
Some(ref value_def) => value_def.value_span
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
fn is_public(&self, namespace: Namespace) -> bool {
|
|
match namespace {
|
|
TypeNS => {
|
|
let type_def = self.type_def.borrow();
|
|
type_def.as_ref().unwrap().modifiers.contains(PUBLIC)
|
|
}
|
|
ValueNS => {
|
|
let value_def = self.value_def.borrow();
|
|
value_def.as_ref().unwrap().modifiers.contains(PUBLIC)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Interns the names of the primitive types.
|
|
struct PrimitiveTypeTable {
|
|
primitive_types: HashMap<Name, PrimTy>,
|
|
}
|
|
|
|
impl PrimitiveTypeTable {
|
|
fn new() -> PrimitiveTypeTable {
|
|
let mut table = PrimitiveTypeTable {
|
|
primitive_types: HashMap::new()
|
|
};
|
|
|
|
table.intern("bool", TyBool);
|
|
table.intern("char", TyChar);
|
|
table.intern("f32", TyFloat(TyF32));
|
|
table.intern("f64", TyFloat(TyF64));
|
|
table.intern("int", TyInt(TyIs(true)));
|
|
table.intern("isize", TyInt(TyIs(false)));
|
|
table.intern("i8", TyInt(TyI8));
|
|
table.intern("i16", TyInt(TyI16));
|
|
table.intern("i32", TyInt(TyI32));
|
|
table.intern("i64", TyInt(TyI64));
|
|
table.intern("str", TyStr);
|
|
table.intern("uint", TyUint(TyUs(true)));
|
|
table.intern("usize", TyUint(TyUs(false)));
|
|
table.intern("u8", TyUint(TyU8));
|
|
table.intern("u16", TyUint(TyU16));
|
|
table.intern("u32", TyUint(TyU32));
|
|
table.intern("u64", TyUint(TyU64));
|
|
|
|
table
|
|
}
|
|
|
|
fn intern(&mut self, string: &str, primitive_type: PrimTy) {
|
|
self.primitive_types.insert(token::intern(string), primitive_type);
|
|
}
|
|
}
|
|
|
|
/// The main resolver class.
|
|
pub struct Resolver<'a, 'tcx:'a> {
|
|
session: &'a Session,
|
|
|
|
ast_map: &'a ast_map::Map<'tcx>,
|
|
|
|
graph_root: NameBindings,
|
|
|
|
trait_item_map: FnvHashMap<(Name, DefId), DefId>,
|
|
|
|
structs: FnvHashMap<DefId, Vec<Name>>,
|
|
|
|
// The number of imports that are currently unresolved.
|
|
unresolved_imports: uint,
|
|
|
|
// The module that represents the current item scope.
|
|
current_module: Rc<Module>,
|
|
|
|
// The current set of local scopes, for values.
|
|
// FIXME #4948: Reuse ribs to avoid allocation.
|
|
value_ribs: Vec<Rib>,
|
|
|
|
// The current set of local scopes, for types.
|
|
type_ribs: Vec<Rib>,
|
|
|
|
// The current set of local scopes, for labels.
|
|
label_ribs: Vec<Rib>,
|
|
|
|
// The trait that the current context can refer to.
|
|
current_trait_ref: Option<(DefId, TraitRef)>,
|
|
|
|
// The current self type if inside an impl (used for better errors).
|
|
current_self_type: Option<Ty>,
|
|
|
|
// The ident for the keyword "self".
|
|
self_name: Name,
|
|
// The ident for the non-keyword "Self".
|
|
type_self_name: Name,
|
|
|
|
// The idents for the primitive types.
|
|
primitive_type_table: PrimitiveTypeTable,
|
|
|
|
def_map: DefMap,
|
|
freevars: RefCell<FreevarMap>,
|
|
freevars_seen: RefCell<NodeMap<NodeSet>>,
|
|
export_map: ExportMap,
|
|
trait_map: TraitMap,
|
|
external_exports: ExternalExports,
|
|
|
|
// Whether or not to print error messages. Can be set to true
|
|
// when getting additional info for error message suggestions,
|
|
// so as to avoid printing duplicate errors
|
|
emit_errors: bool,
|
|
|
|
make_glob_map: bool,
|
|
// Maps imports to the names of items actually imported (this actually maps
|
|
// all imports, but only glob imports are actually interesting).
|
|
glob_map: GlobMap,
|
|
|
|
used_imports: HashSet<(NodeId, Namespace)>,
|
|
used_crates: HashSet<CrateNum>,
|
|
}
|
|
|
|
#[derive(PartialEq)]
|
|
enum FallbackChecks {
|
|
Everything,
|
|
OnlyTraitAndStatics
|
|
}
|
|
|
|
impl<'a, 'tcx> Resolver<'a, 'tcx> {
|
|
fn new(session: &'a Session,
|
|
ast_map: &'a ast_map::Map<'tcx>,
|
|
crate_span: Span,
|
|
make_glob_map: MakeGlobMap) -> Resolver<'a, 'tcx> {
|
|
let graph_root = NameBindings::new();
|
|
|
|
graph_root.define_module(NoParentLink,
|
|
Some(DefId { krate: 0, node: 0 }),
|
|
NormalModuleKind,
|
|
false,
|
|
true,
|
|
crate_span);
|
|
|
|
let current_module = graph_root.get_module();
|
|
|
|
Resolver {
|
|
session: session,
|
|
|
|
ast_map: ast_map,
|
|
|
|
// The outermost module has def ID 0; this is not reflected in the
|
|
// AST.
|
|
|
|
graph_root: graph_root,
|
|
|
|
trait_item_map: FnvHashMap(),
|
|
structs: FnvHashMap(),
|
|
|
|
unresolved_imports: 0,
|
|
|
|
current_module: current_module,
|
|
value_ribs: Vec::new(),
|
|
type_ribs: Vec::new(),
|
|
label_ribs: Vec::new(),
|
|
|
|
current_trait_ref: None,
|
|
current_self_type: None,
|
|
|
|
self_name: special_names::self_,
|
|
type_self_name: special_names::type_self,
|
|
|
|
primitive_type_table: PrimitiveTypeTable::new(),
|
|
|
|
def_map: RefCell::new(NodeMap()),
|
|
freevars: RefCell::new(NodeMap()),
|
|
freevars_seen: RefCell::new(NodeMap()),
|
|
export_map: NodeMap(),
|
|
trait_map: NodeMap(),
|
|
used_imports: HashSet::new(),
|
|
used_crates: HashSet::new(),
|
|
external_exports: DefIdSet(),
|
|
|
|
emit_errors: true,
|
|
make_glob_map: make_glob_map == MakeGlobMap::Yes,
|
|
glob_map: HashMap::new(),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn record_import_use(&mut self, import_id: NodeId, name: Name) {
|
|
if !self.make_glob_map {
|
|
return;
|
|
}
|
|
if self.glob_map.contains_key(&import_id) {
|
|
self.glob_map.get_mut(&import_id).unwrap().insert(name);
|
|
return;
|
|
}
|
|
|
|
let mut new_set = HashSet::new();
|
|
new_set.insert(name);
|
|
self.glob_map.insert(import_id, new_set);
|
|
}
|
|
|
|
fn get_trait_name(&self, did: DefId) -> Name {
|
|
if did.krate == ast::LOCAL_CRATE {
|
|
self.ast_map.expect_item(did.node).ident.name
|
|
} else {
|
|
csearch::get_trait_name(&self.session.cstore, did)
|
|
}
|
|
}
|
|
|
|
fn create_name_bindings_from_module(module: Rc<Module>) -> NameBindings {
|
|
NameBindings {
|
|
type_def: RefCell::new(Some(TypeNsDef {
|
|
modifiers: IMPORTABLE,
|
|
module_def: Some(module),
|
|
type_def: None,
|
|
type_span: None
|
|
})),
|
|
value_def: RefCell::new(None),
|
|
}
|
|
}
|
|
|
|
/// Checks that the names of external crates don't collide with other
|
|
/// external crates.
|
|
fn check_for_conflicts_between_external_crates(&self,
|
|
module: &Module,
|
|
name: Name,
|
|
span: Span) {
|
|
if module.external_module_children.borrow().contains_key(&name) {
|
|
span_err!(self.session, span, E0259,
|
|
"an external crate named `{}` has already \
|
|
been imported into this module",
|
|
&token::get_name(name));
|
|
}
|
|
}
|
|
|
|
/// Checks that the names of items don't collide with external crates.
|
|
fn check_for_conflicts_between_external_crates_and_items(&self,
|
|
module: &Module,
|
|
name: Name,
|
|
span: Span) {
|
|
if module.external_module_children.borrow().contains_key(&name) {
|
|
span_err!(self.session, span, E0260,
|
|
"the name `{}` conflicts with an external \
|
|
crate that has been imported into this \
|
|
module",
|
|
&token::get_name(name));
|
|
}
|
|
}
|
|
|
|
/// Resolves the given module path from the given root `module_`.
|
|
fn resolve_module_path_from_root(&mut self,
|
|
module_: Rc<Module>,
|
|
module_path: &[Name],
|
|
index: uint,
|
|
span: Span,
|
|
name_search_type: NameSearchType,
|
|
lp: LastPrivate)
|
|
-> ResolveResult<(Rc<Module>, LastPrivate)> {
|
|
fn search_parent_externals(needle: Name, module: &Rc<Module>)
|
|
-> Option<Rc<Module>> {
|
|
match module.external_module_children.borrow().get(&needle) {
|
|
Some(_) => Some(module.clone()),
|
|
None => match module.parent_link {
|
|
ModuleParentLink(ref parent, _) => {
|
|
search_parent_externals(needle, &parent.upgrade().unwrap())
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
}
|
|
|
|
let mut search_module = module_;
|
|
let mut index = index;
|
|
let module_path_len = module_path.len();
|
|
let mut closest_private = lp;
|
|
|
|
// Resolve the module part of the path. This does not involve looking
|
|
// upward though scope chains; we simply resolve names directly in
|
|
// modules as we go.
|
|
while index < module_path_len {
|
|
let name = module_path[index];
|
|
match self.resolve_name_in_module(search_module.clone(),
|
|
name,
|
|
TypeNS,
|
|
name_search_type,
|
|
false) {
|
|
Failed(None) => {
|
|
let segment_name = token::get_name(name);
|
|
let module_name = module_to_string(&*search_module);
|
|
let mut span = span;
|
|
let msg = if "???" == &module_name[..] {
|
|
span.hi = span.lo + Pos::from_usize(segment_name.len());
|
|
|
|
match search_parent_externals(name,
|
|
&self.current_module) {
|
|
Some(module) => {
|
|
let path_str = names_to_string(module_path);
|
|
let target_mod_str = module_to_string(&*module);
|
|
let current_mod_str =
|
|
module_to_string(&*self.current_module);
|
|
|
|
let prefix = if target_mod_str == current_mod_str {
|
|
"self::".to_string()
|
|
} else {
|
|
format!("{}::", target_mod_str)
|
|
};
|
|
|
|
format!("Did you mean `{}{}`?", prefix, path_str)
|
|
},
|
|
None => format!("Maybe a missing `extern crate {}`?",
|
|
segment_name),
|
|
}
|
|
} else {
|
|
format!("Could not find `{}` in `{}`",
|
|
segment_name,
|
|
module_name)
|
|
};
|
|
|
|
return Failed(Some((span, msg)));
|
|
}
|
|
Failed(err) => return Failed(err),
|
|
Indeterminate => {
|
|
debug!("(resolving module path for import) module \
|
|
resolution is indeterminate: {}",
|
|
token::get_name(name));
|
|
return Indeterminate;
|
|
}
|
|
Success((target, used_proxy)) => {
|
|
// Check to see whether there are type bindings, and, if
|
|
// so, whether there is a module within.
|
|
match *target.bindings.type_def.borrow() {
|
|
Some(ref type_def) => {
|
|
match type_def.module_def {
|
|
None => {
|
|
let msg = format!("Not a module `{}`",
|
|
token::get_name(name));
|
|
|
|
return Failed(Some((span, msg)));
|
|
}
|
|
Some(ref module_def) => {
|
|
search_module = module_def.clone();
|
|
|
|
// track extern crates for unused_extern_crate lint
|
|
if let Some(did) = module_def.def_id.get() {
|
|
self.used_crates.insert(did.krate);
|
|
}
|
|
|
|
// Keep track of the closest
|
|
// private module used when
|
|
// resolving this import chain.
|
|
if !used_proxy && !search_module.is_public {
|
|
if let Some(did) = search_module.def_id.get() {
|
|
closest_private = LastMod(DependsOn(did));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
// There are no type bindings at all.
|
|
let msg = format!("Not a module `{}`",
|
|
token::get_name(name));
|
|
return Failed(Some((span, msg)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
index += 1;
|
|
}
|
|
|
|
return Success((search_module, closest_private));
|
|
}
|
|
|
|
/// Attempts to resolve the module part of an import directive or path
|
|
/// rooted at the given module.
|
|
///
|
|
/// On success, returns the resolved module, and the closest *private*
|
|
/// module found to the destination when resolving this path.
|
|
fn resolve_module_path(&mut self,
|
|
module_: Rc<Module>,
|
|
module_path: &[Name],
|
|
use_lexical_scope: UseLexicalScopeFlag,
|
|
span: Span,
|
|
name_search_type: NameSearchType)
|
|
-> ResolveResult<(Rc<Module>, LastPrivate)> {
|
|
let module_path_len = module_path.len();
|
|
assert!(module_path_len > 0);
|
|
|
|
debug!("(resolving module path for import) processing `{}` rooted at `{}`",
|
|
names_to_string(module_path),
|
|
module_to_string(&*module_));
|
|
|
|
// Resolve the module prefix, if any.
|
|
let module_prefix_result = self.resolve_module_prefix(module_.clone(),
|
|
module_path);
|
|
|
|
let search_module;
|
|
let start_index;
|
|
let last_private;
|
|
match module_prefix_result {
|
|
Failed(None) => {
|
|
let mpath = names_to_string(module_path);
|
|
let mpath = &mpath[..];
|
|
match mpath.rfind(':') {
|
|
Some(idx) => {
|
|
let msg = format!("Could not find `{}` in `{}`",
|
|
// idx +- 1 to account for the
|
|
// colons on either side
|
|
&mpath[idx + 1..],
|
|
&mpath[..idx - 1]);
|
|
return Failed(Some((span, msg)));
|
|
},
|
|
None => {
|
|
return Failed(None)
|
|
}
|
|
}
|
|
}
|
|
Failed(err) => return Failed(err),
|
|
Indeterminate => {
|
|
debug!("(resolving module path for import) indeterminate; \
|
|
bailing");
|
|
return Indeterminate;
|
|
}
|
|
Success(NoPrefixFound) => {
|
|
// There was no prefix, so we're considering the first element
|
|
// of the path. How we handle this depends on whether we were
|
|
// instructed to use lexical scope or not.
|
|
match use_lexical_scope {
|
|
DontUseLexicalScope => {
|
|
// This is a crate-relative path. We will start the
|
|
// resolution process at index zero.
|
|
search_module = self.graph_root.get_module();
|
|
start_index = 0;
|
|
last_private = LastMod(AllPublic);
|
|
}
|
|
UseLexicalScope => {
|
|
// This is not a crate-relative path. We resolve the
|
|
// first component of the path in the current lexical
|
|
// scope and then proceed to resolve below that.
|
|
match self.resolve_module_in_lexical_scope(module_,
|
|
module_path[0]) {
|
|
Failed(err) => return Failed(err),
|
|
Indeterminate => {
|
|
debug!("(resolving module path for import) \
|
|
indeterminate; bailing");
|
|
return Indeterminate;
|
|
}
|
|
Success(containing_module) => {
|
|
search_module = containing_module;
|
|
start_index = 1;
|
|
last_private = LastMod(AllPublic);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Success(PrefixFound(ref containing_module, index)) => {
|
|
search_module = containing_module.clone();
|
|
start_index = index;
|
|
last_private = LastMod(DependsOn(containing_module.def_id
|
|
.get()
|
|
.unwrap()));
|
|
}
|
|
}
|
|
|
|
self.resolve_module_path_from_root(search_module,
|
|
module_path,
|
|
start_index,
|
|
span,
|
|
name_search_type,
|
|
last_private)
|
|
}
|
|
|
|
/// Invariant: This must only be called during main resolution, not during
|
|
/// import resolution.
|
|
fn resolve_item_in_lexical_scope(&mut self,
|
|
module_: Rc<Module>,
|
|
name: Name,
|
|
namespace: Namespace)
|
|
-> ResolveResult<(Target, bool)> {
|
|
debug!("(resolving item in lexical scope) resolving `{}` in \
|
|
namespace {:?} in `{}`",
|
|
token::get_name(name),
|
|
namespace,
|
|
module_to_string(&*module_));
|
|
|
|
// The current module node is handled specially. First, check for
|
|
// its immediate children.
|
|
build_reduced_graph::populate_module_if_necessary(self, &module_);
|
|
|
|
match module_.children.borrow().get(&name) {
|
|
Some(name_bindings)
|
|
if name_bindings.defined_in_namespace(namespace) => {
|
|
debug!("top name bindings succeeded");
|
|
return Success((Target::new(module_.clone(),
|
|
name_bindings.clone(),
|
|
Shadowable::Never),
|
|
false));
|
|
}
|
|
Some(_) | None => { /* Not found; continue. */ }
|
|
}
|
|
|
|
// Now check for its import directives. We don't have to have resolved
|
|
// all its imports in the usual way; this is because chains of
|
|
// adjacent import statements are processed as though they mutated the
|
|
// current scope.
|
|
if let Some(import_resolution) = module_.import_resolutions.borrow().get(&name) {
|
|
match (*import_resolution).target_for_namespace(namespace) {
|
|
None => {
|
|
// Not found; continue.
|
|
debug!("(resolving item in lexical scope) found \
|
|
import resolution, but not in namespace {:?}",
|
|
namespace);
|
|
}
|
|
Some(target) => {
|
|
debug!("(resolving item in lexical scope) using \
|
|
import resolution");
|
|
// track used imports and extern crates as well
|
|
let id = import_resolution.id(namespace);
|
|
self.used_imports.insert((id, namespace));
|
|
self.record_import_use(id, name);
|
|
if let Some(DefId{krate: kid, ..}) = target.target_module.def_id.get() {
|
|
self.used_crates.insert(kid);
|
|
}
|
|
return Success((target, false));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Search for external modules.
|
|
if namespace == TypeNS {
|
|
// FIXME (21114): In principle unclear `child` *has* to be lifted.
|
|
let child = module_.external_module_children.borrow().get(&name).cloned();
|
|
if let Some(module) = child {
|
|
let name_bindings =
|
|
Rc::new(Resolver::create_name_bindings_from_module(module));
|
|
debug!("lower name bindings succeeded");
|
|
return Success((Target::new(module_,
|
|
name_bindings,
|
|
Shadowable::Never),
|
|
false));
|
|
}
|
|
}
|
|
|
|
// Finally, proceed up the scope chain looking for parent modules.
|
|
let mut search_module = module_;
|
|
loop {
|
|
// Go to the next parent.
|
|
match search_module.parent_link.clone() {
|
|
NoParentLink => {
|
|
// No more parents. This module was unresolved.
|
|
debug!("(resolving item in lexical scope) unresolved \
|
|
module");
|
|
return Failed(None);
|
|
}
|
|
ModuleParentLink(parent_module_node, _) => {
|
|
match search_module.kind.get() {
|
|
NormalModuleKind => {
|
|
// We stop the search here.
|
|
debug!("(resolving item in lexical \
|
|
scope) unresolved module: not \
|
|
searching through module \
|
|
parents");
|
|
return Failed(None);
|
|
}
|
|
TraitModuleKind |
|
|
EnumModuleKind |
|
|
TypeModuleKind |
|
|
AnonymousModuleKind => {
|
|
search_module = parent_module_node.upgrade().unwrap();
|
|
}
|
|
}
|
|
}
|
|
BlockParentLink(ref parent_module_node, _) => {
|
|
search_module = parent_module_node.upgrade().unwrap();
|
|
}
|
|
}
|
|
|
|
// Resolve the name in the parent module.
|
|
match self.resolve_name_in_module(search_module.clone(),
|
|
name,
|
|
namespace,
|
|
PathSearch,
|
|
true) {
|
|
Failed(Some((span, msg))) =>
|
|
self.resolve_error(span, &format!("failed to resolve. {}",
|
|
msg)),
|
|
Failed(None) => (), // Continue up the search chain.
|
|
Indeterminate => {
|
|
// We couldn't see through the higher scope because of an
|
|
// unresolved import higher up. Bail.
|
|
|
|
debug!("(resolving item in lexical scope) indeterminate \
|
|
higher scope; bailing");
|
|
return Indeterminate;
|
|
}
|
|
Success((target, used_reexport)) => {
|
|
// We found the module.
|
|
debug!("(resolving item in lexical scope) found name \
|
|
in module, done");
|
|
return Success((target, used_reexport));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Resolves a module name in the current lexical scope.
|
|
fn resolve_module_in_lexical_scope(&mut self,
|
|
module_: Rc<Module>,
|
|
name: Name)
|
|
-> ResolveResult<Rc<Module>> {
|
|
// If this module is an anonymous module, resolve the item in the
|
|
// lexical scope. Otherwise, resolve the item from the crate root.
|
|
let resolve_result = self.resolve_item_in_lexical_scope(module_, name, TypeNS);
|
|
match resolve_result {
|
|
Success((target, _)) => {
|
|
let bindings = &*target.bindings;
|
|
match *bindings.type_def.borrow() {
|
|
Some(ref type_def) => {
|
|
match type_def.module_def {
|
|
None => {
|
|
debug!("!!! (resolving module in lexical \
|
|
scope) module wasn't actually a \
|
|
module!");
|
|
return Failed(None);
|
|
}
|
|
Some(ref module_def) => {
|
|
return Success(module_def.clone());
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
debug!("!!! (resolving module in lexical scope) module
|
|
wasn't actually a module!");
|
|
return Failed(None);
|
|
}
|
|
}
|
|
}
|
|
Indeterminate => {
|
|
debug!("(resolving module in lexical scope) indeterminate; \
|
|
bailing");
|
|
return Indeterminate;
|
|
}
|
|
Failed(err) => {
|
|
debug!("(resolving module in lexical scope) failed to resolve");
|
|
return Failed(err);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the nearest normal module parent of the given module.
|
|
fn get_nearest_normal_module_parent(&mut self, module_: Rc<Module>)
|
|
-> Option<Rc<Module>> {
|
|
let mut module_ = module_;
|
|
loop {
|
|
match module_.parent_link.clone() {
|
|
NoParentLink => return None,
|
|
ModuleParentLink(new_module, _) |
|
|
BlockParentLink(new_module, _) => {
|
|
let new_module = new_module.upgrade().unwrap();
|
|
match new_module.kind.get() {
|
|
NormalModuleKind => return Some(new_module),
|
|
TraitModuleKind |
|
|
EnumModuleKind |
|
|
TypeModuleKind |
|
|
AnonymousModuleKind => module_ = new_module,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the nearest normal module parent of the given module, or the
|
|
/// module itself if it is a normal module.
|
|
fn get_nearest_normal_module_parent_or_self(&mut self, module_: Rc<Module>)
|
|
-> Rc<Module> {
|
|
match module_.kind.get() {
|
|
NormalModuleKind => return module_,
|
|
TraitModuleKind |
|
|
EnumModuleKind |
|
|
TypeModuleKind |
|
|
AnonymousModuleKind => {
|
|
match self.get_nearest_normal_module_parent(module_.clone()) {
|
|
None => module_,
|
|
Some(new_module) => new_module
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Resolves a "module prefix". A module prefix is one or both of (a) `self::`;
|
|
/// (b) some chain of `super::`.
|
|
/// grammar: (SELF MOD_SEP ) ? (SUPER MOD_SEP) *
|
|
fn resolve_module_prefix(&mut self,
|
|
module_: Rc<Module>,
|
|
module_path: &[Name])
|
|
-> ResolveResult<ModulePrefixResult> {
|
|
// Start at the current module if we see `self` or `super`, or at the
|
|
// top of the crate otherwise.
|
|
let mut containing_module;
|
|
let mut i;
|
|
let first_module_path_string = token::get_name(module_path[0]);
|
|
if "self" == &first_module_path_string[..] {
|
|
containing_module =
|
|
self.get_nearest_normal_module_parent_or_self(module_);
|
|
i = 1;
|
|
} else if "super" == &first_module_path_string[..] {
|
|
containing_module =
|
|
self.get_nearest_normal_module_parent_or_self(module_);
|
|
i = 0; // We'll handle `super` below.
|
|
} else {
|
|
return Success(NoPrefixFound);
|
|
}
|
|
|
|
// Now loop through all the `super`s we find.
|
|
while i < module_path.len() {
|
|
let string = token::get_name(module_path[i]);
|
|
if "super" != &string[..] {
|
|
break
|
|
}
|
|
debug!("(resolving module prefix) resolving `super` at {}",
|
|
module_to_string(&*containing_module));
|
|
match self.get_nearest_normal_module_parent(containing_module) {
|
|
None => return Failed(None),
|
|
Some(new_module) => {
|
|
containing_module = new_module;
|
|
i += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
debug!("(resolving module prefix) finished resolving prefix at {}",
|
|
module_to_string(&*containing_module));
|
|
|
|
return Success(PrefixFound(containing_module, i));
|
|
}
|
|
|
|
/// Attempts to resolve the supplied name in the given module for the
|
|
/// given namespace. If successful, returns the target corresponding to
|
|
/// the name.
|
|
///
|
|
/// The boolean returned on success is an indicator of whether this lookup
|
|
/// passed through a public re-export proxy.
|
|
fn resolve_name_in_module(&mut self,
|
|
module_: Rc<Module>,
|
|
name: Name,
|
|
namespace: Namespace,
|
|
name_search_type: NameSearchType,
|
|
allow_private_imports: bool)
|
|
-> ResolveResult<(Target, bool)> {
|
|
debug!("(resolving name in module) resolving `{}` in `{}`",
|
|
&token::get_name(name),
|
|
module_to_string(&*module_));
|
|
|
|
// First, check the direct children of the module.
|
|
build_reduced_graph::populate_module_if_necessary(self, &module_);
|
|
|
|
match module_.children.borrow().get(&name) {
|
|
Some(name_bindings)
|
|
if name_bindings.defined_in_namespace(namespace) => {
|
|
debug!("(resolving name in module) found node as child");
|
|
return Success((Target::new(module_.clone(),
|
|
name_bindings.clone(),
|
|
Shadowable::Never),
|
|
false));
|
|
}
|
|
Some(_) | None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
|
|
// Next, check the module's imports if necessary.
|
|
|
|
// If this is a search of all imports, we should be done with glob
|
|
// resolution at this point.
|
|
if name_search_type == PathSearch {
|
|
assert_eq!(module_.glob_count.get(), 0);
|
|
}
|
|
|
|
// Check the list of resolved imports.
|
|
match module_.import_resolutions.borrow().get(&name) {
|
|
Some(import_resolution) if allow_private_imports ||
|
|
import_resolution.is_public => {
|
|
|
|
if import_resolution.is_public &&
|
|
import_resolution.outstanding_references != 0 {
|
|
debug!("(resolving name in module) import \
|
|
unresolved; bailing out");
|
|
return Indeterminate;
|
|
}
|
|
match import_resolution.target_for_namespace(namespace) {
|
|
None => {
|
|
debug!("(resolving name in module) name found, \
|
|
but not in namespace {:?}",
|
|
namespace);
|
|
}
|
|
Some(target) => {
|
|
debug!("(resolving name in module) resolved to \
|
|
import");
|
|
// track used imports and extern crates as well
|
|
let id = import_resolution.id(namespace);
|
|
self.used_imports.insert((id, namespace));
|
|
self.record_import_use(id, name);
|
|
if let Some(DefId{krate: kid, ..}) = target.target_module.def_id.get() {
|
|
self.used_crates.insert(kid);
|
|
}
|
|
return Success((target, true));
|
|
}
|
|
}
|
|
}
|
|
Some(..) | None => {} // Continue.
|
|
}
|
|
|
|
// Finally, search through external children.
|
|
if namespace == TypeNS {
|
|
// FIXME (21114): In principle unclear `child` *has* to be lifted.
|
|
let child = module_.external_module_children.borrow().get(&name).cloned();
|
|
if let Some(module) = child {
|
|
let name_bindings =
|
|
Rc::new(Resolver::create_name_bindings_from_module(module));
|
|
return Success((Target::new(module_,
|
|
name_bindings,
|
|
Shadowable::Never),
|
|
false));
|
|
}
|
|
}
|
|
|
|
// We're out of luck.
|
|
debug!("(resolving name in module) failed to resolve `{}`",
|
|
&token::get_name(name));
|
|
return Failed(None);
|
|
}
|
|
|
|
fn report_unresolved_imports(&mut self, module_: Rc<Module>) {
|
|
let index = module_.resolved_import_count.get();
|
|
let imports = module_.imports.borrow();
|
|
let import_count = imports.len();
|
|
if index != import_count {
|
|
let sn = self.session
|
|
.codemap()
|
|
.span_to_snippet((*imports)[index].span)
|
|
.unwrap();
|
|
if sn.contains("::") {
|
|
self.resolve_error((*imports)[index].span,
|
|
"unresolved import");
|
|
} else {
|
|
let err = format!("unresolved import (maybe you meant `{}::*`?)",
|
|
sn);
|
|
self.resolve_error((*imports)[index].span, &err[..]);
|
|
}
|
|
}
|
|
|
|
// Descend into children and anonymous children.
|
|
build_reduced_graph::populate_module_if_necessary(self, &module_);
|
|
|
|
for (_, child_node) in &*module_.children.borrow() {
|
|
match child_node.get_module_if_available() {
|
|
None => {
|
|
// Continue.
|
|
}
|
|
Some(child_module) => {
|
|
self.report_unresolved_imports(child_module);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (_, module_) in &*module_.anonymous_children.borrow() {
|
|
self.report_unresolved_imports(module_.clone());
|
|
}
|
|
}
|
|
|
|
// AST resolution
|
|
//
|
|
// We maintain a list of value ribs and type ribs.
|
|
//
|
|
// Simultaneously, we keep track of the current position in the module
|
|
// graph in the `current_module` pointer. When we go to resolve a name in
|
|
// the value or type namespaces, we first look through all the ribs and
|
|
// then query the module graph. When we resolve a name in the module
|
|
// namespace, we can skip all the ribs (since nested modules are not
|
|
// allowed within blocks in Rust) and jump straight to the current module
|
|
// graph node.
|
|
//
|
|
// Named implementations are handled separately. When we find a method
|
|
// call, we consult the module node to find all of the implementations in
|
|
// scope. This information is lazily cached in the module node. We then
|
|
// generate a fake "implementation scope" containing all the
|
|
// implementations thus found, for compatibility with old resolve pass.
|
|
|
|
fn with_scope<F>(&mut self, name: Option<Name>, f: F) where
|
|
F: FnOnce(&mut Resolver),
|
|
{
|
|
let orig_module = self.current_module.clone();
|
|
|
|
// Move down in the graph.
|
|
match name {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(name) => {
|
|
build_reduced_graph::populate_module_if_necessary(self, &orig_module);
|
|
|
|
match orig_module.children.borrow().get(&name) {
|
|
None => {
|
|
debug!("!!! (with scope) didn't find `{}` in `{}`",
|
|
token::get_name(name),
|
|
module_to_string(&*orig_module));
|
|
}
|
|
Some(name_bindings) => {
|
|
match (*name_bindings).get_module_if_available() {
|
|
None => {
|
|
debug!("!!! (with scope) didn't find module \
|
|
for `{}` in `{}`",
|
|
token::get_name(name),
|
|
module_to_string(&*orig_module));
|
|
}
|
|
Some(module_) => {
|
|
self.current_module = module_;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
f(self);
|
|
|
|
self.current_module = orig_module;
|
|
}
|
|
|
|
/// Wraps the given definition in the appropriate number of `DefUpvar`
|
|
/// wrappers.
|
|
fn upvarify(&self,
|
|
ribs: &[Rib],
|
|
def_like: DefLike,
|
|
span: Span)
|
|
-> Option<DefLike> {
|
|
let mut def = match def_like {
|
|
DlDef(def) => def,
|
|
_ => return Some(def_like)
|
|
};
|
|
match def {
|
|
DefUpvar(..) => {
|
|
self.session.span_bug(span,
|
|
&format!("unexpected {:?} in bindings", def))
|
|
}
|
|
DefLocal(node_id) => {
|
|
for rib in ribs {
|
|
match rib.kind {
|
|
NormalRibKind => {
|
|
// Nothing to do. Continue.
|
|
}
|
|
ClosureRibKind(function_id) => {
|
|
let prev_def = def;
|
|
def = DefUpvar(node_id, function_id);
|
|
|
|
let mut seen = self.freevars_seen.borrow_mut();
|
|
let seen = match seen.entry(function_id) {
|
|
Occupied(v) => v.into_mut(),
|
|
Vacant(v) => v.insert(NodeSet()),
|
|
};
|
|
if seen.contains(&node_id) {
|
|
continue;
|
|
}
|
|
match self.freevars.borrow_mut().entry(function_id) {
|
|
Occupied(v) => v.into_mut(),
|
|
Vacant(v) => v.insert(vec![]),
|
|
}.push(Freevar { def: prev_def, span: span });
|
|
seen.insert(node_id);
|
|
}
|
|
ItemRibKind | MethodRibKind => {
|
|
// This was an attempt to access an upvar inside a
|
|
// named function item. This is not allowed, so we
|
|
// report an error.
|
|
|
|
self.resolve_error(span,
|
|
"can't capture dynamic environment in a fn item; \
|
|
use the || { ... } closure form instead");
|
|
return None;
|
|
}
|
|
ConstantItemRibKind => {
|
|
// Still doesn't deal with upvars
|
|
self.resolve_error(span,
|
|
"attempt to use a non-constant \
|
|
value in a constant");
|
|
return None;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
DefTyParam(..) | DefSelfTy(_) => {
|
|
for rib in ribs {
|
|
match rib.kind {
|
|
NormalRibKind | MethodRibKind | ClosureRibKind(..) => {
|
|
// Nothing to do. Continue.
|
|
}
|
|
ItemRibKind => {
|
|
// This was an attempt to use a type parameter outside
|
|
// its scope.
|
|
|
|
self.resolve_error(span,
|
|
"can't use type parameters from \
|
|
outer function; try using a local \
|
|
type parameter instead");
|
|
return None;
|
|
}
|
|
ConstantItemRibKind => {
|
|
// see #9186
|
|
self.resolve_error(span,
|
|
"cannot use an outer type \
|
|
parameter in this context");
|
|
return None;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
Some(DlDef(def))
|
|
}
|
|
|
|
/// Searches the current set of local scopes and
|
|
/// applies translations for closures.
|
|
fn search_ribs(&self,
|
|
ribs: &[Rib],
|
|
name: Name,
|
|
span: Span)
|
|
-> Option<DefLike> {
|
|
// FIXME #4950: Try caching?
|
|
|
|
for (i, rib) in ribs.iter().enumerate().rev() {
|
|
if let Some(def_like) = rib.bindings.get(&name).cloned() {
|
|
return self.upvarify(&ribs[i + 1..], def_like, span);
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
/// Searches the current set of local scopes for labels.
|
|
/// Stops after meeting a closure.
|
|
fn search_label(&self, name: Name) -> Option<DefLike> {
|
|
for rib in self.label_ribs.iter().rev() {
|
|
match rib.kind {
|
|
NormalRibKind => {
|
|
// Continue
|
|
}
|
|
_ => {
|
|
// Do not resolve labels across function boundary
|
|
return None
|
|
}
|
|
}
|
|
let result = rib.bindings.get(&name).cloned();
|
|
if result.is_some() {
|
|
return result
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
fn resolve_crate(&mut self, krate: &ast::Crate) {
|
|
debug!("(resolving crate) starting");
|
|
|
|
visit::walk_crate(self, krate);
|
|
}
|
|
|
|
fn check_if_primitive_type_name(&self, name: Name, span: Span) {
|
|
if let Some(_) = self.primitive_type_table.primitive_types.get(&name) {
|
|
span_err!(self.session, span, E0317,
|
|
"user-defined types or type parameters cannot shadow the primitive types");
|
|
}
|
|
}
|
|
|
|
fn resolve_item(&mut self, item: &Item) {
|
|
let name = item.ident.name;
|
|
|
|
debug!("(resolving item) resolving {}",
|
|
token::get_name(name));
|
|
|
|
match item.node {
|
|
ItemEnum(_, ref generics) |
|
|
ItemTy(_, ref generics) |
|
|
ItemStruct(_, ref generics) => {
|
|
self.check_if_primitive_type_name(name, item.span);
|
|
|
|
self.with_type_parameter_rib(HasTypeParameters(generics,
|
|
TypeSpace,
|
|
ItemRibKind),
|
|
|this| visit::walk_item(this, item));
|
|
}
|
|
ItemFn(_, _, _, ref generics, _) => {
|
|
self.with_type_parameter_rib(HasTypeParameters(generics,
|
|
FnSpace,
|
|
ItemRibKind),
|
|
|this| visit::walk_item(this, item));
|
|
}
|
|
|
|
ItemDefaultImpl(_, ref trait_ref) => {
|
|
self.with_optional_trait_ref(Some(trait_ref), |_| {});
|
|
}
|
|
ItemImpl(_, _,
|
|
ref generics,
|
|
ref implemented_traits,
|
|
ref self_type,
|
|
ref impl_items) => {
|
|
self.resolve_implementation(generics,
|
|
implemented_traits,
|
|
&**self_type,
|
|
&impl_items[..]);
|
|
}
|
|
|
|
ItemTrait(_, ref generics, ref bounds, ref trait_items) => {
|
|
self.check_if_primitive_type_name(name, item.span);
|
|
|
|
// Create a new rib for the self type.
|
|
let mut self_type_rib = Rib::new(ItemRibKind);
|
|
|
|
// plain insert (no renaming, types are not currently hygienic....)
|
|
let name = self.type_self_name;
|
|
self_type_rib.bindings.insert(name, DlDef(DefSelfTy(item.id)));
|
|
self.type_ribs.push(self_type_rib);
|
|
|
|
// Create a new rib for the trait-wide type parameters.
|
|
self.with_type_parameter_rib(HasTypeParameters(generics,
|
|
TypeSpace,
|
|
NormalRibKind),
|
|
|this| {
|
|
this.visit_generics(generics);
|
|
visit::walk_ty_param_bounds_helper(this, bounds);
|
|
|
|
for trait_item in trait_items {
|
|
// Create a new rib for the trait_item-specific type
|
|
// parameters.
|
|
//
|
|
// FIXME #4951: Do we need a node ID here?
|
|
|
|
let type_parameters = match trait_item.node {
|
|
ast::MethodTraitItem(ref sig, _) => {
|
|
HasTypeParameters(&sig.generics,
|
|
FnSpace,
|
|
MethodRibKind)
|
|
}
|
|
ast::TypeTraitItem(..) => {
|
|
this.check_if_primitive_type_name(trait_item.ident.name,
|
|
trait_item.span);
|
|
NoTypeParameters
|
|
}
|
|
};
|
|
this.with_type_parameter_rib(type_parameters, |this| {
|
|
visit::walk_trait_item(this, trait_item)
|
|
});
|
|
}
|
|
});
|
|
|
|
self.type_ribs.pop();
|
|
}
|
|
|
|
ItemMod(_) | ItemForeignMod(_) => {
|
|
self.with_scope(Some(name), |this| {
|
|
visit::walk_item(this, item);
|
|
});
|
|
}
|
|
|
|
ItemConst(..) | ItemStatic(..) => {
|
|
self.with_constant_rib(|this| {
|
|
visit::walk_item(this, item);
|
|
});
|
|
}
|
|
|
|
ItemUse(ref view_path) => {
|
|
// check for imports shadowing primitive types
|
|
if let ast::ViewPathSimple(ident, _) = view_path.node {
|
|
match self.def_map.borrow().get(&item.id).map(|d| d.full_def()) {
|
|
Some(DefTy(..)) | Some(DefStruct(..)) | Some(DefTrait(..)) | None => {
|
|
self.check_if_primitive_type_name(ident.name, item.span);
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
ItemExternCrate(_) | ItemMac(..) => {
|
|
// do nothing, these are just around to be encoded
|
|
}
|
|
}
|
|
}
|
|
|
|
fn with_type_parameter_rib<F>(&mut self, type_parameters: TypeParameters, f: F) where
|
|
F: FnOnce(&mut Resolver),
|
|
{
|
|
match type_parameters {
|
|
HasTypeParameters(generics, space, rib_kind) => {
|
|
let mut function_type_rib = Rib::new(rib_kind);
|
|
let mut seen_bindings = HashSet::new();
|
|
for (index, type_parameter) in generics.ty_params.iter().enumerate() {
|
|
let name = type_parameter.ident.name;
|
|
debug!("with_type_parameter_rib: {}", type_parameter.id);
|
|
|
|
if seen_bindings.contains(&name) {
|
|
self.resolve_error(type_parameter.span,
|
|
&format!("the name `{}` is already \
|
|
used for a type \
|
|
parameter in this type \
|
|
parameter list",
|
|
token::get_name(name)))
|
|
}
|
|
seen_bindings.insert(name);
|
|
|
|
// plain insert (no renaming)
|
|
function_type_rib.bindings.insert(name,
|
|
DlDef(DefTyParam(space,
|
|
index as u32,
|
|
local_def(type_parameter.id),
|
|
name)));
|
|
}
|
|
self.type_ribs.push(function_type_rib);
|
|
}
|
|
|
|
NoTypeParameters => {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
|
|
f(self);
|
|
|
|
match type_parameters {
|
|
HasTypeParameters(..) => { self.type_ribs.pop(); }
|
|
NoTypeParameters => { }
|
|
}
|
|
}
|
|
|
|
fn with_label_rib<F>(&mut self, f: F) where
|
|
F: FnOnce(&mut Resolver),
|
|
{
|
|
self.label_ribs.push(Rib::new(NormalRibKind));
|
|
f(self);
|
|
self.label_ribs.pop();
|
|
}
|
|
|
|
fn with_constant_rib<F>(&mut self, f: F) where
|
|
F: FnOnce(&mut Resolver),
|
|
{
|
|
self.value_ribs.push(Rib::new(ConstantItemRibKind));
|
|
self.type_ribs.push(Rib::new(ConstantItemRibKind));
|
|
f(self);
|
|
self.type_ribs.pop();
|
|
self.value_ribs.pop();
|
|
}
|
|
|
|
fn resolve_function(&mut self,
|
|
rib_kind: RibKind,
|
|
declaration: &FnDecl,
|
|
block: &Block) {
|
|
// Create a value rib for the function.
|
|
self.value_ribs.push(Rib::new(rib_kind));
|
|
|
|
// Create a label rib for the function.
|
|
self.label_ribs.push(Rib::new(rib_kind));
|
|
|
|
// Add each argument to the rib.
|
|
let mut bindings_list = HashMap::new();
|
|
for argument in &declaration.inputs {
|
|
self.resolve_pattern(&*argument.pat,
|
|
ArgumentIrrefutableMode,
|
|
&mut bindings_list);
|
|
|
|
self.visit_ty(&*argument.ty);
|
|
|
|
debug!("(resolving function) recorded argument");
|
|
}
|
|
visit::walk_fn_ret_ty(self, &declaration.output);
|
|
|
|
// Resolve the function body.
|
|
self.visit_block(&*block);
|
|
|
|
debug!("(resolving function) leaving function");
|
|
|
|
self.label_ribs.pop();
|
|
self.value_ribs.pop();
|
|
}
|
|
|
|
fn resolve_trait_reference(&mut self,
|
|
id: NodeId,
|
|
trait_path: &Path,
|
|
path_depth: usize)
|
|
-> Result<PathResolution, ()> {
|
|
if let Some(path_res) = self.resolve_path(id, trait_path, path_depth, TypeNS, true) {
|
|
if let DefTrait(_) = path_res.base_def {
|
|
debug!("(resolving trait) found trait def: {:?}", path_res);
|
|
Ok(path_res)
|
|
} else {
|
|
self.resolve_error(trait_path.span,
|
|
&format!("`{}` is not a trait",
|
|
path_names_to_string(trait_path, path_depth)));
|
|
|
|
// If it's a typedef, give a note
|
|
if let DefTy(..) = path_res.base_def {
|
|
self.session.span_note(trait_path.span,
|
|
"`type` aliases cannot be used for traits");
|
|
}
|
|
Err(())
|
|
}
|
|
} else {
|
|
let msg = format!("use of undeclared trait name `{}`",
|
|
path_names_to_string(trait_path, path_depth));
|
|
self.resolve_error(trait_path.span, &msg);
|
|
Err(())
|
|
}
|
|
}
|
|
|
|
fn resolve_generics(&mut self, generics: &Generics) {
|
|
for type_parameter in &*generics.ty_params {
|
|
self.check_if_primitive_type_name(type_parameter.ident.name, type_parameter.span);
|
|
}
|
|
for predicate in &generics.where_clause.predicates {
|
|
match predicate {
|
|
&ast::WherePredicate::BoundPredicate(_) |
|
|
&ast::WherePredicate::RegionPredicate(_) => {}
|
|
&ast::WherePredicate::EqPredicate(ref eq_pred) => {
|
|
let path_res = self.resolve_path(eq_pred.id, &eq_pred.path, 0, TypeNS, true);
|
|
if let Some(PathResolution { base_def: DefTyParam(..), .. }) = path_res {
|
|
self.record_def(eq_pred.id, path_res.unwrap());
|
|
} else {
|
|
self.resolve_error(eq_pred.path.span, "undeclared associated type");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
visit::walk_generics(self, generics);
|
|
}
|
|
|
|
fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T where
|
|
F: FnOnce(&mut Resolver) -> T,
|
|
{
|
|
// Handle nested impls (inside fn bodies)
|
|
let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
|
|
let result = f(self);
|
|
self.current_self_type = previous_value;
|
|
result
|
|
}
|
|
|
|
fn with_optional_trait_ref<T, F>(&mut self,
|
|
opt_trait_ref: Option<&TraitRef>,
|
|
f: F) -> T where
|
|
F: FnOnce(&mut Resolver) -> T,
|
|
{
|
|
let mut new_val = None;
|
|
if let Some(trait_ref) = opt_trait_ref {
|
|
match self.resolve_trait_reference(trait_ref.ref_id, &trait_ref.path, 0) {
|
|
Ok(path_res) => {
|
|
self.record_def(trait_ref.ref_id, path_res);
|
|
new_val = Some((path_res.base_def.def_id(), trait_ref.clone()));
|
|
}
|
|
Err(_) => { /* error was already reported */ }
|
|
}
|
|
visit::walk_trait_ref(self, trait_ref);
|
|
}
|
|
let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
|
|
let result = f(self);
|
|
self.current_trait_ref = original_trait_ref;
|
|
result
|
|
}
|
|
|
|
fn resolve_implementation(&mut self,
|
|
generics: &Generics,
|
|
opt_trait_reference: &Option<TraitRef>,
|
|
self_type: &Ty,
|
|
impl_items: &[P<ImplItem>]) {
|
|
// If applicable, create a rib for the type parameters.
|
|
self.with_type_parameter_rib(HasTypeParameters(generics,
|
|
TypeSpace,
|
|
ItemRibKind),
|
|
|this| {
|
|
// Resolve the type parameters.
|
|
this.visit_generics(generics);
|
|
|
|
// Resolve the trait reference, if necessary.
|
|
this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this| {
|
|
// Resolve the self type.
|
|
this.visit_ty(self_type);
|
|
|
|
this.with_current_self_type(self_type, |this| {
|
|
for impl_item in impl_items {
|
|
match impl_item.node {
|
|
MethodImplItem(ref sig, _) => {
|
|
// If this is a trait impl, ensure the method
|
|
// exists in trait
|
|
this.check_trait_item(impl_item.ident.name,
|
|
impl_item.span);
|
|
|
|
// We also need a new scope for the method-
|
|
// specific type parameters.
|
|
let type_parameters =
|
|
HasTypeParameters(&sig.generics,
|
|
FnSpace,
|
|
MethodRibKind);
|
|
this.with_type_parameter_rib(type_parameters, |this| {
|
|
visit::walk_impl_item(this, impl_item);
|
|
});
|
|
}
|
|
TypeImplItem(ref ty) => {
|
|
// If this is a trait impl, ensure the method
|
|
// exists in trait
|
|
this.check_trait_item(impl_item.ident.name,
|
|
impl_item.span);
|
|
|
|
this.visit_ty(ty);
|
|
}
|
|
ast::MacImplItem(_) => {}
|
|
}
|
|
}
|
|
});
|
|
});
|
|
});
|
|
}
|
|
|
|
fn check_trait_item(&self, name: Name, span: Span) {
|
|
// If there is a TraitRef in scope for an impl, then the method must be in the trait.
|
|
if let Some((did, ref trait_ref)) = self.current_trait_ref {
|
|
if !self.trait_item_map.contains_key(&(name, did)) {
|
|
let path_str = path_names_to_string(&trait_ref.path, 0);
|
|
self.resolve_error(span,
|
|
&format!("method `{}` is not a member of trait `{}`",
|
|
token::get_name(name),
|
|
path_str));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_local(&mut self, local: &Local) {
|
|
// Resolve the type.
|
|
visit::walk_ty_opt(self, &local.ty);
|
|
|
|
// Resolve the initializer.
|
|
visit::walk_expr_opt(self, &local.init);
|
|
|
|
// Resolve the pattern.
|
|
self.resolve_pattern(&*local.pat,
|
|
LocalIrrefutableMode,
|
|
&mut HashMap::new());
|
|
}
|
|
|
|
// build a map from pattern identifiers to binding-info's.
|
|
// this is done hygienically. This could arise for a macro
|
|
// that expands into an or-pattern where one 'x' was from the
|
|
// user and one 'x' came from the macro.
|
|
fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
|
|
let mut result = HashMap::new();
|
|
pat_bindings(&self.def_map, pat, |binding_mode, _id, sp, path1| {
|
|
let name = mtwt::resolve(path1.node);
|
|
result.insert(name, BindingInfo {
|
|
span: sp,
|
|
binding_mode: binding_mode
|
|
});
|
|
});
|
|
return result;
|
|
}
|
|
|
|
// check that all of the arms in an or-pattern have exactly the
|
|
// same set of bindings, with the same binding modes for each.
|
|
fn check_consistent_bindings(&mut self, arm: &Arm) {
|
|
if arm.pats.len() == 0 {
|
|
return
|
|
}
|
|
let map_0 = self.binding_mode_map(&*arm.pats[0]);
|
|
for (i, p) in arm.pats.iter().enumerate() {
|
|
let map_i = self.binding_mode_map(&**p);
|
|
|
|
for (&key, &binding_0) in &map_0 {
|
|
match map_i.get(&key) {
|
|
None => {
|
|
self.resolve_error(
|
|
p.span,
|
|
&format!("variable `{}` from pattern #1 is \
|
|
not bound in pattern #{}",
|
|
token::get_name(key),
|
|
i + 1));
|
|
}
|
|
Some(binding_i) => {
|
|
if binding_0.binding_mode != binding_i.binding_mode {
|
|
self.resolve_error(
|
|
binding_i.span,
|
|
&format!("variable `{}` is bound with different \
|
|
mode in pattern #{} than in pattern #1",
|
|
token::get_name(key),
|
|
i + 1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (&key, &binding) in &map_i {
|
|
if !map_0.contains_key(&key) {
|
|
self.resolve_error(
|
|
binding.span,
|
|
&format!("variable `{}` from pattern {}{} is \
|
|
not bound in pattern {}1",
|
|
token::get_name(key),
|
|
"#", i + 1, "#"));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_arm(&mut self, arm: &Arm) {
|
|
self.value_ribs.push(Rib::new(NormalRibKind));
|
|
|
|
let mut bindings_list = HashMap::new();
|
|
for pattern in &arm.pats {
|
|
self.resolve_pattern(&**pattern, RefutableMode, &mut bindings_list);
|
|
}
|
|
|
|
// This has to happen *after* we determine which
|
|
// pat_idents are variants
|
|
self.check_consistent_bindings(arm);
|
|
|
|
visit::walk_expr_opt(self, &arm.guard);
|
|
self.visit_expr(&*arm.body);
|
|
|
|
self.value_ribs.pop();
|
|
}
|
|
|
|
fn resolve_block(&mut self, block: &Block) {
|
|
debug!("(resolving block) entering block");
|
|
self.value_ribs.push(Rib::new(NormalRibKind));
|
|
|
|
// Move down in the graph, if there's an anonymous module rooted here.
|
|
let orig_module = self.current_module.clone();
|
|
match orig_module.anonymous_children.borrow().get(&block.id) {
|
|
None => { /* Nothing to do. */ }
|
|
Some(anonymous_module) => {
|
|
debug!("(resolving block) found anonymous module, moving \
|
|
down");
|
|
self.current_module = anonymous_module.clone();
|
|
}
|
|
}
|
|
|
|
// Check for imports appearing after non-item statements.
|
|
let mut found_non_item = false;
|
|
for statement in &block.stmts {
|
|
if let ast::StmtDecl(ref declaration, _) = statement.node {
|
|
if let ast::DeclItem(ref i) = declaration.node {
|
|
match i.node {
|
|
ItemExternCrate(_) | ItemUse(_) if found_non_item => {
|
|
span_err!(self.session, i.span, E0154,
|
|
"imports are not allowed after non-item statements");
|
|
}
|
|
_ => {}
|
|
}
|
|
} else {
|
|
found_non_item = true
|
|
}
|
|
} else {
|
|
found_non_item = true;
|
|
}
|
|
}
|
|
|
|
// Descend into the block.
|
|
visit::walk_block(self, block);
|
|
|
|
// Move back up.
|
|
self.current_module = orig_module;
|
|
|
|
self.value_ribs.pop();
|
|
debug!("(resolving block) leaving block");
|
|
}
|
|
|
|
fn resolve_type(&mut self, ty: &Ty) {
|
|
match ty.node {
|
|
// `<T>::a::b::c` is resolved by typeck alone.
|
|
TyPath(Some(ast::QSelf { position: 0, .. }), _) => {}
|
|
|
|
TyPath(ref maybe_qself, ref path) => {
|
|
let max_assoc_types = if let Some(ref qself) = *maybe_qself {
|
|
// Make sure the trait is valid.
|
|
let _ = self.resolve_trait_reference(ty.id, path, 1);
|
|
path.segments.len() - qself.position
|
|
} else {
|
|
path.segments.len()
|
|
};
|
|
|
|
let mut resolution = None;
|
|
for depth in 0..max_assoc_types {
|
|
self.with_no_errors(|this| {
|
|
resolution = this.resolve_path(ty.id, path, depth, TypeNS, true);
|
|
});
|
|
if resolution.is_some() {
|
|
break;
|
|
}
|
|
}
|
|
if let Some(DefMod(_)) = resolution.map(|r| r.base_def) {
|
|
// A module is not a valid type.
|
|
resolution = None;
|
|
}
|
|
|
|
// This is a path in the type namespace. Walk through scopes
|
|
// looking for it.
|
|
match resolution {
|
|
Some(def) => {
|
|
// Write the result into the def map.
|
|
debug!("(resolving type) writing resolution for `{}` \
|
|
(id {}) = {:?}",
|
|
path_names_to_string(path, 0),
|
|
ty.id, def);
|
|
self.record_def(ty.id, def);
|
|
}
|
|
None => {
|
|
// Keep reporting some errors even if they're ignored above.
|
|
self.resolve_path(ty.id, path, 0, TypeNS, true);
|
|
|
|
let kind = if maybe_qself.is_some() {
|
|
"associated type"
|
|
} else {
|
|
"type name"
|
|
};
|
|
|
|
let msg = format!("use of undeclared {} `{}`", kind,
|
|
path_names_to_string(path, 0));
|
|
self.resolve_error(ty.span, &msg[..]);
|
|
}
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
// Resolve embedded types.
|
|
visit::walk_ty(self, ty);
|
|
}
|
|
|
|
fn resolve_pattern(&mut self,
|
|
pattern: &Pat,
|
|
mode: PatternBindingMode,
|
|
// Maps idents to the node ID for the (outermost)
|
|
// pattern that binds them
|
|
bindings_list: &mut HashMap<Name, NodeId>) {
|
|
let pat_id = pattern.id;
|
|
walk_pat(pattern, |pattern| {
|
|
match pattern.node {
|
|
PatIdent(binding_mode, ref path1, _) => {
|
|
|
|
// The meaning of pat_ident with no type parameters
|
|
// depends on whether an enum variant or unit-like struct
|
|
// with that name is in scope. The probing lookup has to
|
|
// be careful not to emit spurious errors. Only matching
|
|
// patterns (match) can match nullary variants or
|
|
// unit-like structs. For binding patterns (let), matching
|
|
// such a value is simply disallowed (since it's rarely
|
|
// what you want).
|
|
|
|
let ident = path1.node;
|
|
let renamed = mtwt::resolve(ident);
|
|
|
|
match self.resolve_bare_identifier_pattern(ident.name, pattern.span) {
|
|
FoundStructOrEnumVariant(def, lp)
|
|
if mode == RefutableMode => {
|
|
debug!("(resolving pattern) resolving `{}` to \
|
|
struct or enum variant",
|
|
token::get_name(renamed));
|
|
|
|
self.enforce_default_binding_mode(
|
|
pattern,
|
|
binding_mode,
|
|
"an enum variant");
|
|
self.record_def(pattern.id, PathResolution {
|
|
base_def: def,
|
|
last_private: lp,
|
|
depth: 0
|
|
});
|
|
}
|
|
FoundStructOrEnumVariant(..) => {
|
|
self.resolve_error(
|
|
pattern.span,
|
|
&format!("declaration of `{}` shadows an enum \
|
|
variant or unit-like struct in \
|
|
scope",
|
|
token::get_name(renamed)));
|
|
}
|
|
FoundConst(def, lp) if mode == RefutableMode => {
|
|
debug!("(resolving pattern) resolving `{}` to \
|
|
constant",
|
|
token::get_name(renamed));
|
|
|
|
self.enforce_default_binding_mode(
|
|
pattern,
|
|
binding_mode,
|
|
"a constant");
|
|
self.record_def(pattern.id, PathResolution {
|
|
base_def: def,
|
|
last_private: lp,
|
|
depth: 0
|
|
});
|
|
}
|
|
FoundConst(..) => {
|
|
self.resolve_error(pattern.span,
|
|
"only irrefutable patterns \
|
|
allowed here");
|
|
}
|
|
BareIdentifierPatternUnresolved => {
|
|
debug!("(resolving pattern) binding `{}`",
|
|
token::get_name(renamed));
|
|
|
|
let def = DefLocal(pattern.id);
|
|
|
|
// Record the definition so that later passes
|
|
// will be able to distinguish variants from
|
|
// locals in patterns.
|
|
|
|
self.record_def(pattern.id, PathResolution {
|
|
base_def: def,
|
|
last_private: LastMod(AllPublic),
|
|
depth: 0
|
|
});
|
|
|
|
// Add the binding to the local ribs, if it
|
|
// doesn't already exist in the bindings list. (We
|
|
// must not add it if it's in the bindings list
|
|
// because that breaks the assumptions later
|
|
// passes make about or-patterns.)
|
|
if !bindings_list.contains_key(&renamed) {
|
|
let this = &mut *self;
|
|
let last_rib = this.value_ribs.last_mut().unwrap();
|
|
last_rib.bindings.insert(renamed, DlDef(def));
|
|
bindings_list.insert(renamed, pat_id);
|
|
} else if mode == ArgumentIrrefutableMode &&
|
|
bindings_list.contains_key(&renamed) {
|
|
// Forbid duplicate bindings in the same
|
|
// parameter list.
|
|
self.resolve_error(pattern.span,
|
|
&format!("identifier `{}` \
|
|
is bound more \
|
|
than once in \
|
|
this parameter \
|
|
list",
|
|
token::get_ident(
|
|
ident))
|
|
)
|
|
} else if bindings_list.get(&renamed) ==
|
|
Some(&pat_id) {
|
|
// Then this is a duplicate variable in the
|
|
// same disjunction, which is an error.
|
|
self.resolve_error(pattern.span,
|
|
&format!("identifier `{}` is bound \
|
|
more than once in the same \
|
|
pattern",
|
|
token::get_ident(ident)));
|
|
}
|
|
// Else, not bound in the same pattern: do
|
|
// nothing.
|
|
}
|
|
}
|
|
}
|
|
|
|
PatEnum(ref path, _) => {
|
|
// This must be an enum variant, struct or const.
|
|
if let Some(path_res) = self.resolve_path(pat_id, path, 0, ValueNS, false) {
|
|
match path_res.base_def {
|
|
DefVariant(..) | DefStruct(..) | DefConst(..) => {
|
|
self.record_def(pattern.id, path_res);
|
|
}
|
|
DefStatic(..) => {
|
|
self.resolve_error(path.span,
|
|
"static variables cannot be \
|
|
referenced in a pattern, \
|
|
use a `const` instead");
|
|
}
|
|
_ => {
|
|
self.resolve_error(path.span,
|
|
&format!("`{}` is not an enum variant, struct or const",
|
|
token::get_ident(
|
|
path.segments.last().unwrap().identifier)));
|
|
}
|
|
}
|
|
} else {
|
|
self.resolve_error(path.span,
|
|
&format!("unresolved enum variant, struct or const `{}`",
|
|
token::get_ident(path.segments.last().unwrap().identifier)));
|
|
}
|
|
visit::walk_path(self, path);
|
|
}
|
|
|
|
PatStruct(ref path, _, _) => {
|
|
match self.resolve_path(pat_id, path, 0, TypeNS, false) {
|
|
Some(definition) => {
|
|
self.record_def(pattern.id, definition);
|
|
}
|
|
result => {
|
|
debug!("(resolving pattern) didn't find struct \
|
|
def: {:?}", result);
|
|
let msg = format!("`{}` does not name a structure",
|
|
path_names_to_string(path, 0));
|
|
self.resolve_error(path.span, &msg[..]);
|
|
}
|
|
}
|
|
visit::walk_path(self, path);
|
|
}
|
|
|
|
PatLit(_) | PatRange(..) => {
|
|
visit::walk_pat(self, pattern);
|
|
}
|
|
|
|
_ => {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
true
|
|
});
|
|
}
|
|
|
|
fn resolve_bare_identifier_pattern(&mut self, name: Name, span: Span)
|
|
-> BareIdentifierPatternResolution {
|
|
let module = self.current_module.clone();
|
|
match self.resolve_item_in_lexical_scope(module,
|
|
name,
|
|
ValueNS) {
|
|
Success((target, _)) => {
|
|
debug!("(resolve bare identifier pattern) succeeded in \
|
|
finding {} at {:?}",
|
|
token::get_name(name),
|
|
target.bindings.value_def.borrow());
|
|
match *target.bindings.value_def.borrow() {
|
|
None => {
|
|
panic!("resolved name in the value namespace to a \
|
|
set of name bindings with no def?!");
|
|
}
|
|
Some(def) => {
|
|
// For the two success cases, this lookup can be
|
|
// considered as not having a private component because
|
|
// the lookup happened only within the current module.
|
|
match def.def {
|
|
def @ DefVariant(..) | def @ DefStruct(..) => {
|
|
return FoundStructOrEnumVariant(def, LastMod(AllPublic));
|
|
}
|
|
def @ DefConst(..) => {
|
|
return FoundConst(def, LastMod(AllPublic));
|
|
}
|
|
DefStatic(..) => {
|
|
self.resolve_error(span,
|
|
"static variables cannot be \
|
|
referenced in a pattern, \
|
|
use a `const` instead");
|
|
return BareIdentifierPatternUnresolved;
|
|
}
|
|
_ => {
|
|
return BareIdentifierPatternUnresolved;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Indeterminate => {
|
|
panic!("unexpected indeterminate result");
|
|
}
|
|
Failed(err) => {
|
|
match err {
|
|
Some((span, msg)) => {
|
|
self.resolve_error(span, &format!("failed to resolve: {}",
|
|
msg));
|
|
}
|
|
None => ()
|
|
}
|
|
|
|
debug!("(resolve bare identifier pattern) failed to find {}",
|
|
token::get_name(name));
|
|
return BareIdentifierPatternUnresolved;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// If `check_ribs` is true, checks the local definitions first; i.e.
|
|
/// doesn't skip straight to the containing module.
|
|
/// Skips `path_depth` trailing segments, which is also reflected in the
|
|
/// returned value. See `middle::def::PathResolution` for more info.
|
|
fn resolve_path(&mut self,
|
|
id: NodeId,
|
|
path: &Path,
|
|
path_depth: usize,
|
|
namespace: Namespace,
|
|
check_ribs: bool) -> Option<PathResolution> {
|
|
let span = path.span;
|
|
let segments = &path.segments[..path.segments.len()-path_depth];
|
|
|
|
let mk_res = |(def, lp)| PathResolution {
|
|
base_def: def,
|
|
last_private: lp,
|
|
depth: path_depth
|
|
};
|
|
|
|
if path.global {
|
|
let def = self.resolve_crate_relative_path(span, segments, namespace);
|
|
return def.map(mk_res);
|
|
}
|
|
|
|
// Try to find a path to an item in a module.
|
|
let unqualified_def =
|
|
self.resolve_identifier(segments.last().unwrap().identifier,
|
|
namespace,
|
|
check_ribs,
|
|
span);
|
|
|
|
if segments.len() > 1 {
|
|
let def = self.resolve_module_relative_path(span, segments, namespace);
|
|
match (def, unqualified_def) {
|
|
(Some((ref d, _)), Some((ref ud, _))) if *d == *ud => {
|
|
self.session
|
|
.add_lint(lint::builtin::UNUSED_QUALIFICATIONS,
|
|
id, span,
|
|
"unnecessary qualification".to_string());
|
|
}
|
|
_ => ()
|
|
}
|
|
|
|
def.map(mk_res)
|
|
} else {
|
|
unqualified_def.map(mk_res)
|
|
}
|
|
}
|
|
|
|
// resolve a single identifier (used as a varref)
|
|
fn resolve_identifier(&mut self,
|
|
identifier: Ident,
|
|
namespace: Namespace,
|
|
check_ribs: bool,
|
|
span: Span)
|
|
-> Option<(Def, LastPrivate)> {
|
|
// First, check to see whether the name is a primitive type.
|
|
if namespace == TypeNS {
|
|
if let Some(&prim_ty) = self.primitive_type_table
|
|
.primitive_types
|
|
.get(&identifier.name) {
|
|
return Some((DefPrimTy(prim_ty), LastMod(AllPublic)));
|
|
}
|
|
}
|
|
|
|
if check_ribs {
|
|
if let Some(def) = self.resolve_identifier_in_local_ribs(identifier,
|
|
namespace,
|
|
span) {
|
|
return Some((def, LastMod(AllPublic)));
|
|
}
|
|
}
|
|
|
|
self.resolve_item_by_name_in_lexical_scope(identifier.name, namespace)
|
|
}
|
|
|
|
// FIXME #4952: Merge me with resolve_name_in_module?
|
|
fn resolve_definition_of_name_in_module(&mut self,
|
|
containing_module: Rc<Module>,
|
|
name: Name,
|
|
namespace: Namespace)
|
|
-> NameDefinition {
|
|
// First, search children.
|
|
build_reduced_graph::populate_module_if_necessary(self, &containing_module);
|
|
|
|
match containing_module.children.borrow().get(&name) {
|
|
Some(child_name_bindings) => {
|
|
match child_name_bindings.def_for_namespace(namespace) {
|
|
Some(def) => {
|
|
// Found it. Stop the search here.
|
|
let p = child_name_bindings.defined_in_public_namespace(
|
|
namespace);
|
|
let lp = if p {LastMod(AllPublic)} else {
|
|
LastMod(DependsOn(def.def_id()))
|
|
};
|
|
return ChildNameDefinition(def, lp);
|
|
}
|
|
None => {}
|
|
}
|
|
}
|
|
None => {}
|
|
}
|
|
|
|
// Next, search import resolutions.
|
|
match containing_module.import_resolutions.borrow().get(&name) {
|
|
Some(import_resolution) if import_resolution.is_public => {
|
|
if let Some(target) = (*import_resolution).target_for_namespace(namespace) {
|
|
match target.bindings.def_for_namespace(namespace) {
|
|
Some(def) => {
|
|
// Found it.
|
|
let id = import_resolution.id(namespace);
|
|
// track imports and extern crates as well
|
|
self.used_imports.insert((id, namespace));
|
|
self.record_import_use(id, name);
|
|
match target.target_module.def_id.get() {
|
|
Some(DefId{krate: kid, ..}) => {
|
|
self.used_crates.insert(kid);
|
|
},
|
|
_ => {}
|
|
}
|
|
return ImportNameDefinition(def, LastMod(AllPublic));
|
|
}
|
|
None => {
|
|
// This can happen with external impls, due to
|
|
// the imperfect way we read the metadata.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Some(..) | None => {} // Continue.
|
|
}
|
|
|
|
// Finally, search through external children.
|
|
if namespace == TypeNS {
|
|
if let Some(module) = containing_module.external_module_children.borrow()
|
|
.get(&name).cloned() {
|
|
if let Some(def_id) = module.def_id.get() {
|
|
// track used crates
|
|
self.used_crates.insert(def_id.krate);
|
|
let lp = if module.is_public {LastMod(AllPublic)} else {
|
|
LastMod(DependsOn(def_id))
|
|
};
|
|
return ChildNameDefinition(DefMod(def_id), lp);
|
|
}
|
|
}
|
|
}
|
|
|
|
return NoNameDefinition;
|
|
}
|
|
|
|
// resolve a "module-relative" path, e.g. a::b::c
|
|
fn resolve_module_relative_path(&mut self,
|
|
span: Span,
|
|
segments: &[ast::PathSegment],
|
|
namespace: Namespace)
|
|
-> Option<(Def, LastPrivate)> {
|
|
let module_path = segments.init().iter()
|
|
.map(|ps| ps.identifier.name)
|
|
.collect::<Vec<_>>();
|
|
|
|
let containing_module;
|
|
let last_private;
|
|
let module = self.current_module.clone();
|
|
match self.resolve_module_path(module,
|
|
&module_path[..],
|
|
UseLexicalScope,
|
|
span,
|
|
PathSearch) {
|
|
Failed(err) => {
|
|
let (span, msg) = match err {
|
|
Some((span, msg)) => (span, msg),
|
|
None => {
|
|
let msg = format!("Use of undeclared type or module `{}`",
|
|
names_to_string(&module_path));
|
|
(span, msg)
|
|
}
|
|
};
|
|
|
|
self.resolve_error(span, &format!("failed to resolve. {}",
|
|
msg));
|
|
return None;
|
|
}
|
|
Indeterminate => panic!("indeterminate unexpected"),
|
|
Success((resulting_module, resulting_last_private)) => {
|
|
containing_module = resulting_module;
|
|
last_private = resulting_last_private;
|
|
}
|
|
}
|
|
|
|
let name = segments.last().unwrap().identifier.name;
|
|
let def = match self.resolve_definition_of_name_in_module(containing_module.clone(),
|
|
name,
|
|
namespace) {
|
|
NoNameDefinition => {
|
|
// We failed to resolve the name. Report an error.
|
|
return None;
|
|
}
|
|
ChildNameDefinition(def, lp) | ImportNameDefinition(def, lp) => {
|
|
(def, last_private.or(lp))
|
|
}
|
|
};
|
|
if let Some(DefId{krate: kid, ..}) = containing_module.def_id.get() {
|
|
self.used_crates.insert(kid);
|
|
}
|
|
return Some(def);
|
|
}
|
|
|
|
/// Invariant: This must be called only during main resolution, not during
|
|
/// import resolution.
|
|
fn resolve_crate_relative_path(&mut self,
|
|
span: Span,
|
|
segments: &[ast::PathSegment],
|
|
namespace: Namespace)
|
|
-> Option<(Def, LastPrivate)> {
|
|
let module_path = segments.init().iter()
|
|
.map(|ps| ps.identifier.name)
|
|
.collect::<Vec<_>>();
|
|
|
|
let root_module = self.graph_root.get_module();
|
|
|
|
let containing_module;
|
|
let last_private;
|
|
match self.resolve_module_path_from_root(root_module,
|
|
&module_path[..],
|
|
0,
|
|
span,
|
|
PathSearch,
|
|
LastMod(AllPublic)) {
|
|
Failed(err) => {
|
|
let (span, msg) = match err {
|
|
Some((span, msg)) => (span, msg),
|
|
None => {
|
|
let msg = format!("Use of undeclared module `::{}`",
|
|
names_to_string(&module_path[..]));
|
|
(span, msg)
|
|
}
|
|
};
|
|
|
|
self.resolve_error(span, &format!("failed to resolve. {}",
|
|
msg));
|
|
return None;
|
|
}
|
|
|
|
Indeterminate => {
|
|
panic!("indeterminate unexpected");
|
|
}
|
|
|
|
Success((resulting_module, resulting_last_private)) => {
|
|
containing_module = resulting_module;
|
|
last_private = resulting_last_private;
|
|
}
|
|
}
|
|
|
|
let name = segments.last().unwrap().identifier.name;
|
|
match self.resolve_definition_of_name_in_module(containing_module,
|
|
name,
|
|
namespace) {
|
|
NoNameDefinition => {
|
|
// We failed to resolve the name. Report an error.
|
|
return None;
|
|
}
|
|
ChildNameDefinition(def, lp) | ImportNameDefinition(def, lp) => {
|
|
return Some((def, last_private.or(lp)));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_identifier_in_local_ribs(&mut self,
|
|
ident: Ident,
|
|
namespace: Namespace,
|
|
span: Span)
|
|
-> Option<Def> {
|
|
// Check the local set of ribs.
|
|
let search_result = match namespace {
|
|
ValueNS => {
|
|
let renamed = mtwt::resolve(ident);
|
|
self.search_ribs(&self.value_ribs, renamed, span)
|
|
}
|
|
TypeNS => {
|
|
let name = ident.name;
|
|
self.search_ribs(&self.type_ribs, name, span)
|
|
}
|
|
};
|
|
|
|
match search_result {
|
|
Some(DlDef(def)) => {
|
|
debug!("(resolving path in local ribs) resolved `{}` to \
|
|
local: {:?}",
|
|
token::get_ident(ident),
|
|
def);
|
|
Some(def)
|
|
}
|
|
Some(DlField) | Some(DlImpl(_)) | None => {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_item_by_name_in_lexical_scope(&mut self,
|
|
name: Name,
|
|
namespace: Namespace)
|
|
-> Option<(Def, LastPrivate)> {
|
|
// Check the items.
|
|
let module = self.current_module.clone();
|
|
match self.resolve_item_in_lexical_scope(module,
|
|
name,
|
|
namespace) {
|
|
Success((target, _)) => {
|
|
match (*target.bindings).def_for_namespace(namespace) {
|
|
None => {
|
|
// This can happen if we were looking for a type and
|
|
// found a module instead. Modules don't have defs.
|
|
debug!("(resolving item path by identifier in lexical \
|
|
scope) failed to resolve {} after success...",
|
|
token::get_name(name));
|
|
return None;
|
|
}
|
|
Some(def) => {
|
|
debug!("(resolving item path in lexical scope) \
|
|
resolved `{}` to item",
|
|
token::get_name(name));
|
|
// This lookup is "all public" because it only searched
|
|
// for one identifier in the current module (couldn't
|
|
// have passed through reexports or anything like that.
|
|
return Some((def, LastMod(AllPublic)));
|
|
}
|
|
}
|
|
}
|
|
Indeterminate => {
|
|
panic!("unexpected indeterminate result");
|
|
}
|
|
Failed(err) => {
|
|
match err {
|
|
Some((span, msg)) =>
|
|
self.resolve_error(span, &format!("failed to resolve. {}",
|
|
msg)),
|
|
None => ()
|
|
}
|
|
|
|
debug!("(resolving item path by identifier in lexical scope) \
|
|
failed to resolve {}", token::get_name(name));
|
|
return None;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn with_no_errors<T, F>(&mut self, f: F) -> T where
|
|
F: FnOnce(&mut Resolver) -> T,
|
|
{
|
|
self.emit_errors = false;
|
|
let rs = f(self);
|
|
self.emit_errors = true;
|
|
rs
|
|
}
|
|
|
|
fn resolve_error(&self, span: Span, s: &str) {
|
|
if self.emit_errors {
|
|
self.session.span_err(span, s);
|
|
}
|
|
}
|
|
|
|
fn find_fallback_in_self_type(&mut self, name: Name) -> FallbackSuggestion {
|
|
fn extract_path_and_node_id(t: &Ty, allow: FallbackChecks)
|
|
-> Option<(Path, NodeId, FallbackChecks)> {
|
|
match t.node {
|
|
TyPath(None, ref path) => Some((path.clone(), t.id, allow)),
|
|
TyPtr(ref mut_ty) => extract_path_and_node_id(&*mut_ty.ty, OnlyTraitAndStatics),
|
|
TyRptr(_, ref mut_ty) => extract_path_and_node_id(&*mut_ty.ty, allow),
|
|
// This doesn't handle the remaining `Ty` variants as they are not
|
|
// that commonly the self_type, it might be interesting to provide
|
|
// support for those in future.
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
fn get_module(this: &mut Resolver, span: Span, name_path: &[ast::Name])
|
|
-> Option<Rc<Module>> {
|
|
let root = this.current_module.clone();
|
|
let last_name = name_path.last().unwrap();
|
|
|
|
if name_path.len() == 1 {
|
|
match this.primitive_type_table.primitive_types.get(last_name) {
|
|
Some(_) => None,
|
|
None => {
|
|
match this.current_module.children.borrow().get(last_name) {
|
|
Some(child) => child.get_module_if_available(),
|
|
None => None
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
match this.resolve_module_path(root,
|
|
&name_path[..],
|
|
UseLexicalScope,
|
|
span,
|
|
PathSearch) {
|
|
Success((module, _)) => Some(module),
|
|
_ => None
|
|
}
|
|
}
|
|
}
|
|
|
|
fn is_static_method(this: &Resolver, did: DefId) -> bool {
|
|
if did.krate == ast::LOCAL_CRATE {
|
|
let sig = match this.ast_map.get(did.node) {
|
|
ast_map::NodeTraitItem(trait_item) => match trait_item.node {
|
|
ast::MethodTraitItem(ref sig, _) => sig,
|
|
_ => return false
|
|
},
|
|
ast_map::NodeImplItem(impl_item) => match impl_item.node {
|
|
ast::MethodImplItem(ref sig, _) => sig,
|
|
_ => return false
|
|
},
|
|
_ => return false
|
|
};
|
|
sig.explicit_self.node == ast::SelfStatic
|
|
} else {
|
|
csearch::is_static_method(&this.session.cstore, did)
|
|
}
|
|
}
|
|
|
|
let (path, node_id, allowed) = match self.current_self_type {
|
|
Some(ref ty) => match extract_path_and_node_id(ty, Everything) {
|
|
Some(x) => x,
|
|
None => return NoSuggestion,
|
|
},
|
|
None => return NoSuggestion,
|
|
};
|
|
|
|
if allowed == Everything {
|
|
// Look for a field with the same name in the current self_type.
|
|
match self.def_map.borrow().get(&node_id).map(|d| d.full_def()) {
|
|
Some(DefTy(did, _)) |
|
|
Some(DefStruct(did)) |
|
|
Some(DefVariant(_, did, _)) => match self.structs.get(&did) {
|
|
None => {}
|
|
Some(fields) => {
|
|
if fields.iter().any(|&field_name| name == field_name) {
|
|
return Field;
|
|
}
|
|
}
|
|
},
|
|
_ => {} // Self type didn't resolve properly
|
|
}
|
|
}
|
|
|
|
let name_path = path.segments.iter().map(|seg| seg.identifier.name).collect::<Vec<_>>();
|
|
|
|
// Look for a method in the current self type's impl module.
|
|
if let Some(module) = get_module(self, path.span, &name_path) {
|
|
if let Some(binding) = module.children.borrow().get(&name) {
|
|
if let Some(DefMethod(did, _)) = binding.def_for_namespace(ValueNS) {
|
|
if is_static_method(self, did) {
|
|
return StaticMethod(path_names_to_string(&path, 0))
|
|
}
|
|
if self.current_trait_ref.is_some() {
|
|
return TraitItem;
|
|
} else if allowed == Everything {
|
|
return Method;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look for a method in the current trait.
|
|
if let Some((trait_did, ref trait_ref)) = self.current_trait_ref {
|
|
if let Some(&did) = self.trait_item_map.get(&(name, trait_did)) {
|
|
if is_static_method(self, did) {
|
|
return TraitMethod(path_names_to_string(&trait_ref.path, 0));
|
|
} else {
|
|
return TraitItem;
|
|
}
|
|
}
|
|
}
|
|
|
|
NoSuggestion
|
|
}
|
|
|
|
fn find_best_match_for_name(&mut self, name: &str, max_distance: uint)
|
|
-> Option<String> {
|
|
let this = &mut *self;
|
|
|
|
let mut maybes: Vec<token::InternedString> = Vec::new();
|
|
let mut values: Vec<uint> = Vec::new();
|
|
|
|
for rib in this.value_ribs.iter().rev() {
|
|
for (&k, _) in &rib.bindings {
|
|
maybes.push(token::get_name(k));
|
|
values.push(usize::MAX);
|
|
}
|
|
}
|
|
|
|
let mut smallest = 0;
|
|
for (i, other) in maybes.iter().enumerate() {
|
|
values[i] = lev_distance(name, &other);
|
|
|
|
if values[i] <= values[smallest] {
|
|
smallest = i;
|
|
}
|
|
}
|
|
|
|
if values.len() > 0 &&
|
|
values[smallest] != usize::MAX &&
|
|
values[smallest] < name.len() + 2 &&
|
|
values[smallest] <= max_distance &&
|
|
name != &maybes[smallest][..] {
|
|
|
|
Some(maybes[smallest].to_string())
|
|
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
fn resolve_expr(&mut self, expr: &Expr) {
|
|
// First, record candidate traits for this expression if it could
|
|
// result in the invocation of a method call.
|
|
|
|
self.record_candidate_traits_for_expr_if_necessary(expr);
|
|
|
|
// Next, resolve the node.
|
|
match expr.node {
|
|
// `<T>::a::b::c` is resolved by typeck alone.
|
|
ExprPath(Some(ast::QSelf { position: 0, .. }), ref path) => {
|
|
let method_name = path.segments.last().unwrap().identifier.name;
|
|
let traits = self.search_for_traits_containing_method(method_name);
|
|
self.trait_map.insert(expr.id, traits);
|
|
visit::walk_expr(self, expr);
|
|
}
|
|
|
|
ExprPath(ref maybe_qself, ref path) => {
|
|
let max_assoc_types = if let Some(ref qself) = *maybe_qself {
|
|
// Make sure the trait is valid.
|
|
let _ = self.resolve_trait_reference(expr.id, path, 1);
|
|
path.segments.len() - qself.position
|
|
} else {
|
|
path.segments.len()
|
|
};
|
|
|
|
let mut resolution = self.with_no_errors(|this| {
|
|
this.resolve_path(expr.id, path, 0, ValueNS, true)
|
|
});
|
|
for depth in 1..max_assoc_types {
|
|
if resolution.is_some() {
|
|
break;
|
|
}
|
|
self.with_no_errors(|this| {
|
|
resolution = this.resolve_path(expr.id, path, depth, TypeNS, true);
|
|
});
|
|
}
|
|
if let Some(DefMod(_)) = resolution.map(|r| r.base_def) {
|
|
// A module is not a valid type or value.
|
|
resolution = None;
|
|
}
|
|
|
|
// This is a local path in the value namespace. Walk through
|
|
// scopes looking for it.
|
|
if let Some(path_res) = resolution {
|
|
// Check if struct variant
|
|
if let DefVariant(_, _, true) = path_res.base_def {
|
|
let path_name = path_names_to_string(path, 0);
|
|
self.resolve_error(expr.span,
|
|
&format!("`{}` is a struct variant name, but \
|
|
this expression \
|
|
uses it like a function name",
|
|
path_name));
|
|
|
|
let msg = format!("Did you mean to write: \
|
|
`{} {{ /* fields */ }}`?",
|
|
path_name);
|
|
if self.emit_errors {
|
|
self.session.fileline_help(expr.span, &msg);
|
|
} else {
|
|
self.session.span_help(expr.span, &msg);
|
|
}
|
|
} else {
|
|
// Write the result into the def map.
|
|
debug!("(resolving expr) resolved `{}`",
|
|
path_names_to_string(path, 0));
|
|
|
|
// Partial resolutions will need the set of traits in scope,
|
|
// so they can be completed during typeck.
|
|
if path_res.depth != 0 {
|
|
let method_name = path.segments.last().unwrap().identifier.name;
|
|
let traits = self.search_for_traits_containing_method(method_name);
|
|
self.trait_map.insert(expr.id, traits);
|
|
}
|
|
|
|
self.record_def(expr.id, path_res);
|
|
}
|
|
} else {
|
|
// Be helpful if the name refers to a struct
|
|
// (The pattern matching def_tys where the id is in self.structs
|
|
// matches on regular structs while excluding tuple- and enum-like
|
|
// structs, which wouldn't result in this error.)
|
|
let path_name = path_names_to_string(path, 0);
|
|
let type_res = self.with_no_errors(|this| {
|
|
this.resolve_path(expr.id, path, 0, TypeNS, false)
|
|
});
|
|
match type_res.map(|r| r.base_def) {
|
|
Some(DefTy(struct_id, _))
|
|
if self.structs.contains_key(&struct_id) => {
|
|
self.resolve_error(expr.span,
|
|
&format!("`{}` is a structure name, but \
|
|
this expression \
|
|
uses it like a function name",
|
|
path_name));
|
|
|
|
let msg = format!("Did you mean to write: \
|
|
`{} {{ /* fields */ }}`?",
|
|
path_name);
|
|
if self.emit_errors {
|
|
self.session.fileline_help(expr.span, &msg);
|
|
} else {
|
|
self.session.span_help(expr.span, &msg);
|
|
}
|
|
}
|
|
_ => {
|
|
// Keep reporting some errors even if they're ignored above.
|
|
self.resolve_path(expr.id, path, 0, ValueNS, true);
|
|
|
|
let mut method_scope = false;
|
|
self.value_ribs.iter().rev().all(|rib| {
|
|
method_scope = match rib.kind {
|
|
MethodRibKind => true,
|
|
ItemRibKind | ConstantItemRibKind => false,
|
|
_ => return true, // Keep advancing
|
|
};
|
|
false // Stop advancing
|
|
});
|
|
|
|
if method_scope && &token::get_name(self.self_name)[..]
|
|
== path_name {
|
|
self.resolve_error(
|
|
expr.span,
|
|
"`self` is not available \
|
|
in a static method. Maybe a \
|
|
`self` argument is missing?");
|
|
} else {
|
|
let last_name = path.segments.last().unwrap().identifier.name;
|
|
let mut msg = match self.find_fallback_in_self_type(last_name) {
|
|
NoSuggestion => {
|
|
// limit search to 5 to reduce the number
|
|
// of stupid suggestions
|
|
self.find_best_match_for_name(&path_name, 5)
|
|
.map_or("".to_string(),
|
|
|x| format!("`{}`", x))
|
|
}
|
|
Field => format!("`self.{}`", path_name),
|
|
Method |
|
|
TraitItem =>
|
|
format!("to call `self.{}`", path_name),
|
|
TraitMethod(path_str) |
|
|
StaticMethod(path_str) =>
|
|
format!("to call `{}::{}`", path_str, path_name)
|
|
};
|
|
|
|
if msg.len() > 0 {
|
|
msg = format!(". Did you mean {}?", msg)
|
|
}
|
|
|
|
self.resolve_error(
|
|
expr.span,
|
|
&format!("unresolved name `{}`{}",
|
|
path_name, msg));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
visit::walk_expr(self, expr);
|
|
}
|
|
|
|
ExprStruct(ref path, _, _) => {
|
|
// Resolve the path to the structure it goes to. We don't
|
|
// check to ensure that the path is actually a structure; that
|
|
// is checked later during typeck.
|
|
match self.resolve_path(expr.id, path, 0, TypeNS, false) {
|
|
Some(definition) => self.record_def(expr.id, definition),
|
|
None => {
|
|
debug!("(resolving expression) didn't find struct def",);
|
|
let msg = format!("`{}` does not name a structure",
|
|
path_names_to_string(path, 0));
|
|
self.resolve_error(path.span, &msg[..]);
|
|
}
|
|
}
|
|
|
|
visit::walk_expr(self, expr);
|
|
}
|
|
|
|
ExprLoop(_, Some(label)) | ExprWhile(_, _, Some(label)) => {
|
|
self.with_label_rib(|this| {
|
|
let def_like = DlDef(DefLabel(expr.id));
|
|
|
|
{
|
|
let rib = this.label_ribs.last_mut().unwrap();
|
|
let renamed = mtwt::resolve(label);
|
|
rib.bindings.insert(renamed, def_like);
|
|
}
|
|
|
|
visit::walk_expr(this, expr);
|
|
})
|
|
}
|
|
|
|
ExprBreak(Some(label)) | ExprAgain(Some(label)) => {
|
|
let renamed = mtwt::resolve(label);
|
|
match self.search_label(renamed) {
|
|
None => {
|
|
self.resolve_error(
|
|
expr.span,
|
|
&format!("use of undeclared label `{}`",
|
|
token::get_ident(label)))
|
|
}
|
|
Some(DlDef(def @ DefLabel(_))) => {
|
|
// Since this def is a label, it is never read.
|
|
self.record_def(expr.id, PathResolution {
|
|
base_def: def,
|
|
last_private: LastMod(AllPublic),
|
|
depth: 0
|
|
})
|
|
}
|
|
Some(_) => {
|
|
self.session.span_bug(expr.span,
|
|
"label wasn't mapped to a \
|
|
label def!")
|
|
}
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
visit::walk_expr(self, expr);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
|
|
match expr.node {
|
|
ExprField(_, ident) => {
|
|
// FIXME(#6890): Even though you can't treat a method like a
|
|
// field, we need to add any trait methods we find that match
|
|
// the field name so that we can do some nice error reporting
|
|
// later on in typeck.
|
|
let traits = self.search_for_traits_containing_method(ident.node.name);
|
|
self.trait_map.insert(expr.id, traits);
|
|
}
|
|
ExprMethodCall(ident, _, _) => {
|
|
debug!("(recording candidate traits for expr) recording \
|
|
traits for {}",
|
|
expr.id);
|
|
let traits = self.search_for_traits_containing_method(ident.node.name);
|
|
self.trait_map.insert(expr.id, traits);
|
|
}
|
|
_ => {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
}
|
|
|
|
fn search_for_traits_containing_method(&mut self, name: Name) -> Vec<DefId> {
|
|
debug!("(searching for traits containing method) looking for '{}'",
|
|
token::get_name(name));
|
|
|
|
fn add_trait_info(found_traits: &mut Vec<DefId>,
|
|
trait_def_id: DefId,
|
|
name: Name) {
|
|
debug!("(adding trait info) found trait {}:{} for method '{}'",
|
|
trait_def_id.krate,
|
|
trait_def_id.node,
|
|
token::get_name(name));
|
|
found_traits.push(trait_def_id);
|
|
}
|
|
|
|
let mut found_traits = Vec::new();
|
|
let mut search_module = self.current_module.clone();
|
|
loop {
|
|
// Look for the current trait.
|
|
match self.current_trait_ref {
|
|
Some((trait_def_id, _)) => {
|
|
if self.trait_item_map.contains_key(&(name, trait_def_id)) {
|
|
add_trait_info(&mut found_traits, trait_def_id, name);
|
|
}
|
|
}
|
|
None => {} // Nothing to do.
|
|
}
|
|
|
|
// Look for trait children.
|
|
build_reduced_graph::populate_module_if_necessary(self, &search_module);
|
|
|
|
{
|
|
for (_, child_names) in &*search_module.children.borrow() {
|
|
let def = match child_names.def_for_namespace(TypeNS) {
|
|
Some(def) => def,
|
|
None => continue
|
|
};
|
|
let trait_def_id = match def {
|
|
DefTrait(trait_def_id) => trait_def_id,
|
|
_ => continue,
|
|
};
|
|
if self.trait_item_map.contains_key(&(name, trait_def_id)) {
|
|
add_trait_info(&mut found_traits, trait_def_id, name);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look for imports.
|
|
for (_, import) in &*search_module.import_resolutions.borrow() {
|
|
let target = match import.target_for_namespace(TypeNS) {
|
|
None => continue,
|
|
Some(target) => target,
|
|
};
|
|
let did = match target.bindings.def_for_namespace(TypeNS) {
|
|
Some(DefTrait(trait_def_id)) => trait_def_id,
|
|
Some(..) | None => continue,
|
|
};
|
|
if self.trait_item_map.contains_key(&(name, did)) {
|
|
add_trait_info(&mut found_traits, did, name);
|
|
let id = import.type_id;
|
|
self.used_imports.insert((id, TypeNS));
|
|
let trait_name = self.get_trait_name(did);
|
|
self.record_import_use(id, trait_name);
|
|
if let Some(DefId{krate: kid, ..}) = target.target_module.def_id.get() {
|
|
self.used_crates.insert(kid);
|
|
}
|
|
}
|
|
}
|
|
|
|
match search_module.parent_link.clone() {
|
|
NoParentLink | ModuleParentLink(..) => break,
|
|
BlockParentLink(parent_module, _) => {
|
|
search_module = parent_module.upgrade().unwrap();
|
|
}
|
|
}
|
|
}
|
|
|
|
found_traits
|
|
}
|
|
|
|
fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
|
|
debug!("(recording def) recording {:?} for {}", resolution, node_id);
|
|
assert!(match resolution.last_private {LastImport{..} => false, _ => true},
|
|
"Import should only be used for `use` directives");
|
|
|
|
if let Some(prev_res) = self.def_map.borrow_mut().insert(node_id, resolution) {
|
|
let span = self.ast_map.opt_span(node_id).unwrap_or(codemap::DUMMY_SP);
|
|
self.session.span_bug(span, &format!("path resolved multiple times \
|
|
({:?} before, {:?} now)",
|
|
prev_res, resolution));
|
|
}
|
|
}
|
|
|
|
fn enforce_default_binding_mode(&mut self,
|
|
pat: &Pat,
|
|
pat_binding_mode: BindingMode,
|
|
descr: &str) {
|
|
match pat_binding_mode {
|
|
BindByValue(_) => {}
|
|
BindByRef(..) => {
|
|
self.resolve_error(pat.span,
|
|
&format!("cannot use `ref` binding mode \
|
|
with {}",
|
|
descr));
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Diagnostics
|
|
//
|
|
// Diagnostics are not particularly efficient, because they're rarely
|
|
// hit.
|
|
//
|
|
|
|
#[allow(dead_code)] // useful for debugging
|
|
fn dump_module(&mut self, module_: Rc<Module>) {
|
|
debug!("Dump of module `{}`:", module_to_string(&*module_));
|
|
|
|
debug!("Children:");
|
|
build_reduced_graph::populate_module_if_necessary(self, &module_);
|
|
for (&name, _) in &*module_.children.borrow() {
|
|
debug!("* {}", token::get_name(name));
|
|
}
|
|
|
|
debug!("Import resolutions:");
|
|
let import_resolutions = module_.import_resolutions.borrow();
|
|
for (&name, import_resolution) in &*import_resolutions {
|
|
let value_repr;
|
|
match import_resolution.target_for_namespace(ValueNS) {
|
|
None => { value_repr = "".to_string(); }
|
|
Some(_) => {
|
|
value_repr = " value:?".to_string();
|
|
// FIXME #4954
|
|
}
|
|
}
|
|
|
|
let type_repr;
|
|
match import_resolution.target_for_namespace(TypeNS) {
|
|
None => { type_repr = "".to_string(); }
|
|
Some(_) => {
|
|
type_repr = " type:?".to_string();
|
|
// FIXME #4954
|
|
}
|
|
}
|
|
|
|
debug!("* {}:{}{}", token::get_name(name), value_repr, type_repr);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
fn names_to_string(names: &[Name]) -> String {
|
|
let mut first = true;
|
|
let mut result = String::new();
|
|
for name in names {
|
|
if first {
|
|
first = false
|
|
} else {
|
|
result.push_str("::")
|
|
}
|
|
result.push_str(&token::get_name(*name));
|
|
};
|
|
result
|
|
}
|
|
|
|
fn path_names_to_string(path: &Path, depth: usize) -> String {
|
|
let names: Vec<ast::Name> = path.segments[..path.segments.len()-depth]
|
|
.iter()
|
|
.map(|seg| seg.identifier.name)
|
|
.collect();
|
|
names_to_string(&names[..])
|
|
}
|
|
|
|
/// A somewhat inefficient routine to obtain the name of a module.
|
|
fn module_to_string(module: &Module) -> String {
|
|
let mut names = Vec::new();
|
|
|
|
fn collect_mod(names: &mut Vec<ast::Name>, module: &Module) {
|
|
match module.parent_link {
|
|
NoParentLink => {}
|
|
ModuleParentLink(ref module, name) => {
|
|
names.push(name);
|
|
collect_mod(names, &*module.upgrade().unwrap());
|
|
}
|
|
BlockParentLink(ref module, _) => {
|
|
// danger, shouldn't be ident?
|
|
names.push(special_idents::opaque.name);
|
|
collect_mod(names, &*module.upgrade().unwrap());
|
|
}
|
|
}
|
|
}
|
|
collect_mod(&mut names, module);
|
|
|
|
if names.len() == 0 {
|
|
return "???".to_string();
|
|
}
|
|
names_to_string(&names.into_iter().rev().collect::<Vec<ast::Name>>())
|
|
}
|
|
|
|
|
|
pub struct CrateMap {
|
|
pub def_map: DefMap,
|
|
pub freevars: RefCell<FreevarMap>,
|
|
pub export_map: ExportMap,
|
|
pub trait_map: TraitMap,
|
|
pub external_exports: ExternalExports,
|
|
pub glob_map: Option<GlobMap>
|
|
}
|
|
|
|
#[derive(PartialEq,Copy)]
|
|
pub enum MakeGlobMap {
|
|
Yes,
|
|
No
|
|
}
|
|
|
|
/// Entry point to crate resolution.
|
|
pub fn resolve_crate<'a, 'tcx>(session: &'a Session,
|
|
ast_map: &'a ast_map::Map<'tcx>,
|
|
_: &LanguageItems,
|
|
krate: &Crate,
|
|
make_glob_map: MakeGlobMap)
|
|
-> CrateMap {
|
|
let mut resolver = Resolver::new(session, ast_map, krate.span, make_glob_map);
|
|
|
|
build_reduced_graph::build_reduced_graph(&mut resolver, krate);
|
|
session.abort_if_errors();
|
|
|
|
resolve_imports::resolve_imports(&mut resolver);
|
|
session.abort_if_errors();
|
|
|
|
record_exports::record(&mut resolver);
|
|
session.abort_if_errors();
|
|
|
|
resolver.resolve_crate(krate);
|
|
session.abort_if_errors();
|
|
|
|
check_unused::check_crate(&mut resolver, krate);
|
|
|
|
CrateMap {
|
|
def_map: resolver.def_map,
|
|
freevars: resolver.freevars,
|
|
export_map: resolver.export_map,
|
|
trait_map: resolver.trait_map,
|
|
external_exports: resolver.external_exports,
|
|
glob_map: if resolver.make_glob_map {
|
|
Some(resolver.glob_map)
|
|
} else {
|
|
None
|
|
},
|
|
}
|
|
}
|