rust/src/test/bench/graph500-bfs.rs
2012-06-20 20:12:14 -07:00

481 lines
13 KiB
Rust

/**
An implementation of the Graph500 Breadth First Search problem in Rust.
*/
use std;
import std::time;
import std::map;
import std::map::hashmap;
import std::deque;
import std::deque::t;
import std::par;
import io::writer_util;
import comm::*;
import int::abs;
type node_id = i64;
type graph = [[node_id]];
type bfs_result = [node_id];
fn make_edges(scale: uint, edgefactor: uint) -> [(node_id, node_id)] {
let r = rand::xorshift();
fn choose_edge(i: node_id, j: node_id, scale: uint, r: rand::rng)
-> (node_id, node_id) {
let A = 0.57;
let B = 0.19;
let C = 0.19;
if scale == 0u {
(i, j)
}
else {
let i = i * 2i64;
let j = j * 2i64;
let scale = scale - 1u;
let x = r.gen_float();
if x < A {
choose_edge(i, j, scale, r)
}
else {
let x = x - A;
if x < B {
choose_edge(i + 1i64, j, scale, r)
}
else {
let x = x - B;
if x < C {
choose_edge(i, j + 1i64, scale, r)
}
else {
choose_edge(i + 1i64, j + 1i64, scale, r)
}
}
}
}
}
vec::from_fn((1u << scale) * edgefactor) {|_i|
choose_edge(0i64, 0i64, scale, r)
}
}
fn make_graph(N: uint, edges: [(node_id, node_id)]) -> graph {
let graph = vec::from_fn(N) {|_i|
map::hashmap::<node_id, ()>({|x| x as uint }, {|x, y| x == y })
};
vec::each(edges) {|e|
let (i, j) = e;
map::set_add(graph[i], j);
map::set_add(graph[j], i);
true
}
graph.map() {|v|
map::vec_from_set(v)
}
}
fn gen_search_keys(graph: graph, n: uint) -> [node_id] {
let keys = map::hashmap::<node_id, ()>({|x| x as uint }, {|x, y| x == y });
let r = rand::rng();
while keys.size() < n {
let k = r.gen_uint_range(0u, graph.len());
if graph[k].len() > 0u && vec::any(graph[k]) {|i|
i != k as node_id
} {
map::set_add(keys, k as node_id);
}
}
map::vec_from_set(keys)
}
#[doc="Returns a vector of all the parents in the BFS tree rooted at key.
Nodes that are unreachable have a parent of -1."]
fn bfs(graph: graph, key: node_id) -> bfs_result {
let marks : [mut node_id]
= vec::to_mut(vec::from_elem(vec::len(graph), -1i64));
let Q = deque::create();
Q.add_back(key);
marks[key] = key;
while Q.size() > 0u {
let t = Q.pop_front();
graph[t].each() {|k|
if marks[k] == -1i64 {
marks[k] = t;
Q.add_back(k);
}
true
};
}
vec::from_mut(marks)
}
#[doc="Another version of the bfs function.
This one uses the same algorithm as the parallel one, just without
using the parallel vector operators."]
fn bfs2(graph: graph, key: node_id) -> bfs_result {
// This works by doing functional updates of a color vector.
enum color {
white,
// node_id marks which node turned this gray/black.
// the node id later becomes the parent.
gray(node_id),
black(node_id)
};
let mut colors = vec::from_fn(graph.len()) {|i|
if i as node_id == key {
gray(key)
}
else {
white
}
};
fn is_gray(c: color) -> bool {
alt c {
gray(_) { true }
_ { false }
}
}
let mut i = 0u;
while vec::any(colors, is_gray) {
// Do the BFS.
log(info, #fmt("PBFS iteration %?", i));
i += 1u;
colors = colors.mapi() {|i, c|
let c : color = c;
alt c {
white {
let i = i as node_id;
let neighbors = graph[i];
let mut color = white;
neighbors.each() {|k|
if is_gray(colors[k]) {
color = gray(k);
false
}
else { true }
};
color
}
gray(parent) { black(parent) }
black(parent) { black(parent) }
}
}
}
// Convert the results.
vec::map(colors) {|c|
alt c {
white { -1i64 }
black(parent) { parent }
_ { fail "Found remaining gray nodes in BFS" }
}
}
}
#[doc="A parallel version of the bfs function."]
fn pbfs(&&graph: arc::arc<graph>, key: node_id) -> bfs_result {
// This works by doing functional updates of a color vector.
enum color {
white,
// node_id marks which node turned this gray/black.
// the node id later becomes the parent.
gray(node_id),
black(node_id)
};
let mut colors = vec::from_fn((*arc::get(&graph)).len()) {|i|
if i as node_id == key {
gray(key)
}
else {
white
}
};
#[inline(always)]
fn is_gray(c: color) -> bool {
alt c {
gray(_) { true }
_ { false }
}
}
let mut i = 0u;
while par::any(colors, is_gray) {
// Do the BFS.
log(info, #fmt("PBFS iteration %?", i));
i += 1u;
let old_len = colors.len();
let color = arc::arc(colors);
colors = par::mapi_factory(*arc::get(&color)) {||
let colors = arc::clone(&color);
let graph = arc::clone(&graph);
fn~(i: uint, c: color) -> color {
let c : color = c;
let colors = arc::get(&colors);
let graph = arc::get(&graph);
alt c {
white {
let i = i as node_id;
let neighbors = graph[i];
let mut color = white;
neighbors.each() {|k|
if is_gray(colors[k]) {
color = gray(k);
false
}
else { true }
};
color
}
gray(parent) { black(parent) }
black(parent) { black(parent) }
}
}
};
assert(colors.len() == old_len);
}
// Convert the results.
par::map(colors) {|c|
alt c {
white { -1i64 }
black(parent) { parent }
_ { fail "Found remaining gray nodes in BFS" }
}
}
}
#[doc="Performs at least some of the validation in the Graph500 spec."]
fn validate(edges: [(node_id, node_id)],
root: node_id, tree: bfs_result) -> bool {
// There are 5 things to test. Below is code for each of them.
// 1. The BFS tree is a tree and does not contain cycles.
//
// We do this by iterating over the tree, and tracing each of the
// parent chains back to the root. While we do this, we also
// compute the levels for each node.
log(info, "Verifying tree structure...");
let mut status = true;
let level = tree.map() {|parent|
let mut parent = parent;
let mut path = [];
if parent == -1i64 {
// This node was not in the tree.
-1
}
else {
while parent != root {
if vec::contains(path, parent) {
status = false;
}
path += [parent];
parent = tree[parent];
}
// The length of the path back to the root is the current
// level.
path.len() as int
}
};
if !status { ret status }
// 2. Each tree edge connects vertices whose BFS levels differ by
// exactly one.
log(info, "Verifying tree edges...");
let status = tree.alli() {|k, parent|
if parent != root && parent != -1i64 {
level[parent] == level[k] - 1
}
else {
true
}
};
if !status { ret status }
// 3. Every edge in the input list has vertices with levels that
// differ by at most one or that both are not in the BFS tree.
log(info, "Verifying graph edges...");
let status = edges.all() {|e|
let (u, v) = e;
abs(level[u] - level[v]) <= 1
};
if !status { ret status }
// 4. The BFS tree spans an entire connected component's vertices.
// This is harder. We'll skip it for now...
// 5. A node and its parent are joined by an edge of the original
// graph.
log(info, "Verifying tree and graph edges...");
let status = par::alli(tree) {|u, v|
let u = u as node_id;
if v == -1i64 || u == root {
true
}
else {
edges.contains((u, v)) || edges.contains((v, u))
}
};
if !status { ret status }
// If we get through here, all the tests passed!
true
}
fn main(args: [str]) {
let args = if os::getenv("RUST_BENCH").is_some() {
["", "15", "48"]
} else if args.len() <= 1u {
["", "10", "16"]
} else {
args
};
let scale = uint::from_str(args[1]).get();
let num_keys = uint::from_str(args[2]).get();
let do_validate = false;
let do_sequential = true;
let start = time::precise_time_s();
let edges = make_edges(scale, 16u);
let stop = time::precise_time_s();
io::stdout().write_line(#fmt("Generated %? edges in %? seconds.",
vec::len(edges), stop - start));
let start = time::precise_time_s();
let graph = make_graph(1u << scale, edges);
let stop = time::precise_time_s();
let mut total_edges = 0u;
vec::each(graph) {|edges| total_edges += edges.len(); true };
io::stdout().write_line(#fmt("Generated graph with %? edges in %? seconds.",
total_edges / 2u,
stop - start));
let mut total_seq = 0.0;
let mut total_par = 0.0;
let graph_arc = arc::arc(copy graph);
gen_search_keys(graph, num_keys).map() {|root|
io::stdout().write_line("");
io::stdout().write_line(#fmt("Search key: %?", root));
if do_sequential {
let start = time::precise_time_s();
let bfs_tree = bfs(graph, root);
let stop = time::precise_time_s();
//total_seq += stop - start;
io::stdout().write_line(
#fmt("Sequential BFS completed in %? seconds.",
stop - start));
if do_validate {
let start = time::precise_time_s();
assert(validate(edges, root, bfs_tree));
let stop = time::precise_time_s();
io::stdout().write_line(
#fmt("Validation completed in %? seconds.",
stop - start));
}
let start = time::precise_time_s();
let bfs_tree = bfs2(graph, root);
let stop = time::precise_time_s();
total_seq += stop - start;
io::stdout().write_line(
#fmt("Alternate Sequential BFS completed in %? seconds.",
stop - start));
if do_validate {
let start = time::precise_time_s();
assert(validate(edges, root, bfs_tree));
let stop = time::precise_time_s();
io::stdout().write_line(
#fmt("Validation completed in %? seconds.",
stop - start));
}
}
let start = time::precise_time_s();
let bfs_tree = pbfs(graph_arc, root);
let stop = time::precise_time_s();
total_par += stop - start;
io::stdout().write_line(#fmt("Parallel BFS completed in %? seconds.",
stop - start));
if do_validate {
let start = time::precise_time_s();
assert(validate(edges, root, bfs_tree));
let stop = time::precise_time_s();
io::stdout().write_line(#fmt("Validation completed in %? seconds.",
stop - start));
}
};
io::stdout().write_line("");
io::stdout().write_line(
#fmt("Total sequential: %? \t Total Parallel: %? \t Speedup: %?x",
total_seq, total_par, total_seq / total_par));
}