rust/crates/hir/src/lib.rs
2024-01-17 13:47:15 +01:00

5126 lines
176 KiB
Rust

//! HIR (previously known as descriptors) provides a high-level object oriented
//! access to Rust code.
//!
//! The principal difference between HIR and syntax trees is that HIR is bound
//! to a particular crate instance. That is, it has cfg flags and features
//! applied. So, the relation between syntax and HIR is many-to-one.
//!
//! HIR is the public API of the all of the compiler logic above syntax trees.
//! It is written in "OO" style. Each type is self contained (as in, it knows its
//! parents and full context). It should be "clean code".
//!
//! `hir_*` crates are the implementation of the compiler logic.
//! They are written in "ECS" style, with relatively little abstractions.
//! Many types are not self-contained, and explicitly use local indexes, arenas, etc.
//!
//! `hir` is what insulates the "we don't know how to actually write an incremental compiler"
//! from the ide with completions, hovers, etc. It is a (soft, internal) boundary:
//! <https://www.tedinski.com/2018/02/06/system-boundaries.html>.
#![warn(rust_2018_idioms, unused_lifetimes)]
#![cfg_attr(feature = "in-rust-tree", feature(rustc_private))]
#![recursion_limit = "512"]
mod semantics;
mod source_analyzer;
mod from_id;
mod attrs;
mod has_source;
pub mod diagnostics;
pub mod db;
pub mod symbols;
mod display;
use std::{iter, mem::discriminant, ops::ControlFlow};
use arrayvec::ArrayVec;
use base_db::{CrateDisplayName, CrateId, CrateOrigin, Edition, FileId};
use either::Either;
use hir_def::{
body::{BodyDiagnostic, SyntheticSyntax},
data::adt::VariantData,
generics::{LifetimeParamData, TypeOrConstParamData, TypeParamProvenance},
hir::{BindingAnnotation, BindingId, ExprOrPatId, LabelId, Pat},
item_tree::ItemTreeModItemNode,
lang_item::LangItemTarget,
layout::{self, ReprOptions, TargetDataLayout},
nameres::{self, diagnostics::DefDiagnostic},
path::ImportAlias,
per_ns::PerNs,
resolver::{HasResolver, Resolver},
src::HasSource as _,
AssocItemId, AssocItemLoc, AttrDefId, ConstId, ConstParamId, CrateRootModuleId, DefWithBodyId,
EnumId, EnumVariantId, ExternCrateId, FunctionId, GenericDefId, GenericParamId, HasModule,
ImplId, InTypeConstId, ItemContainerId, LifetimeParamId, LocalFieldId, Lookup, MacroExpander,
MacroId, ModuleId, StaticId, StructId, TraitAliasId, TraitId, TupleId, TypeAliasId,
TypeOrConstParamId, TypeParamId, UnionId,
};
use hir_expand::{attrs::collect_attrs, name::name, proc_macro::ProcMacroKind, MacroCallKind};
use hir_ty::{
all_super_traits, autoderef, check_orphan_rules,
consteval::{try_const_usize, unknown_const_as_generic, ConstEvalError, ConstExt},
diagnostics::BodyValidationDiagnostic,
known_const_to_ast,
layout::{Layout as TyLayout, RustcEnumVariantIdx, RustcFieldIdx, TagEncoding},
method_resolution::{self, TyFingerprint},
mir::interpret_mir,
primitive::UintTy,
traits::FnTrait,
AliasTy, CallableDefId, CallableSig, Canonical, CanonicalVarKinds, Cast, ClosureId, GenericArg,
GenericArgData, Interner, ParamKind, QuantifiedWhereClause, Scalar, Substitution,
TraitEnvironment, TraitRefExt, Ty, TyBuilder, TyDefId, TyExt, TyKind, ValueTyDefId,
WhereClause,
};
use itertools::Itertools;
use nameres::diagnostics::DefDiagnosticKind;
use once_cell::unsync::Lazy;
use rustc_hash::FxHashSet;
use stdx::{impl_from, never};
use syntax::{
ast::{self, HasAttrs as _, HasName},
format_smolstr, AstNode, AstPtr, SmolStr, SyntaxNode, SyntaxNodePtr, TextRange, T,
};
use triomphe::Arc;
use crate::db::{DefDatabase, HirDatabase};
pub use crate::{
attrs::{resolve_doc_path_on, HasAttrs},
diagnostics::*,
has_source::HasSource,
semantics::{
DescendPreference, PathResolution, Semantics, SemanticsScope, TypeInfo, VisibleTraits,
},
};
// Be careful with these re-exports.
//
// `hir` is the boundary between the compiler and the IDE. It should try hard to
// isolate the compiler from the ide, to allow the two to be refactored
// independently. Re-exporting something from the compiler is the sure way to
// breach the boundary.
//
// Generally, a refactoring which *removes* a name from this list is a good
// idea!
pub use {
cfg::{CfgAtom, CfgExpr, CfgOptions},
hir_def::{
attr::{builtin::AttributeTemplate, AttrSourceMap, Attrs, AttrsWithOwner},
data::adt::StructKind,
find_path::PrefixKind,
import_map,
lang_item::LangItem,
nameres::{DefMap, ModuleSource},
path::{ModPath, PathKind},
per_ns::Namespace,
type_ref::{Mutability, TypeRef},
visibility::Visibility,
// FIXME: This is here since some queries take it as input that are used
// outside of hir.
{AdtId, ModuleDefId},
},
hir_expand::{
attrs::{Attr, AttrId},
change::Change,
hygiene::{marks_rev, SyntaxContextExt},
name::{known, Name},
proc_macro::ProcMacros,
tt, ExpandResult, HirFileId, HirFileIdExt, InFile, InMacroFile, InRealFile, MacroFileId,
MacroFileIdExt,
},
hir_ty::{
display::{ClosureStyle, HirDisplay, HirDisplayError, HirWrite},
layout::LayoutError,
PointerCast, Safety,
},
// FIXME: Properly encapsulate mir
hir_ty::{mir, Interner as ChalkTyInterner},
};
// These are negative re-exports: pub using these names is forbidden, they
// should remain private to hir internals.
#[allow(unused)]
use {
hir_def::path::Path,
hir_expand::{
name::AsName,
span_map::{ExpansionSpanMap, RealSpanMap, SpanMap, SpanMapRef},
},
};
/// hir::Crate describes a single crate. It's the main interface with which
/// a crate's dependencies interact. Mostly, it should be just a proxy for the
/// root module.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Crate {
pub(crate) id: CrateId,
}
#[derive(Debug)]
pub struct CrateDependency {
pub krate: Crate,
pub name: Name,
}
impl Crate {
pub fn origin(self, db: &dyn HirDatabase) -> CrateOrigin {
db.crate_graph()[self.id].origin.clone()
}
pub fn is_builtin(self, db: &dyn HirDatabase) -> bool {
matches!(self.origin(db), CrateOrigin::Lang(_))
}
pub fn dependencies(self, db: &dyn HirDatabase) -> Vec<CrateDependency> {
db.crate_graph()[self.id]
.dependencies
.iter()
.map(|dep| {
let krate = Crate { id: dep.crate_id };
let name = dep.as_name();
CrateDependency { krate, name }
})
.collect()
}
pub fn reverse_dependencies(self, db: &dyn HirDatabase) -> Vec<Crate> {
let crate_graph = db.crate_graph();
crate_graph
.iter()
.filter(|&krate| {
crate_graph[krate].dependencies.iter().any(|it| it.crate_id == self.id)
})
.map(|id| Crate { id })
.collect()
}
pub fn transitive_reverse_dependencies(
self,
db: &dyn HirDatabase,
) -> impl Iterator<Item = Crate> {
db.crate_graph().transitive_rev_deps(self.id).map(|id| Crate { id })
}
pub fn root_module(self) -> Module {
Module { id: CrateRootModuleId::from(self.id).into() }
}
pub fn modules(self, db: &dyn HirDatabase) -> Vec<Module> {
let def_map = db.crate_def_map(self.id);
def_map.modules().map(|(id, _)| def_map.module_id(id).into()).collect()
}
pub fn root_file(self, db: &dyn HirDatabase) -> FileId {
db.crate_graph()[self.id].root_file_id
}
pub fn edition(self, db: &dyn HirDatabase) -> Edition {
db.crate_graph()[self.id].edition
}
pub fn version(self, db: &dyn HirDatabase) -> Option<String> {
db.crate_graph()[self.id].version.clone()
}
pub fn display_name(self, db: &dyn HirDatabase) -> Option<CrateDisplayName> {
db.crate_graph()[self.id].display_name.clone()
}
pub fn query_external_importables(
self,
db: &dyn DefDatabase,
query: import_map::Query,
) -> impl Iterator<Item = Either<ModuleDef, Macro>> {
let _p = profile::span("query_external_importables");
import_map::search_dependencies(db, self.into(), query).into_iter().map(|item| {
match ItemInNs::from(item) {
ItemInNs::Types(mod_id) | ItemInNs::Values(mod_id) => Either::Left(mod_id),
ItemInNs::Macros(mac_id) => Either::Right(mac_id),
}
})
}
pub fn all(db: &dyn HirDatabase) -> Vec<Crate> {
db.crate_graph().iter().map(|id| Crate { id }).collect()
}
/// Try to get the root URL of the documentation of a crate.
pub fn get_html_root_url(self: &Crate, db: &dyn HirDatabase) -> Option<String> {
// Look for #![doc(html_root_url = "...")]
let attrs = db.attrs(AttrDefId::ModuleId(self.root_module().into()));
let doc_url = attrs.by_key("doc").find_string_value_in_tt("html_root_url");
doc_url.map(|s| s.trim_matches('"').trim_end_matches('/').to_owned() + "/")
}
pub fn cfg(&self, db: &dyn HirDatabase) -> CfgOptions {
db.crate_graph()[self.id].cfg_options.clone()
}
pub fn potential_cfg(&self, db: &dyn HirDatabase) -> CfgOptions {
let data = &db.crate_graph()[self.id];
data.potential_cfg_options.clone().unwrap_or_else(|| data.cfg_options.clone())
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Module {
pub(crate) id: ModuleId,
}
/// The defs which can be visible in the module.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum ModuleDef {
Module(Module),
Function(Function),
Adt(Adt),
// Can't be directly declared, but can be imported.
Variant(Variant),
Const(Const),
Static(Static),
Trait(Trait),
TraitAlias(TraitAlias),
TypeAlias(TypeAlias),
BuiltinType(BuiltinType),
Macro(Macro),
}
impl_from!(
Module,
Function,
Adt(Struct, Enum, Union),
Variant,
Const,
Static,
Trait,
TraitAlias,
TypeAlias,
BuiltinType,
Macro
for ModuleDef
);
impl From<VariantDef> for ModuleDef {
fn from(var: VariantDef) -> Self {
match var {
VariantDef::Struct(t) => Adt::from(t).into(),
VariantDef::Union(t) => Adt::from(t).into(),
VariantDef::Variant(t) => t.into(),
}
}
}
impl ModuleDef {
pub fn module(self, db: &dyn HirDatabase) -> Option<Module> {
match self {
ModuleDef::Module(it) => it.parent(db),
ModuleDef::Function(it) => Some(it.module(db)),
ModuleDef::Adt(it) => Some(it.module(db)),
ModuleDef::Variant(it) => Some(it.module(db)),
ModuleDef::Const(it) => Some(it.module(db)),
ModuleDef::Static(it) => Some(it.module(db)),
ModuleDef::Trait(it) => Some(it.module(db)),
ModuleDef::TraitAlias(it) => Some(it.module(db)),
ModuleDef::TypeAlias(it) => Some(it.module(db)),
ModuleDef::Macro(it) => Some(it.module(db)),
ModuleDef::BuiltinType(_) => None,
}
}
pub fn canonical_path(&self, db: &dyn HirDatabase) -> Option<String> {
let mut segments = vec![self.name(db)?];
for m in self.module(db)?.path_to_root(db) {
segments.extend(m.name(db))
}
segments.reverse();
Some(segments.iter().map(|it| it.display(db.upcast())).join("::"))
}
pub fn canonical_module_path(
&self,
db: &dyn HirDatabase,
) -> Option<impl Iterator<Item = Module>> {
self.module(db).map(|it| it.path_to_root(db).into_iter().rev())
}
pub fn name(self, db: &dyn HirDatabase) -> Option<Name> {
let name = match self {
ModuleDef::Module(it) => it.name(db)?,
ModuleDef::Const(it) => it.name(db)?,
ModuleDef::Adt(it) => it.name(db),
ModuleDef::Trait(it) => it.name(db),
ModuleDef::TraitAlias(it) => it.name(db),
ModuleDef::Function(it) => it.name(db),
ModuleDef::Variant(it) => it.name(db),
ModuleDef::TypeAlias(it) => it.name(db),
ModuleDef::Static(it) => it.name(db),
ModuleDef::Macro(it) => it.name(db),
ModuleDef::BuiltinType(it) => it.name(),
};
Some(name)
}
pub fn diagnostics(self, db: &dyn HirDatabase) -> Vec<AnyDiagnostic> {
let id = match self {
ModuleDef::Adt(it) => match it {
Adt::Struct(it) => it.id.into(),
Adt::Enum(it) => it.id.into(),
Adt::Union(it) => it.id.into(),
},
ModuleDef::Trait(it) => it.id.into(),
ModuleDef::TraitAlias(it) => it.id.into(),
ModuleDef::Function(it) => it.id.into(),
ModuleDef::TypeAlias(it) => it.id.into(),
ModuleDef::Module(it) => it.id.into(),
ModuleDef::Const(it) => it.id.into(),
ModuleDef::Static(it) => it.id.into(),
ModuleDef::Variant(it) => it.id.into(),
ModuleDef::BuiltinType(_) | ModuleDef::Macro(_) => return Vec::new(),
};
let mut acc = Vec::new();
match self.as_def_with_body() {
Some(def) => {
def.diagnostics(db, &mut acc);
}
None => {
for diag in hir_ty::diagnostics::incorrect_case(db, id) {
acc.push(diag.into())
}
}
}
acc
}
pub fn as_def_with_body(self) -> Option<DefWithBody> {
match self {
ModuleDef::Function(it) => Some(it.into()),
ModuleDef::Const(it) => Some(it.into()),
ModuleDef::Static(it) => Some(it.into()),
ModuleDef::Variant(it) => Some(it.into()),
ModuleDef::Module(_)
| ModuleDef::Adt(_)
| ModuleDef::Trait(_)
| ModuleDef::TraitAlias(_)
| ModuleDef::TypeAlias(_)
| ModuleDef::Macro(_)
| ModuleDef::BuiltinType(_) => None,
}
}
pub fn attrs(&self, db: &dyn HirDatabase) -> Option<AttrsWithOwner> {
Some(match self {
ModuleDef::Module(it) => it.attrs(db),
ModuleDef::Function(it) => it.attrs(db),
ModuleDef::Adt(it) => it.attrs(db),
ModuleDef::Variant(it) => it.attrs(db),
ModuleDef::Const(it) => it.attrs(db),
ModuleDef::Static(it) => it.attrs(db),
ModuleDef::Trait(it) => it.attrs(db),
ModuleDef::TraitAlias(it) => it.attrs(db),
ModuleDef::TypeAlias(it) => it.attrs(db),
ModuleDef::Macro(it) => it.attrs(db),
ModuleDef::BuiltinType(_) => return None,
})
}
}
impl HasVisibility for ModuleDef {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
match *self {
ModuleDef::Module(it) => it.visibility(db),
ModuleDef::Function(it) => it.visibility(db),
ModuleDef::Adt(it) => it.visibility(db),
ModuleDef::Const(it) => it.visibility(db),
ModuleDef::Static(it) => it.visibility(db),
ModuleDef::Trait(it) => it.visibility(db),
ModuleDef::TraitAlias(it) => it.visibility(db),
ModuleDef::TypeAlias(it) => it.visibility(db),
ModuleDef::Variant(it) => it.visibility(db),
ModuleDef::Macro(it) => it.visibility(db),
ModuleDef::BuiltinType(_) => Visibility::Public,
}
}
}
impl Module {
/// Name of this module.
pub fn name(self, db: &dyn HirDatabase) -> Option<Name> {
self.id.name(db.upcast())
}
/// Returns the crate this module is part of.
pub fn krate(self) -> Crate {
Crate { id: self.id.krate() }
}
/// Topmost parent of this module. Every module has a `crate_root`, but some
/// might be missing `krate`. This can happen if a module's file is not included
/// in the module tree of any target in `Cargo.toml`.
pub fn crate_root(self, db: &dyn HirDatabase) -> Module {
let def_map = db.crate_def_map(self.id.krate());
Module { id: def_map.crate_root().into() }
}
pub fn is_crate_root(self) -> bool {
DefMap::ROOT == self.id.local_id
}
/// Iterates over all child modules.
pub fn children(self, db: &dyn HirDatabase) -> impl Iterator<Item = Module> {
let def_map = self.id.def_map(db.upcast());
let children = def_map[self.id.local_id]
.children
.values()
.map(|module_id| Module { id: def_map.module_id(*module_id) })
.collect::<Vec<_>>();
children.into_iter()
}
/// Finds a parent module.
pub fn parent(self, db: &dyn HirDatabase) -> Option<Module> {
// FIXME: handle block expressions as modules (their parent is in a different DefMap)
let def_map = self.id.def_map(db.upcast());
let parent_id = def_map[self.id.local_id].parent?;
Some(Module { id: def_map.module_id(parent_id) })
}
/// Finds nearest non-block ancestor `Module` (`self` included).
pub fn nearest_non_block_module(self, db: &dyn HirDatabase) -> Module {
let mut id = self.id;
while id.is_block_module() {
id = id.containing_module(db.upcast()).expect("block without parent module");
}
Module { id }
}
pub fn path_to_root(self, db: &dyn HirDatabase) -> Vec<Module> {
let mut res = vec![self];
let mut curr = self;
while let Some(next) = curr.parent(db) {
res.push(next);
curr = next
}
res
}
/// Returns a `ModuleScope`: a set of items, visible in this module.
pub fn scope(
self,
db: &dyn HirDatabase,
visible_from: Option<Module>,
) -> Vec<(Name, ScopeDef)> {
self.id.def_map(db.upcast())[self.id.local_id]
.scope
.entries()
.filter_map(|(name, def)| {
if let Some(m) = visible_from {
let filtered =
def.filter_visibility(|vis| vis.is_visible_from(db.upcast(), m.id));
if filtered.is_none() && !def.is_none() {
None
} else {
Some((name, filtered))
}
} else {
Some((name, def))
}
})
.flat_map(|(name, def)| {
ScopeDef::all_items(def).into_iter().map(move |item| (name.clone(), item))
})
.collect()
}
/// Fills `acc` with the module's diagnostics.
pub fn diagnostics(self, db: &dyn HirDatabase, acc: &mut Vec<AnyDiagnostic>) {
let _p = profile::span("Module::diagnostics").detail(|| {
format!(
"{:?}",
self.name(db)
.map_or("<unknown>".into(), |name| name.display(db.upcast()).to_string())
)
});
let def_map = self.id.def_map(db.upcast());
for diag in def_map.diagnostics() {
if diag.in_module != self.id.local_id {
// FIXME: This is accidentally quadratic.
continue;
}
emit_def_diagnostic(db, acc, diag);
}
for def in self.declarations(db) {
match def {
ModuleDef::Module(m) => {
// Only add diagnostics from inline modules
if def_map[m.id.local_id].origin.is_inline() {
m.diagnostics(db, acc)
}
acc.extend(def.diagnostics(db))
}
ModuleDef::Trait(t) => {
for diag in db.trait_data_with_diagnostics(t.id).1.iter() {
emit_def_diagnostic(db, acc, diag);
}
acc.extend(def.diagnostics(db))
}
ModuleDef::Adt(adt) => {
match adt {
Adt::Struct(s) => {
for diag in db.struct_data_with_diagnostics(s.id).1.iter() {
emit_def_diagnostic(db, acc, diag);
}
}
Adt::Union(u) => {
for diag in db.union_data_with_diagnostics(u.id).1.iter() {
emit_def_diagnostic(db, acc, diag);
}
}
Adt::Enum(e) => {
for v in e.variants(db) {
acc.extend(ModuleDef::Variant(v).diagnostics(db));
for diag in db.enum_variant_data_with_diagnostics(v.id).1.iter() {
emit_def_diagnostic(db, acc, diag);
}
}
}
}
acc.extend(def.diagnostics(db))
}
ModuleDef::Macro(m) => emit_macro_def_diagnostics(db, acc, m),
_ => acc.extend(def.diagnostics(db)),
}
}
self.legacy_macros(db).into_iter().for_each(|m| emit_macro_def_diagnostics(db, acc, m));
let inherent_impls = db.inherent_impls_in_crate(self.id.krate());
let mut impl_assoc_items_scratch = vec![];
for impl_def in self.impl_defs(db) {
let loc = impl_def.id.lookup(db.upcast());
let tree = loc.id.item_tree(db.upcast());
let node = &tree[loc.id.value];
let file_id = loc.id.file_id();
if file_id.macro_file().map_or(false, |it| it.is_builtin_derive(db.upcast())) {
// these expansion come from us, diagnosing them is a waste of resources
// FIXME: Once we diagnose the inputs to builtin derives, we should at least extract those diagnostics somehow
continue;
}
let ast_id_map = db.ast_id_map(file_id);
for diag in db.impl_data_with_diagnostics(impl_def.id).1.iter() {
emit_def_diagnostic(db, acc, diag);
}
if inherent_impls.invalid_impls().contains(&impl_def.id) {
acc.push(IncoherentImpl { impl_: ast_id_map.get(node.ast_id()), file_id }.into())
}
if !impl_def.check_orphan_rules(db) {
acc.push(TraitImplOrphan { impl_: ast_id_map.get(node.ast_id()), file_id }.into())
}
let trait_ = impl_def.trait_(db);
let trait_is_unsafe = trait_.map_or(false, |t| t.is_unsafe(db));
let impl_is_negative = impl_def.is_negative(db);
let impl_is_unsafe = impl_def.is_unsafe(db);
let drop_maybe_dangle = (|| {
// FIXME: This can be simplified a lot by exposing hir-ty's utils.rs::Generics helper
let trait_ = trait_?;
let drop_trait = db.lang_item(self.krate().into(), LangItem::Drop)?.as_trait()?;
if drop_trait != trait_.into() {
return None;
}
let parent = impl_def.id.into();
let generic_params = db.generic_params(parent);
let lifetime_params = generic_params.lifetimes.iter().map(|(local_id, _)| {
GenericParamId::LifetimeParamId(LifetimeParamId { parent, local_id })
});
let type_params = generic_params
.iter()
.filter(|(_, it)| it.type_param().is_some())
.map(|(local_id, _)| {
GenericParamId::TypeParamId(TypeParamId::from_unchecked(
TypeOrConstParamId { parent, local_id },
))
});
let res = type_params
.chain(lifetime_params)
.any(|p| db.attrs(AttrDefId::GenericParamId(p)).by_key("may_dangle").exists());
Some(res)
})()
.unwrap_or(false);
match (impl_is_unsafe, trait_is_unsafe, impl_is_negative, drop_maybe_dangle) {
// unsafe negative impl
(true, _, true, _) |
// unsafe impl for safe trait
(true, false, _, false) => acc.push(TraitImplIncorrectSafety { impl_: ast_id_map.get(node.ast_id()), file_id, should_be_safe: true }.into()),
// safe impl for unsafe trait
(false, true, false, _) |
// safe impl of dangling drop
(false, false, _, true) => acc.push(TraitImplIncorrectSafety { impl_: ast_id_map.get(node.ast_id()), file_id, should_be_safe: false }.into()),
_ => (),
};
// Negative impls can't have items, don't emit missing items diagnostic for them
if let (false, Some(trait_)) = (impl_is_negative, trait_) {
let items = &db.trait_data(trait_.into()).items;
let required_items = items.iter().filter(|&(_, assoc)| match *assoc {
AssocItemId::FunctionId(it) => !db.function_data(it).has_body(),
AssocItemId::ConstId(id) => Const::from(id).value(db).is_none(),
AssocItemId::TypeAliasId(it) => db.type_alias_data(it).type_ref.is_none(),
});
impl_assoc_items_scratch.extend(db.impl_data(impl_def.id).items.iter().filter_map(
|&item| {
Some((
item,
match item {
AssocItemId::FunctionId(it) => db.function_data(it).name.clone(),
AssocItemId::ConstId(it) => {
db.const_data(it).name.as_ref()?.clone()
}
AssocItemId::TypeAliasId(it) => db.type_alias_data(it).name.clone(),
},
))
},
));
let redundant = impl_assoc_items_scratch
.iter()
.filter(|(id, name)| {
!items.iter().any(|(impl_name, impl_item)| {
discriminant(impl_item) == discriminant(id) && impl_name == name
})
})
.map(|(item, name)| (name.clone(), AssocItem::from(*item)));
for (name, assoc_item) in redundant {
acc.push(
TraitImplRedundantAssocItems {
trait_,
file_id,
impl_: ast_id_map.get(node.ast_id()),
assoc_item: (name, assoc_item),
}
.into(),
)
}
let missing: Vec<_> = required_items
.filter(|(name, id)| {
!impl_assoc_items_scratch.iter().any(|(impl_item, impl_name)| {
discriminant(impl_item) == discriminant(id) && impl_name == name
})
})
.map(|(name, item)| (name.clone(), AssocItem::from(*item)))
.collect();
if !missing.is_empty() {
acc.push(
TraitImplMissingAssocItems {
impl_: ast_id_map.get(node.ast_id()),
file_id,
missing,
}
.into(),
)
}
impl_assoc_items_scratch.clear();
}
for &item in &db.impl_data(impl_def.id).items {
let def: DefWithBody = match AssocItem::from(item) {
AssocItem::Function(it) => it.into(),
AssocItem::Const(it) => it.into(),
AssocItem::TypeAlias(_) => continue,
};
def.diagnostics(db, acc);
}
}
}
pub fn declarations(self, db: &dyn HirDatabase) -> Vec<ModuleDef> {
let def_map = self.id.def_map(db.upcast());
let scope = &def_map[self.id.local_id].scope;
scope
.declarations()
.map(ModuleDef::from)
.chain(scope.unnamed_consts(db.upcast()).map(|id| ModuleDef::Const(Const::from(id))))
.collect()
}
pub fn legacy_macros(self, db: &dyn HirDatabase) -> Vec<Macro> {
let def_map = self.id.def_map(db.upcast());
let scope = &def_map[self.id.local_id].scope;
scope.legacy_macros().flat_map(|(_, it)| it).map(|&it| it.into()).collect()
}
pub fn impl_defs(self, db: &dyn HirDatabase) -> Vec<Impl> {
let def_map = self.id.def_map(db.upcast());
def_map[self.id.local_id].scope.impls().map(Impl::from).collect()
}
/// Finds a path that can be used to refer to the given item from within
/// this module, if possible.
pub fn find_use_path(
self,
db: &dyn DefDatabase,
item: impl Into<ItemInNs>,
prefer_no_std: bool,
prefer_prelude: bool,
) -> Option<ModPath> {
hir_def::find_path::find_path(
db,
item.into().into(),
self.into(),
prefer_no_std,
prefer_prelude,
)
}
/// Finds a path that can be used to refer to the given item from within
/// this module, if possible. This is used for returning import paths for use-statements.
pub fn find_use_path_prefixed(
self,
db: &dyn DefDatabase,
item: impl Into<ItemInNs>,
prefix_kind: PrefixKind,
prefer_no_std: bool,
prefer_prelude: bool,
) -> Option<ModPath> {
hir_def::find_path::find_path_prefixed(
db,
item.into().into(),
self.into(),
prefix_kind,
prefer_no_std,
prefer_prelude,
)
}
}
fn emit_macro_def_diagnostics(db: &dyn HirDatabase, acc: &mut Vec<AnyDiagnostic>, m: Macro) {
let id = db.macro_def(m.id);
if let hir_expand::db::TokenExpander::DeclarativeMacro(expander) = db.macro_expander(id) {
if let Some(e) = expander.mac.err() {
let Some(ast) = id.ast_id().left() else {
never!("declarative expander for non decl-macro: {:?}", e);
return;
};
emit_def_diagnostic_(
db,
acc,
&DefDiagnosticKind::MacroDefError { ast, message: e.to_string() },
);
}
}
}
fn emit_def_diagnostic(db: &dyn HirDatabase, acc: &mut Vec<AnyDiagnostic>, diag: &DefDiagnostic) {
emit_def_diagnostic_(db, acc, &diag.kind)
}
fn emit_def_diagnostic_(
db: &dyn HirDatabase,
acc: &mut Vec<AnyDiagnostic>,
diag: &DefDiagnosticKind,
) {
match diag {
DefDiagnosticKind::UnresolvedModule { ast: declaration, candidates } => {
let decl = declaration.to_ptr(db.upcast());
acc.push(
UnresolvedModule {
decl: InFile::new(declaration.file_id, decl),
candidates: candidates.clone(),
}
.into(),
)
}
DefDiagnosticKind::UnresolvedExternCrate { ast } => {
let item = ast.to_ptr(db.upcast());
acc.push(UnresolvedExternCrate { decl: InFile::new(ast.file_id, item) }.into());
}
DefDiagnosticKind::UnresolvedImport { id, index } => {
let file_id = id.file_id();
let item_tree = id.item_tree(db.upcast());
let import = &item_tree[id.value];
let use_tree = import.use_tree_to_ast(db.upcast(), file_id, *index);
acc.push(
UnresolvedImport { decl: InFile::new(file_id, AstPtr::new(&use_tree)) }.into(),
);
}
DefDiagnosticKind::UnconfiguredCode { ast, cfg, opts } => {
let item = ast.to_ptr(db.upcast());
acc.push(
InactiveCode { node: ast.with_value(item), cfg: cfg.clone(), opts: opts.clone() }
.into(),
);
}
DefDiagnosticKind::UnresolvedProcMacro { ast, krate } => {
let (node, precise_location, macro_name, kind) = precise_macro_call_location(ast, db);
acc.push(
UnresolvedProcMacro { node, precise_location, macro_name, kind, krate: *krate }
.into(),
);
}
DefDiagnosticKind::UnresolvedMacroCall { ast, path } => {
let (node, precise_location, _, _) = precise_macro_call_location(ast, db);
acc.push(
UnresolvedMacroCall {
macro_call: node,
precise_location,
path: path.clone(),
is_bang: matches!(ast, MacroCallKind::FnLike { .. }),
}
.into(),
);
}
DefDiagnosticKind::MacroError { ast, message } => {
let (node, precise_location, _, _) = precise_macro_call_location(ast, db);
acc.push(MacroError { node, precise_location, message: message.clone() }.into());
}
DefDiagnosticKind::MacroExpansionParseError { ast, errors } => {
let (node, precise_location, _, _) = precise_macro_call_location(ast, db);
acc.push(
MacroExpansionParseError { node, precise_location, errors: errors.clone() }.into(),
);
}
DefDiagnosticKind::UnimplementedBuiltinMacro { ast } => {
let node = ast.to_node(db.upcast());
// Must have a name, otherwise we wouldn't emit it.
let name = node.name().expect("unimplemented builtin macro with no name");
acc.push(
UnimplementedBuiltinMacro {
node: ast.with_value(SyntaxNodePtr::from(AstPtr::new(&name))),
}
.into(),
);
}
DefDiagnosticKind::InvalidDeriveTarget { ast, id } => {
let node = ast.to_node(db.upcast());
let derive = node.attrs().nth(*id as usize);
match derive {
Some(derive) => {
acc.push(
InvalidDeriveTarget {
node: ast.with_value(SyntaxNodePtr::from(AstPtr::new(&derive))),
}
.into(),
);
}
None => stdx::never!("derive diagnostic on item without derive attribute"),
}
}
DefDiagnosticKind::MalformedDerive { ast, id } => {
let node = ast.to_node(db.upcast());
let derive = node.attrs().nth(*id as usize);
match derive {
Some(derive) => {
acc.push(
MalformedDerive {
node: ast.with_value(SyntaxNodePtr::from(AstPtr::new(&derive))),
}
.into(),
);
}
None => stdx::never!("derive diagnostic on item without derive attribute"),
}
}
DefDiagnosticKind::MacroDefError { ast, message } => {
let node = ast.to_node(db.upcast());
acc.push(
MacroDefError {
node: InFile::new(ast.file_id, AstPtr::new(&node)),
name: node.name().map(|it| it.syntax().text_range()),
message: message.clone(),
}
.into(),
);
}
}
}
fn precise_macro_call_location(
ast: &MacroCallKind,
db: &dyn HirDatabase,
) -> (InFile<SyntaxNodePtr>, Option<TextRange>, Option<String>, MacroKind) {
// FIXME: maybe we actually want slightly different ranges for the different macro diagnostics
// - e.g. the full attribute for macro errors, but only the name for name resolution
match ast {
MacroCallKind::FnLike { ast_id, .. } => {
let node = ast_id.to_node(db.upcast());
(
ast_id.with_value(SyntaxNodePtr::from(AstPtr::new(&node))),
node.path()
.and_then(|it| it.segment())
.and_then(|it| it.name_ref())
.map(|it| it.syntax().text_range()),
node.path().and_then(|it| it.segment()).map(|it| it.to_string()),
MacroKind::ProcMacro,
)
}
MacroCallKind::Derive { ast_id, derive_attr_index, derive_index } => {
let node = ast_id.to_node(db.upcast());
// Compute the precise location of the macro name's token in the derive
// list.
let token = (|| {
let derive_attr = collect_attrs(&node)
.nth(derive_attr_index.ast_index())
.and_then(|x| Either::left(x.1))?;
let token_tree = derive_attr.meta()?.token_tree()?;
let group_by = token_tree
.syntax()
.children_with_tokens()
.filter_map(|elem| match elem {
syntax::NodeOrToken::Token(tok) => Some(tok),
_ => None,
})
.group_by(|t| t.kind() == T![,]);
let (_, mut group) = group_by
.into_iter()
.filter(|&(comma, _)| !comma)
.nth(*derive_index as usize)?;
group.find(|t| t.kind() == T![ident])
})();
(
ast_id.with_value(SyntaxNodePtr::from(AstPtr::new(&node))),
token.as_ref().map(|tok| tok.text_range()),
token.as_ref().map(ToString::to_string),
MacroKind::Derive,
)
}
MacroCallKind::Attr { ast_id, invoc_attr_index, .. } => {
let node = ast_id.to_node(db.upcast());
let attr = collect_attrs(&node)
.nth(invoc_attr_index.ast_index())
.and_then(|x| Either::left(x.1))
.unwrap_or_else(|| {
panic!("cannot find attribute #{}", invoc_attr_index.ast_index())
});
(
ast_id.with_value(SyntaxNodePtr::from(AstPtr::new(&attr))),
Some(attr.syntax().text_range()),
attr.path()
.and_then(|path| path.segment())
.and_then(|seg| seg.name_ref())
.as_ref()
.map(ToString::to_string),
MacroKind::Attr,
)
}
}
}
impl HasVisibility for Module {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
let def_map = self.id.def_map(db.upcast());
let module_data = &def_map[self.id.local_id];
module_data.visibility
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Field {
pub(crate) parent: VariantDef,
pub(crate) id: LocalFieldId,
}
#[derive(Debug, PartialEq, Eq, Copy, Clone, Hash)]
pub struct TupleField {
pub owner: DefWithBodyId,
pub tuple: TupleId,
pub index: u32,
}
impl TupleField {
pub fn name(&self) -> Name {
Name::new_tuple_field(self.index as usize)
}
pub fn ty(&self, db: &dyn HirDatabase) -> Type {
let ty = db.infer(self.owner).tuple_field_access_types[&self.tuple]
.as_slice(Interner)
.get(self.index as usize)
.and_then(|arg| arg.ty(Interner))
.cloned()
.unwrap_or_else(|| TyKind::Error.intern(Interner));
Type { env: db.trait_environment_for_body(self.owner), ty }
}
}
#[derive(Debug, PartialEq, Eq)]
pub enum FieldSource {
Named(ast::RecordField),
Pos(ast::TupleField),
}
impl Field {
pub fn name(&self, db: &dyn HirDatabase) -> Name {
self.parent.variant_data(db).fields()[self.id].name.clone()
}
pub fn index(&self) -> usize {
u32::from(self.id.into_raw()) as usize
}
/// Returns the type as in the signature of the struct (i.e., with
/// placeholder types for type parameters). Only use this in the context of
/// the field definition.
pub fn ty(&self, db: &dyn HirDatabase) -> Type {
let var_id = self.parent.into();
let generic_def_id: GenericDefId = match self.parent {
VariantDef::Struct(it) => it.id.into(),
VariantDef::Union(it) => it.id.into(),
VariantDef::Variant(it) => it.id.into(),
};
let substs = TyBuilder::placeholder_subst(db, generic_def_id);
let ty = db.field_types(var_id)[self.id].clone().substitute(Interner, &substs);
Type::new(db, var_id, ty)
}
pub fn layout(&self, db: &dyn HirDatabase) -> Result<Layout, LayoutError> {
db.layout_of_ty(
self.ty(db).ty,
db.trait_environment(match hir_def::VariantId::from(self.parent) {
hir_def::VariantId::EnumVariantId(id) => GenericDefId::EnumVariantId(id),
hir_def::VariantId::StructId(id) => GenericDefId::AdtId(id.into()),
hir_def::VariantId::UnionId(id) => GenericDefId::AdtId(id.into()),
}),
)
.map(|layout| Layout(layout, db.target_data_layout(self.krate(db).into()).unwrap()))
}
pub fn parent_def(&self, _db: &dyn HirDatabase) -> VariantDef {
self.parent
}
}
impl HasVisibility for Field {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
let variant_data = self.parent.variant_data(db);
let visibility = &variant_data.fields()[self.id].visibility;
let parent_id: hir_def::VariantId = self.parent.into();
visibility.resolve(db.upcast(), &parent_id.resolver(db.upcast()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Struct {
pub(crate) id: StructId,
}
impl Struct {
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.lookup(db.upcast()).container }
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
db.struct_data(self.id).name.clone()
}
pub fn fields(self, db: &dyn HirDatabase) -> Vec<Field> {
db.struct_data(self.id)
.variant_data
.fields()
.iter()
.map(|(id, _)| Field { parent: self.into(), id })
.collect()
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
Type::from_def(db, self.id)
}
pub fn constructor_ty(self, db: &dyn HirDatabase) -> Type {
Type::from_value_def(db, self.id)
}
pub fn repr(self, db: &dyn HirDatabase) -> Option<ReprOptions> {
db.struct_data(self.id).repr
}
pub fn kind(self, db: &dyn HirDatabase) -> StructKind {
self.variant_data(db).kind()
}
fn variant_data(self, db: &dyn HirDatabase) -> Arc<VariantData> {
db.struct_data(self.id).variant_data.clone()
}
}
impl HasVisibility for Struct {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
db.struct_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Union {
pub(crate) id: UnionId,
}
impl Union {
pub fn name(self, db: &dyn HirDatabase) -> Name {
db.union_data(self.id).name.clone()
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.lookup(db.upcast()).container }
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
Type::from_def(db, self.id)
}
pub fn constructor_ty(self, db: &dyn HirDatabase) -> Type {
Type::from_value_def(db, self.id)
}
pub fn fields(self, db: &dyn HirDatabase) -> Vec<Field> {
db.union_data(self.id)
.variant_data
.fields()
.iter()
.map(|(id, _)| Field { parent: self.into(), id })
.collect()
}
fn variant_data(self, db: &dyn HirDatabase) -> Arc<VariantData> {
db.union_data(self.id).variant_data.clone()
}
}
impl HasVisibility for Union {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
db.union_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Enum {
pub(crate) id: EnumId,
}
impl Enum {
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.lookup(db.upcast()).container }
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
db.enum_data(self.id).name.clone()
}
pub fn variants(self, db: &dyn HirDatabase) -> Vec<Variant> {
db.enum_data(self.id).variants.iter().map(|&(id, _)| Variant { id }).collect()
}
pub fn repr(self, db: &dyn HirDatabase) -> Option<ReprOptions> {
db.enum_data(self.id).repr
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
Type::from_def(db, self.id)
}
/// The type of the enum variant bodies.
pub fn variant_body_ty(self, db: &dyn HirDatabase) -> Type {
Type::new_for_crate(
self.id.lookup(db.upcast()).container.krate(),
TyBuilder::builtin(match db.enum_data(self.id).variant_body_type() {
layout::IntegerType::Pointer(sign) => match sign {
true => hir_def::builtin_type::BuiltinType::Int(
hir_def::builtin_type::BuiltinInt::Isize,
),
false => hir_def::builtin_type::BuiltinType::Uint(
hir_def::builtin_type::BuiltinUint::Usize,
),
},
layout::IntegerType::Fixed(i, sign) => match sign {
true => hir_def::builtin_type::BuiltinType::Int(match i {
layout::Integer::I8 => hir_def::builtin_type::BuiltinInt::I8,
layout::Integer::I16 => hir_def::builtin_type::BuiltinInt::I16,
layout::Integer::I32 => hir_def::builtin_type::BuiltinInt::I32,
layout::Integer::I64 => hir_def::builtin_type::BuiltinInt::I64,
layout::Integer::I128 => hir_def::builtin_type::BuiltinInt::I128,
}),
false => hir_def::builtin_type::BuiltinType::Uint(match i {
layout::Integer::I8 => hir_def::builtin_type::BuiltinUint::U8,
layout::Integer::I16 => hir_def::builtin_type::BuiltinUint::U16,
layout::Integer::I32 => hir_def::builtin_type::BuiltinUint::U32,
layout::Integer::I64 => hir_def::builtin_type::BuiltinUint::U64,
layout::Integer::I128 => hir_def::builtin_type::BuiltinUint::U128,
}),
},
}),
)
}
/// Returns true if at least one variant of this enum is a non-unit variant.
pub fn is_data_carrying(self, db: &dyn HirDatabase) -> bool {
self.variants(db).iter().any(|v| !matches!(v.kind(db), StructKind::Unit))
}
pub fn layout(self, db: &dyn HirDatabase) -> Result<Layout, LayoutError> {
Adt::from(self).layout(db)
}
}
impl HasVisibility for Enum {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
db.enum_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast()))
}
}
impl From<&Variant> for DefWithBodyId {
fn from(&v: &Variant) -> Self {
DefWithBodyId::VariantId(v.into())
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Variant {
pub(crate) id: EnumVariantId,
}
impl Variant {
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.module(db.upcast()) }
}
pub fn parent_enum(self, db: &dyn HirDatabase) -> Enum {
self.id.lookup(db.upcast()).parent.into()
}
pub fn constructor_ty(self, db: &dyn HirDatabase) -> Type {
Type::from_value_def(db, self.id)
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
db.enum_variant_data(self.id).name.clone()
}
pub fn fields(self, db: &dyn HirDatabase) -> Vec<Field> {
self.variant_data(db)
.fields()
.iter()
.map(|(id, _)| Field { parent: self.into(), id })
.collect()
}
pub fn kind(self, db: &dyn HirDatabase) -> StructKind {
self.variant_data(db).kind()
}
pub(crate) fn variant_data(self, db: &dyn HirDatabase) -> Arc<VariantData> {
db.enum_variant_data(self.id).variant_data.clone()
}
pub fn value(self, db: &dyn HirDatabase) -> Option<ast::Expr> {
self.source(db)?.value.expr()
}
pub fn eval(self, db: &dyn HirDatabase) -> Result<i128, ConstEvalError> {
db.const_eval_discriminant(self.into())
}
pub fn layout(&self, db: &dyn HirDatabase) -> Result<Layout, LayoutError> {
let parent_enum = self.parent_enum(db);
let parent_layout = parent_enum.layout(db)?;
Ok(match &parent_layout.0.variants {
layout::Variants::Multiple { variants, .. } => Layout(
{
let lookup = self.id.lookup(db.upcast());
let rustc_enum_variant_idx = RustcEnumVariantIdx(lookup.index as usize);
Arc::new(variants[rustc_enum_variant_idx].clone())
},
db.target_data_layout(parent_enum.krate(db).into()).unwrap(),
),
_ => parent_layout,
})
}
}
/// Variants inherit visibility from the parent enum.
impl HasVisibility for Variant {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
self.parent_enum(db).visibility(db)
}
}
/// A Data Type
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Adt {
Struct(Struct),
Union(Union),
Enum(Enum),
}
impl_from!(Struct, Union, Enum for Adt);
impl Adt {
pub fn has_non_default_type_params(self, db: &dyn HirDatabase) -> bool {
let subst = db.generic_defaults(self.into());
subst.iter().any(|ty| match ty.skip_binders().data(Interner) {
GenericArgData::Ty(it) => it.is_unknown(),
_ => false,
})
}
pub fn layout(self, db: &dyn HirDatabase) -> Result<Layout, LayoutError> {
if db.generic_params(self.into()).iter().count() != 0 {
return Err(LayoutError::HasPlaceholder);
}
let krate = self.krate(db).id;
db.layout_of_adt(
self.into(),
Substitution::empty(Interner),
db.trait_environment(self.into()),
)
.map(|layout| Layout(layout, db.target_data_layout(krate).unwrap()))
}
/// Turns this ADT into a type. Any type parameters of the ADT will be
/// turned into unknown types, which is good for e.g. finding the most
/// general set of completions, but will not look very nice when printed.
pub fn ty(self, db: &dyn HirDatabase) -> Type {
let id = AdtId::from(self);
Type::from_def(db, id)
}
/// Turns this ADT into a type with the given type parameters. This isn't
/// the greatest API, FIXME find a better one.
pub fn ty_with_args(self, db: &dyn HirDatabase, args: &[Type]) -> Type {
let id = AdtId::from(self);
let mut it = args.iter().map(|t| t.ty.clone());
let ty = TyBuilder::def_ty(db, id.into(), None)
.fill(|x| {
let r = it.next().unwrap_or_else(|| TyKind::Error.intern(Interner));
match x {
ParamKind::Type => r.cast(Interner),
ParamKind::Const(ty) => unknown_const_as_generic(ty.clone()),
}
})
.build();
Type::new(db, id, ty)
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
match self {
Adt::Struct(s) => s.module(db),
Adt::Union(s) => s.module(db),
Adt::Enum(e) => e.module(db),
}
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
match self {
Adt::Struct(s) => s.name(db),
Adt::Union(u) => u.name(db),
Adt::Enum(e) => e.name(db),
}
}
/// Returns the lifetime of the DataType
pub fn lifetime(&self, db: &dyn HirDatabase) -> Option<LifetimeParamData> {
let resolver = match self {
Adt::Struct(s) => s.id.resolver(db.upcast()),
Adt::Union(u) => u.id.resolver(db.upcast()),
Adt::Enum(e) => e.id.resolver(db.upcast()),
};
resolver
.generic_params()
.and_then(|gp| {
(&gp.lifetimes)
.iter()
// there should only be a single lifetime
// but `Arena` requires to use an iterator
.nth(0)
})
.map(|arena| arena.1.clone())
}
pub fn as_enum(&self) -> Option<Enum> {
if let Self::Enum(v) = self {
Some(*v)
} else {
None
}
}
}
impl HasVisibility for Adt {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
match self {
Adt::Struct(it) => it.visibility(db),
Adt::Union(it) => it.visibility(db),
Adt::Enum(it) => it.visibility(db),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum VariantDef {
Struct(Struct),
Union(Union),
Variant(Variant),
}
impl_from!(Struct, Union, Variant for VariantDef);
impl VariantDef {
pub fn fields(self, db: &dyn HirDatabase) -> Vec<Field> {
match self {
VariantDef::Struct(it) => it.fields(db),
VariantDef::Union(it) => it.fields(db),
VariantDef::Variant(it) => it.fields(db),
}
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
match self {
VariantDef::Struct(it) => it.module(db),
VariantDef::Union(it) => it.module(db),
VariantDef::Variant(it) => it.module(db),
}
}
pub fn name(&self, db: &dyn HirDatabase) -> Name {
match self {
VariantDef::Struct(s) => s.name(db),
VariantDef::Union(u) => u.name(db),
VariantDef::Variant(e) => e.name(db),
}
}
pub(crate) fn variant_data(self, db: &dyn HirDatabase) -> Arc<VariantData> {
match self {
VariantDef::Struct(it) => it.variant_data(db),
VariantDef::Union(it) => it.variant_data(db),
VariantDef::Variant(it) => it.variant_data(db),
}
}
}
/// The defs which have a body.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum DefWithBody {
Function(Function),
Static(Static),
Const(Const),
Variant(Variant),
InTypeConst(InTypeConst),
}
impl_from!(Function, Const, Static, Variant, InTypeConst for DefWithBody);
impl DefWithBody {
pub fn module(self, db: &dyn HirDatabase) -> Module {
match self {
DefWithBody::Const(c) => c.module(db),
DefWithBody::Function(f) => f.module(db),
DefWithBody::Static(s) => s.module(db),
DefWithBody::Variant(v) => v.module(db),
DefWithBody::InTypeConst(c) => c.module(db),
}
}
pub fn name(self, db: &dyn HirDatabase) -> Option<Name> {
match self {
DefWithBody::Function(f) => Some(f.name(db)),
DefWithBody::Static(s) => Some(s.name(db)),
DefWithBody::Const(c) => c.name(db),
DefWithBody::Variant(v) => Some(v.name(db)),
DefWithBody::InTypeConst(_) => None,
}
}
/// Returns the type this def's body has to evaluate to.
pub fn body_type(self, db: &dyn HirDatabase) -> Type {
match self {
DefWithBody::Function(it) => it.ret_type(db),
DefWithBody::Static(it) => it.ty(db),
DefWithBody::Const(it) => it.ty(db),
DefWithBody::Variant(it) => it.parent_enum(db).variant_body_ty(db),
DefWithBody::InTypeConst(it) => Type::new_with_resolver_inner(
db,
&DefWithBodyId::from(it.id).resolver(db.upcast()),
TyKind::Error.intern(Interner),
),
}
}
fn id(&self) -> DefWithBodyId {
match self {
DefWithBody::Function(it) => it.id.into(),
DefWithBody::Static(it) => it.id.into(),
DefWithBody::Const(it) => it.id.into(),
DefWithBody::Variant(it) => it.into(),
DefWithBody::InTypeConst(it) => it.id.into(),
}
}
/// A textual representation of the HIR of this def's body for debugging purposes.
pub fn debug_hir(self, db: &dyn HirDatabase) -> String {
let body = db.body(self.id());
body.pretty_print(db.upcast(), self.id())
}
/// A textual representation of the MIR of this def's body for debugging purposes.
pub fn debug_mir(self, db: &dyn HirDatabase) -> String {
let body = db.mir_body(self.id());
match body {
Ok(body) => body.pretty_print(db),
Err(e) => format!("error:\n{e:?}"),
}
}
pub fn diagnostics(self, db: &dyn HirDatabase, acc: &mut Vec<AnyDiagnostic>) {
db.unwind_if_cancelled();
let krate = self.module(db).id.krate();
let (body, source_map) = db.body_with_source_map(self.into());
for (_, def_map) in body.blocks(db.upcast()) {
Module { id: def_map.module_id(DefMap::ROOT) }.diagnostics(db, acc);
}
for diag in source_map.diagnostics() {
match diag {
BodyDiagnostic::InactiveCode { node, cfg, opts } => acc.push(
InactiveCode { node: node.clone(), cfg: cfg.clone(), opts: opts.clone() }
.into(),
),
BodyDiagnostic::MacroError { node, message } => acc.push(
MacroError {
node: node.clone().map(|it| it.into()),
precise_location: None,
message: message.to_string(),
}
.into(),
),
BodyDiagnostic::UnresolvedProcMacro { node, krate } => acc.push(
UnresolvedProcMacro {
node: node.clone().map(|it| it.into()),
precise_location: None,
macro_name: None,
kind: MacroKind::ProcMacro,
krate: *krate,
}
.into(),
),
BodyDiagnostic::UnresolvedMacroCall { node, path } => acc.push(
UnresolvedMacroCall {
macro_call: node.clone().map(|ast_ptr| ast_ptr.into()),
precise_location: None,
path: path.clone(),
is_bang: true,
}
.into(),
),
BodyDiagnostic::UnreachableLabel { node, name } => {
acc.push(UnreachableLabel { node: node.clone(), name: name.clone() }.into())
}
BodyDiagnostic::UndeclaredLabel { node, name } => {
acc.push(UndeclaredLabel { node: node.clone(), name: name.clone() }.into())
}
}
}
let infer = db.infer(self.into());
let source_map = Lazy::new(|| db.body_with_source_map(self.into()).1);
let expr_syntax = |expr| source_map.expr_syntax(expr).expect("unexpected synthetic");
let pat_syntax = |pat| source_map.pat_syntax(pat).expect("unexpected synthetic");
for d in &infer.diagnostics {
match d {
&hir_ty::InferenceDiagnostic::NoSuchField { field: expr, private } => {
let expr_or_pat = match expr {
ExprOrPatId::ExprId(expr) => {
source_map.field_syntax(expr).map(AstPtr::wrap_left)
}
ExprOrPatId::PatId(pat) => {
source_map.pat_field_syntax(pat).map(AstPtr::wrap_right)
}
};
acc.push(NoSuchField { field: expr_or_pat, private }.into())
}
&hir_ty::InferenceDiagnostic::MismatchedArgCount { call_expr, expected, found } => {
acc.push(
MismatchedArgCount { call_expr: expr_syntax(call_expr), expected, found }
.into(),
)
}
&hir_ty::InferenceDiagnostic::PrivateField { expr, field } => {
let expr = expr_syntax(expr);
let field = field.into();
acc.push(PrivateField { expr, field }.into())
}
&hir_ty::InferenceDiagnostic::PrivateAssocItem { id, item } => {
let expr_or_pat = match id {
ExprOrPatId::ExprId(expr) => expr_syntax(expr).map(AstPtr::wrap_left),
ExprOrPatId::PatId(pat) => pat_syntax(pat).map(AstPtr::wrap_right),
};
let item = item.into();
acc.push(PrivateAssocItem { expr_or_pat, item }.into())
}
hir_ty::InferenceDiagnostic::ExpectedFunction { call_expr, found } => {
let call_expr = expr_syntax(*call_expr);
acc.push(
ExpectedFunction {
call: call_expr,
found: Type::new(db, DefWithBodyId::from(self), found.clone()),
}
.into(),
)
}
hir_ty::InferenceDiagnostic::UnresolvedField {
expr,
receiver,
name,
method_with_same_name_exists,
} => {
let expr = expr_syntax(*expr);
acc.push(
UnresolvedField {
expr,
name: name.clone(),
receiver: Type::new(db, DefWithBodyId::from(self), receiver.clone()),
method_with_same_name_exists: *method_with_same_name_exists,
}
.into(),
)
}
hir_ty::InferenceDiagnostic::UnresolvedMethodCall {
expr,
receiver,
name,
field_with_same_name,
assoc_func_with_same_name,
} => {
let expr = expr_syntax(*expr);
acc.push(
UnresolvedMethodCall {
expr,
name: name.clone(),
receiver: Type::new(db, DefWithBodyId::from(self), receiver.clone()),
field_with_same_name: field_with_same_name
.clone()
.map(|ty| Type::new(db, DefWithBodyId::from(self), ty)),
assoc_func_with_same_name: assoc_func_with_same_name.clone(),
}
.into(),
)
}
&hir_ty::InferenceDiagnostic::UnresolvedAssocItem { id } => {
let expr_or_pat = match id {
ExprOrPatId::ExprId(expr) => expr_syntax(expr).map(AstPtr::wrap_left),
ExprOrPatId::PatId(pat) => pat_syntax(pat).map(AstPtr::wrap_right),
};
acc.push(UnresolvedAssocItem { expr_or_pat }.into())
}
&hir_ty::InferenceDiagnostic::BreakOutsideOfLoop {
expr,
is_break,
bad_value_break,
} => {
let expr = expr_syntax(expr);
acc.push(BreakOutsideOfLoop { expr, is_break, bad_value_break }.into())
}
hir_ty::InferenceDiagnostic::TypedHole { expr, expected } => {
let expr = expr_syntax(*expr);
acc.push(
TypedHole {
expr,
expected: Type::new(db, DefWithBodyId::from(self), expected.clone()),
}
.into(),
)
}
&hir_ty::InferenceDiagnostic::MismatchedTupleStructPatArgCount {
pat,
expected,
found,
} => {
let expr_or_pat = match pat {
ExprOrPatId::ExprId(expr) => expr_syntax(expr).map(AstPtr::wrap_left),
ExprOrPatId::PatId(pat) => {
let InFile { file_id, value } =
source_map.pat_syntax(pat).expect("unexpected synthetic");
// cast from Either<Pat, SelfParam> -> Either<_, Pat>
let Some(ptr) = AstPtr::try_from_raw(value.syntax_node_ptr()) else {
continue;
};
InFile { file_id, value: ptr }
}
};
acc.push(
MismatchedTupleStructPatArgCount { expr_or_pat, expected, found }.into(),
)
}
}
}
for (pat_or_expr, mismatch) in infer.type_mismatches() {
let expr_or_pat = match pat_or_expr {
ExprOrPatId::ExprId(expr) => source_map.expr_syntax(expr).map(Either::Left),
ExprOrPatId::PatId(pat) => source_map.pat_syntax(pat).map(Either::Right),
};
let expr_or_pat = match expr_or_pat {
Ok(Either::Left(expr)) => expr.map(AstPtr::wrap_left),
Ok(Either::Right(InFile { file_id, value: pat })) => {
// cast from Either<Pat, SelfParam> -> Either<_, Pat>
let Some(ptr) = AstPtr::try_from_raw(pat.syntax_node_ptr()) else {
continue;
};
InFile { file_id, value: ptr }
}
Err(SyntheticSyntax) => continue,
};
acc.push(
TypeMismatch {
expr_or_pat,
expected: Type::new(db, DefWithBodyId::from(self), mismatch.expected.clone()),
actual: Type::new(db, DefWithBodyId::from(self), mismatch.actual.clone()),
}
.into(),
);
}
for expr in hir_ty::diagnostics::missing_unsafe(db, self.into()) {
match source_map.expr_syntax(expr) {
Ok(expr) => acc.push(MissingUnsafe { expr }.into()),
Err(SyntheticSyntax) => {
// FIXME: Here and elsewhere in this file, the `expr` was
// desugared, report or assert that this doesn't happen.
}
}
}
let hir_body = db.body(self.into());
if let Ok(borrowck_results) = db.borrowck(self.into()) {
for borrowck_result in borrowck_results.iter() {
let mir_body = &borrowck_result.mir_body;
for moof in &borrowck_result.moved_out_of_ref {
let span: InFile<SyntaxNodePtr> = match moof.span {
mir::MirSpan::ExprId(e) => match source_map.expr_syntax(e) {
Ok(s) => s.map(|it| it.into()),
Err(_) => continue,
},
mir::MirSpan::PatId(p) => match source_map.pat_syntax(p) {
Ok(s) => s.map(|it| it.into()),
Err(_) => continue,
},
mir::MirSpan::Unknown => continue,
};
acc.push(
MovedOutOfRef { ty: Type::new_for_crate(krate, moof.ty.clone()), span }
.into(),
)
}
let mol = &borrowck_result.mutability_of_locals;
for (binding_id, binding_data) in hir_body.bindings.iter() {
if binding_data.problems.is_some() {
// We should report specific diagnostics for these problems, not `need-mut` and `unused-mut`.
continue;
}
let Some(&local) = mir_body.binding_locals.get(binding_id) else {
continue;
};
if body[binding_id]
.definitions
.iter()
.any(|&pat| source_map.pat_syntax(pat).is_err())
{
// Skip synthetic bindings
continue;
}
let mut need_mut = &mol[local];
if body[binding_id].name.as_str() == Some("self")
&& need_mut == &mir::MutabilityReason::Unused
{
need_mut = &mir::MutabilityReason::Not;
}
let local = Local { parent: self.into(), binding_id };
match (need_mut, local.is_mut(db)) {
(mir::MutabilityReason::Unused, _) => {
let should_ignore = matches!(body[binding_id].name.as_str(), Some(it) if it.starts_with('_'));
if !should_ignore {
acc.push(UnusedVariable { local }.into())
}
}
(mir::MutabilityReason::Mut { .. }, true)
| (mir::MutabilityReason::Not, false) => (),
(mir::MutabilityReason::Mut { spans }, false) => {
for span in spans {
let span: InFile<SyntaxNodePtr> = match span {
mir::MirSpan::ExprId(e) => match source_map.expr_syntax(*e) {
Ok(s) => s.map(|it| it.into()),
Err(_) => continue,
},
mir::MirSpan::PatId(p) => match source_map.pat_syntax(*p) {
Ok(s) => s.map(|it| it.into()),
Err(_) => continue,
},
mir::MirSpan::Unknown => continue,
};
acc.push(NeedMut { local, span }.into());
}
}
(mir::MutabilityReason::Not, true) => {
if !infer.mutated_bindings_in_closure.contains(&binding_id) {
let should_ignore = matches!(body[binding_id].name.as_str(), Some(it) if it.starts_with('_'));
if !should_ignore {
acc.push(UnusedMut { local }.into())
}
}
}
}
}
}
}
for diagnostic in BodyValidationDiagnostic::collect(db, self.into()) {
match diagnostic {
BodyValidationDiagnostic::RecordMissingFields {
record,
variant,
missed_fields,
} => {
let variant_data = variant.variant_data(db.upcast());
let missed_fields = missed_fields
.into_iter()
.map(|idx| variant_data.fields()[idx].name.clone())
.collect();
match record {
Either::Left(record_expr) => match source_map.expr_syntax(record_expr) {
Ok(source_ptr) => {
let root = source_ptr.file_syntax(db.upcast());
if let ast::Expr::RecordExpr(record_expr) =
source_ptr.value.to_node(&root)
{
if record_expr.record_expr_field_list().is_some() {
let field_list_parent_path =
record_expr.path().map(|path| AstPtr::new(&path));
acc.push(
MissingFields {
file: source_ptr.file_id,
field_list_parent: AstPtr::new(&Either::Left(
record_expr,
)),
field_list_parent_path,
missed_fields,
}
.into(),
)
}
}
}
Err(SyntheticSyntax) => (),
},
Either::Right(record_pat) => match source_map.pat_syntax(record_pat) {
Ok(source_ptr) => {
if let Some(ptr) = source_ptr.value.clone().cast::<ast::RecordPat>()
{
let root = source_ptr.file_syntax(db.upcast());
let record_pat = ptr.to_node(&root);
if record_pat.record_pat_field_list().is_some() {
let field_list_parent_path =
record_pat.path().map(|path| AstPtr::new(&path));
acc.push(
MissingFields {
file: source_ptr.file_id,
field_list_parent: AstPtr::new(&Either::Right(
record_pat,
)),
field_list_parent_path,
missed_fields,
}
.into(),
)
}
}
}
Err(SyntheticSyntax) => (),
},
}
}
BodyValidationDiagnostic::ReplaceFilterMapNextWithFindMap { method_call_expr } => {
if let Ok(next_source_ptr) = source_map.expr_syntax(method_call_expr) {
acc.push(
ReplaceFilterMapNextWithFindMap {
file: next_source_ptr.file_id,
next_expr: next_source_ptr.value,
}
.into(),
);
}
}
BodyValidationDiagnostic::MissingMatchArms { match_expr, uncovered_patterns } => {
match source_map.expr_syntax(match_expr) {
Ok(source_ptr) => {
let root = source_ptr.file_syntax(db.upcast());
if let ast::Expr::MatchExpr(match_expr) =
&source_ptr.value.to_node(&root)
{
match match_expr.expr() {
Some(scrut_expr) if match_expr.match_arm_list().is_some() => {
acc.push(
MissingMatchArms {
scrutinee_expr: InFile::new(
source_ptr.file_id,
AstPtr::new(&scrut_expr),
),
uncovered_patterns,
}
.into(),
);
}
_ => {}
}
}
}
Err(SyntheticSyntax) => (),
}
}
}
}
let def: ModuleDef = match self {
DefWithBody::Function(it) => it.into(),
DefWithBody::Static(it) => it.into(),
DefWithBody::Const(it) => it.into(),
DefWithBody::Variant(it) => it.into(),
// FIXME: don't ignore diagnostics for in type const
DefWithBody::InTypeConst(_) => return,
};
for diag in hir_ty::diagnostics::incorrect_case(db, def.into()) {
acc.push(diag.into())
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Function {
pub(crate) id: FunctionId,
}
impl Function {
pub fn module(self, db: &dyn HirDatabase) -> Module {
self.id.lookup(db.upcast()).module(db.upcast()).into()
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
db.function_data(self.id).name.clone()
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
Type::from_value_def(db, self.id)
}
/// Get this function's return type
pub fn ret_type(self, db: &dyn HirDatabase) -> Type {
let resolver = self.id.resolver(db.upcast());
let substs = TyBuilder::placeholder_subst(db, self.id);
let callable_sig = db.callable_item_signature(self.id.into()).substitute(Interner, &substs);
let ty = callable_sig.ret().clone();
Type::new_with_resolver_inner(db, &resolver, ty)
}
pub fn async_ret_type(self, db: &dyn HirDatabase) -> Option<Type> {
if !self.is_async(db) {
return None;
}
let resolver = self.id.resolver(db.upcast());
let substs = TyBuilder::placeholder_subst(db, self.id);
let callable_sig = db.callable_item_signature(self.id.into()).substitute(Interner, &substs);
let ret_ty = callable_sig.ret().clone();
for pred in ret_ty.impl_trait_bounds(db).into_iter().flatten() {
if let WhereClause::AliasEq(output_eq) = pred.into_value_and_skipped_binders().0 {
return Type::new_with_resolver_inner(db, &resolver, output_eq.ty).into();
}
}
never!("Async fn ret_type should be impl Future");
None
}
pub fn has_self_param(self, db: &dyn HirDatabase) -> bool {
db.function_data(self.id).has_self_param()
}
pub fn self_param(self, db: &dyn HirDatabase) -> Option<SelfParam> {
self.has_self_param(db).then_some(SelfParam { func: self.id })
}
pub fn assoc_fn_params(self, db: &dyn HirDatabase) -> Vec<Param> {
let environment = db.trait_environment(self.id.into());
let substs = TyBuilder::placeholder_subst(db, self.id);
let callable_sig = db.callable_item_signature(self.id.into()).substitute(Interner, &substs);
callable_sig
.params()
.iter()
.enumerate()
.map(|(idx, ty)| {
let ty = Type { env: environment.clone(), ty: ty.clone() };
Param { func: self, ty, idx }
})
.collect()
}
pub fn num_params(self, db: &dyn HirDatabase) -> usize {
db.function_data(self.id).params.len()
}
pub fn method_params(self, db: &dyn HirDatabase) -> Option<Vec<Param>> {
if self.self_param(db).is_none() {
return None;
}
Some(self.params_without_self(db))
}
pub fn params_without_self(self, db: &dyn HirDatabase) -> Vec<Param> {
let environment = db.trait_environment(self.id.into());
let substs = TyBuilder::placeholder_subst(db, self.id);
let callable_sig = db.callable_item_signature(self.id.into()).substitute(Interner, &substs);
let skip = if db.function_data(self.id).has_self_param() { 1 } else { 0 };
callable_sig
.params()
.iter()
.enumerate()
.skip(skip)
.map(|(idx, ty)| {
let ty = Type { env: environment.clone(), ty: ty.clone() };
Param { func: self, ty, idx }
})
.collect()
}
pub fn is_const(self, db: &dyn HirDatabase) -> bool {
db.function_data(self.id).has_const_kw()
}
pub fn is_async(self, db: &dyn HirDatabase) -> bool {
db.function_data(self.id).has_async_kw()
}
/// Does this function have `#[test]` attribute?
pub fn is_test(self, db: &dyn HirDatabase) -> bool {
db.function_data(self.id).attrs.is_test()
}
/// is this a `fn main` or a function with an `export_name` of `main`?
pub fn is_main(self, db: &dyn HirDatabase) -> bool {
if !self.module(db).is_crate_root() {
return false;
}
let data = db.function_data(self.id);
data.name.to_smol_str() == "main"
|| data.attrs.export_name().map(core::ops::Deref::deref) == Some("main")
}
/// Does this function have the ignore attribute?
pub fn is_ignore(self, db: &dyn HirDatabase) -> bool {
db.function_data(self.id).attrs.is_ignore()
}
/// Does this function have `#[bench]` attribute?
pub fn is_bench(self, db: &dyn HirDatabase) -> bool {
db.function_data(self.id).attrs.is_bench()
}
pub fn is_unsafe_to_call(self, db: &dyn HirDatabase) -> bool {
hir_ty::is_fn_unsafe_to_call(db, self.id)
}
/// Whether this function declaration has a definition.
///
/// This is false in the case of required (not provided) trait methods.
pub fn has_body(self, db: &dyn HirDatabase) -> bool {
db.function_data(self.id).has_body()
}
pub fn as_proc_macro(self, db: &dyn HirDatabase) -> Option<Macro> {
let function_data = db.function_data(self.id);
let attrs = &function_data.attrs;
// FIXME: Store this in FunctionData flags?
if !(attrs.is_proc_macro()
|| attrs.is_proc_macro_attribute()
|| attrs.is_proc_macro_derive())
{
return None;
}
let loc = self.id.lookup(db.upcast());
let def_map = db.crate_def_map(loc.krate(db).into());
def_map.fn_as_proc_macro(self.id).map(|id| Macro { id: id.into() })
}
pub fn eval(
self,
db: &dyn HirDatabase,
span_formatter: impl Fn(FileId, TextRange) -> String,
) -> String {
let body = match db.monomorphized_mir_body(
self.id.into(),
Substitution::empty(Interner),
db.trait_environment(self.id.into()),
) {
Ok(body) => body,
Err(e) => {
let mut r = String::new();
_ = e.pretty_print(&mut r, db, &span_formatter);
return r;
}
};
let (result, output) = interpret_mir(db, body, false, None);
let mut text = match result {
Ok(_) => "pass".to_string(),
Err(e) => {
let mut r = String::new();
_ = e.pretty_print(&mut r, db, &span_formatter);
r
}
};
let stdout = output.stdout().into_owned();
if !stdout.is_empty() {
text += "\n--------- stdout ---------\n";
text += &stdout;
}
let stderr = output.stdout().into_owned();
if !stderr.is_empty() {
text += "\n--------- stderr ---------\n";
text += &stderr;
}
text
}
}
// Note: logically, this belongs to `hir_ty`, but we are not using it there yet.
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum Access {
Shared,
Exclusive,
Owned,
}
impl From<hir_ty::Mutability> for Access {
fn from(mutability: hir_ty::Mutability) -> Access {
match mutability {
hir_ty::Mutability::Not => Access::Shared,
hir_ty::Mutability::Mut => Access::Exclusive,
}
}
}
#[derive(Clone, Debug)]
pub struct Param {
func: Function,
/// The index in parameter list, including self parameter.
idx: usize,
ty: Type,
}
impl Param {
pub fn ty(&self) -> &Type {
&self.ty
}
pub fn name(&self, db: &dyn HirDatabase) -> Option<Name> {
Some(self.as_local(db)?.name(db))
}
pub fn as_local(&self, db: &dyn HirDatabase) -> Option<Local> {
let parent = DefWithBodyId::FunctionId(self.func.into());
let body = db.body(parent);
let pat_id = body.params[self.idx];
if let Pat::Bind { id, .. } = &body[pat_id] {
Some(Local { parent, binding_id: *id })
} else {
None
}
}
pub fn pattern_source(&self, db: &dyn HirDatabase) -> Option<ast::Pat> {
self.source(db).and_then(|p| p.value.pat())
}
pub fn source(&self, db: &dyn HirDatabase) -> Option<InFile<ast::Param>> {
let InFile { file_id, value } = self.func.source(db)?;
let params = value.param_list()?;
if params.self_param().is_some() {
params.params().nth(self.idx.checked_sub(1)?)
} else {
params.params().nth(self.idx)
}
.map(|value| InFile { file_id, value })
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct SelfParam {
func: FunctionId,
}
impl SelfParam {
pub fn access(self, db: &dyn HirDatabase) -> Access {
let func_data = db.function_data(self.func);
func_data
.params
.first()
.map(|param| match &**param {
TypeRef::Reference(.., mutability) => match mutability {
hir_def::type_ref::Mutability::Shared => Access::Shared,
hir_def::type_ref::Mutability::Mut => Access::Exclusive,
},
_ => Access::Owned,
})
.unwrap_or(Access::Owned)
}
pub fn source(&self, db: &dyn HirDatabase) -> Option<InFile<ast::SelfParam>> {
let InFile { file_id, value } = Function::from(self.func).source(db)?;
value
.param_list()
.and_then(|params| params.self_param())
.map(|value| InFile { file_id, value })
}
pub fn ty(&self, db: &dyn HirDatabase) -> Type {
let substs = TyBuilder::placeholder_subst(db, self.func);
let callable_sig =
db.callable_item_signature(self.func.into()).substitute(Interner, &substs);
let environment = db.trait_environment(self.func.into());
let ty = callable_sig.params()[0].clone();
Type { env: environment, ty }
}
}
impl HasVisibility for Function {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
db.function_visibility(self.id)
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct ExternCrateDecl {
pub(crate) id: ExternCrateId,
}
impl ExternCrateDecl {
pub fn module(self, db: &dyn HirDatabase) -> Module {
self.id.module(db.upcast()).into()
}
pub fn resolved_crate(self, db: &dyn HirDatabase) -> Option<Crate> {
db.extern_crate_decl_data(self.id).crate_id.map(Into::into)
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
db.extern_crate_decl_data(self.id).name.clone()
}
pub fn alias(self, db: &dyn HirDatabase) -> Option<ImportAlias> {
db.extern_crate_decl_data(self.id).alias.clone()
}
/// Returns the name under which this crate is made accessible, taking `_` into account.
pub fn alias_or_name(self, db: &dyn HirDatabase) -> Option<Name> {
let extern_crate_decl_data = db.extern_crate_decl_data(self.id);
match &extern_crate_decl_data.alias {
Some(ImportAlias::Underscore) => None,
Some(ImportAlias::Alias(alias)) => Some(alias.clone()),
None => Some(extern_crate_decl_data.name.clone()),
}
}
}
impl HasVisibility for ExternCrateDecl {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
db.extern_crate_decl_data(self.id)
.visibility
.resolve(db.upcast(), &self.id.resolver(db.upcast()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct InTypeConst {
pub(crate) id: InTypeConstId,
}
impl InTypeConst {
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.lookup(db.upcast()).owner.module(db.upcast()) }
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Const {
pub(crate) id: ConstId,
}
impl Const {
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.lookup(db.upcast()).module(db.upcast()) }
}
pub fn name(self, db: &dyn HirDatabase) -> Option<Name> {
db.const_data(self.id).name.clone()
}
pub fn value(self, db: &dyn HirDatabase) -> Option<ast::Expr> {
self.source(db)?.value.body()
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
Type::from_value_def(db, self.id)
}
pub fn render_eval(self, db: &dyn HirDatabase) -> Result<String, ConstEvalError> {
let c = db.const_eval(self.id.into(), Substitution::empty(Interner), None)?;
let data = &c.data(Interner);
if let TyKind::Scalar(s) = data.ty.kind(Interner) {
if matches!(s, Scalar::Int(_) | Scalar::Uint(_)) {
if let hir_ty::ConstValue::Concrete(c) = &data.value {
if let hir_ty::ConstScalar::Bytes(b, _) = &c.interned {
let value = u128::from_le_bytes(mir::pad16(b, false));
let value_signed =
i128::from_le_bytes(mir::pad16(b, matches!(s, Scalar::Int(_))));
if value >= 10 {
return Ok(format!("{} ({:#X})", value_signed, value));
} else {
return Ok(format!("{}", value_signed));
}
}
}
}
}
if let Ok(s) = mir::render_const_using_debug_impl(db, self.id, &c) {
return Ok(s);
}
let r = format!("{}", c.display(db));
return Ok(r);
}
}
impl HasVisibility for Const {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
db.const_visibility(self.id)
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Static {
pub(crate) id: StaticId,
}
impl Static {
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.lookup(db.upcast()).module(db.upcast()) }
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
db.static_data(self.id).name.clone()
}
pub fn is_mut(self, db: &dyn HirDatabase) -> bool {
db.static_data(self.id).mutable
}
pub fn value(self, db: &dyn HirDatabase) -> Option<ast::Expr> {
self.source(db)?.value.body()
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
Type::from_value_def(db, self.id)
}
}
impl HasVisibility for Static {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
db.static_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Trait {
pub(crate) id: TraitId,
}
impl Trait {
pub fn lang(db: &dyn HirDatabase, krate: Crate, name: &Name) -> Option<Trait> {
db.lang_item(krate.into(), LangItem::from_name(name)?)
.and_then(LangItemTarget::as_trait)
.map(Into::into)
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.lookup(db.upcast()).container }
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
db.trait_data(self.id).name.clone()
}
pub fn items(self, db: &dyn HirDatabase) -> Vec<AssocItem> {
db.trait_data(self.id).items.iter().map(|(_name, it)| (*it).into()).collect()
}
pub fn items_with_supertraits(self, db: &dyn HirDatabase) -> Vec<AssocItem> {
let traits = all_super_traits(db.upcast(), self.into());
traits.iter().flat_map(|tr| Trait::from(*tr).items(db)).collect()
}
pub fn is_auto(self, db: &dyn HirDatabase) -> bool {
db.trait_data(self.id).is_auto
}
pub fn is_unsafe(&self, db: &dyn HirDatabase) -> bool {
db.trait_data(self.id).is_unsafe
}
pub fn type_or_const_param_count(
&self,
db: &dyn HirDatabase,
count_required_only: bool,
) -> usize {
db.generic_params(GenericDefId::from(self.id))
.type_or_consts
.iter()
.filter(|(_, ty)| match ty {
TypeOrConstParamData::TypeParamData(ty)
if ty.provenance != TypeParamProvenance::TypeParamList =>
{
false
}
_ => true,
})
.filter(|(_, ty)| !count_required_only || !ty.has_default())
.count()
}
}
impl HasVisibility for Trait {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
db.trait_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct TraitAlias {
pub(crate) id: TraitAliasId,
}
impl TraitAlias {
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.lookup(db.upcast()).container }
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
db.trait_alias_data(self.id).name.clone()
}
}
impl HasVisibility for TraitAlias {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
db.trait_alias_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct TypeAlias {
pub(crate) id: TypeAliasId,
}
impl TypeAlias {
pub fn has_non_default_type_params(self, db: &dyn HirDatabase) -> bool {
let subst = db.generic_defaults(self.id.into());
subst.iter().any(|ty| match ty.skip_binders().data(Interner) {
GenericArgData::Ty(it) => it.is_unknown(),
_ => false,
})
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.lookup(db.upcast()).module(db.upcast()) }
}
pub fn type_ref(self, db: &dyn HirDatabase) -> Option<TypeRef> {
db.type_alias_data(self.id).type_ref.as_deref().cloned()
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
Type::from_def(db, self.id)
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
db.type_alias_data(self.id).name.clone()
}
}
impl HasVisibility for TypeAlias {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
let function_data = db.type_alias_data(self.id);
let visibility = &function_data.visibility;
visibility.resolve(db.upcast(), &self.id.resolver(db.upcast()))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct BuiltinType {
pub(crate) inner: hir_def::builtin_type::BuiltinType,
}
impl BuiltinType {
pub fn str() -> BuiltinType {
BuiltinType { inner: hir_def::builtin_type::BuiltinType::Str }
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
Type::new_for_crate(db.crate_graph().iter().next().unwrap(), TyBuilder::builtin(self.inner))
}
pub fn name(self) -> Name {
self.inner.as_name()
}
pub fn is_int(&self) -> bool {
matches!(self.inner, hir_def::builtin_type::BuiltinType::Int(_))
}
pub fn is_uint(&self) -> bool {
matches!(self.inner, hir_def::builtin_type::BuiltinType::Uint(_))
}
pub fn is_float(&self) -> bool {
matches!(self.inner, hir_def::builtin_type::BuiltinType::Float(_))
}
pub fn is_char(&self) -> bool {
matches!(self.inner, hir_def::builtin_type::BuiltinType::Char)
}
pub fn is_bool(&self) -> bool {
matches!(self.inner, hir_def::builtin_type::BuiltinType::Bool)
}
pub fn is_str(&self) -> bool {
matches!(self.inner, hir_def::builtin_type::BuiltinType::Str)
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum MacroKind {
/// `macro_rules!` or Macros 2.0 macro.
Declarative,
/// A built-in or custom derive.
Derive,
/// A built-in function-like macro.
BuiltIn,
/// A procedural attribute macro.
Attr,
/// A function-like procedural macro.
ProcMacro,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Macro {
pub(crate) id: MacroId,
}
impl Macro {
pub fn module(self, db: &dyn HirDatabase) -> Module {
Module { id: self.id.module(db.upcast()) }
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
match self.id {
MacroId::Macro2Id(id) => db.macro2_data(id).name.clone(),
MacroId::MacroRulesId(id) => db.macro_rules_data(id).name.clone(),
MacroId::ProcMacroId(id) => db.proc_macro_data(id).name.clone(),
}
}
pub fn is_macro_export(self, db: &dyn HirDatabase) -> bool {
matches!(self.id, MacroId::MacroRulesId(id) if db.macro_rules_data(id).macro_export)
}
pub fn kind(&self, db: &dyn HirDatabase) -> MacroKind {
match self.id {
MacroId::Macro2Id(it) => match it.lookup(db.upcast()).expander {
MacroExpander::Declarative => MacroKind::Declarative,
MacroExpander::BuiltIn(_) | MacroExpander::BuiltInEager(_) => MacroKind::BuiltIn,
MacroExpander::BuiltInAttr(_) => MacroKind::Attr,
MacroExpander::BuiltInDerive(_) => MacroKind::Derive,
},
MacroId::MacroRulesId(it) => match it.lookup(db.upcast()).expander {
MacroExpander::Declarative => MacroKind::Declarative,
MacroExpander::BuiltIn(_) | MacroExpander::BuiltInEager(_) => MacroKind::BuiltIn,
MacroExpander::BuiltInAttr(_) => MacroKind::Attr,
MacroExpander::BuiltInDerive(_) => MacroKind::Derive,
},
MacroId::ProcMacroId(it) => match it.lookup(db.upcast()).kind {
ProcMacroKind::CustomDerive => MacroKind::Derive,
ProcMacroKind::FuncLike => MacroKind::ProcMacro,
ProcMacroKind::Attr => MacroKind::Attr,
},
}
}
pub fn is_fn_like(&self, db: &dyn HirDatabase) -> bool {
match self.kind(db) {
MacroKind::Declarative | MacroKind::BuiltIn | MacroKind::ProcMacro => true,
MacroKind::Attr | MacroKind::Derive => false,
}
}
pub fn is_builtin_derive(&self, db: &dyn HirDatabase) -> bool {
match self.id {
MacroId::Macro2Id(it) => {
matches!(it.lookup(db.upcast()).expander, MacroExpander::BuiltInDerive(_))
}
MacroId::MacroRulesId(it) => {
matches!(it.lookup(db.upcast()).expander, MacroExpander::BuiltInDerive(_))
}
MacroId::ProcMacroId(_) => false,
}
}
pub fn is_attr(&self, db: &dyn HirDatabase) -> bool {
matches!(self.kind(db), MacroKind::Attr)
}
pub fn is_derive(&self, db: &dyn HirDatabase) -> bool {
matches!(self.kind(db), MacroKind::Derive)
}
}
impl HasVisibility for Macro {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
match self.id {
MacroId::Macro2Id(id) => {
let data = db.macro2_data(id);
let visibility = &data.visibility;
visibility.resolve(db.upcast(), &self.id.resolver(db.upcast()))
}
MacroId::MacroRulesId(_) => Visibility::Public,
MacroId::ProcMacroId(_) => Visibility::Public,
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
pub enum ItemInNs {
Types(ModuleDef),
Values(ModuleDef),
Macros(Macro),
}
impl From<Macro> for ItemInNs {
fn from(it: Macro) -> Self {
Self::Macros(it)
}
}
impl From<ModuleDef> for ItemInNs {
fn from(module_def: ModuleDef) -> Self {
match module_def {
ModuleDef::Static(_) | ModuleDef::Const(_) | ModuleDef::Function(_) => {
ItemInNs::Values(module_def)
}
_ => ItemInNs::Types(module_def),
}
}
}
impl ItemInNs {
pub fn as_module_def(self) -> Option<ModuleDef> {
match self {
ItemInNs::Types(id) | ItemInNs::Values(id) => Some(id),
ItemInNs::Macros(_) => None,
}
}
/// Returns the crate defining this item (or `None` if `self` is built-in).
pub fn krate(&self, db: &dyn HirDatabase) -> Option<Crate> {
match self {
ItemInNs::Types(did) | ItemInNs::Values(did) => did.module(db).map(|m| m.krate()),
ItemInNs::Macros(id) => Some(id.module(db).krate()),
}
}
pub fn attrs(&self, db: &dyn HirDatabase) -> Option<AttrsWithOwner> {
match self {
ItemInNs::Types(it) | ItemInNs::Values(it) => it.attrs(db),
ItemInNs::Macros(it) => Some(it.attrs(db)),
}
}
}
/// Invariant: `inner.as_assoc_item(db).is_some()`
/// We do not actively enforce this invariant.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum AssocItem {
Function(Function),
Const(Const),
TypeAlias(TypeAlias),
}
#[derive(Debug, Clone)]
pub enum AssocItemContainer {
Trait(Trait),
Impl(Impl),
}
pub trait AsAssocItem {
fn as_assoc_item(self, db: &dyn HirDatabase) -> Option<AssocItem>;
}
impl AsAssocItem for Function {
fn as_assoc_item(self, db: &dyn HirDatabase) -> Option<AssocItem> {
as_assoc_item(db, AssocItem::Function, self.id)
}
}
impl AsAssocItem for Const {
fn as_assoc_item(self, db: &dyn HirDatabase) -> Option<AssocItem> {
as_assoc_item(db, AssocItem::Const, self.id)
}
}
impl AsAssocItem for TypeAlias {
fn as_assoc_item(self, db: &dyn HirDatabase) -> Option<AssocItem> {
as_assoc_item(db, AssocItem::TypeAlias, self.id)
}
}
impl AsAssocItem for ModuleDef {
fn as_assoc_item(self, db: &dyn HirDatabase) -> Option<AssocItem> {
match self {
ModuleDef::Function(it) => it.as_assoc_item(db),
ModuleDef::Const(it) => it.as_assoc_item(db),
ModuleDef::TypeAlias(it) => it.as_assoc_item(db),
_ => None,
}
}
}
impl AsAssocItem for DefWithBody {
fn as_assoc_item(self, db: &dyn HirDatabase) -> Option<AssocItem> {
match self {
DefWithBody::Function(it) => it.as_assoc_item(db),
DefWithBody::Const(it) => it.as_assoc_item(db),
DefWithBody::Static(_) | DefWithBody::Variant(_) | DefWithBody::InTypeConst(_) => None,
}
}
}
fn as_assoc_item<'db, ID, DEF, CTOR, AST>(
db: &(dyn HirDatabase + 'db),
ctor: CTOR,
id: ID,
) -> Option<AssocItem>
where
ID: Lookup<Database<'db> = dyn DefDatabase + 'db, Data = AssocItemLoc<AST>>,
DEF: From<ID>,
CTOR: FnOnce(DEF) -> AssocItem,
AST: ItemTreeModItemNode,
{
match id.lookup(db.upcast()).container {
ItemContainerId::TraitId(_) | ItemContainerId::ImplId(_) => Some(ctor(DEF::from(id))),
ItemContainerId::ModuleId(_) | ItemContainerId::ExternBlockId(_) => None,
}
}
impl AssocItem {
pub fn name(self, db: &dyn HirDatabase) -> Option<Name> {
match self {
AssocItem::Function(it) => Some(it.name(db)),
AssocItem::Const(it) => it.name(db),
AssocItem::TypeAlias(it) => Some(it.name(db)),
}
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
match self {
AssocItem::Function(f) => f.module(db),
AssocItem::Const(c) => c.module(db),
AssocItem::TypeAlias(t) => t.module(db),
}
}
pub fn container(self, db: &dyn HirDatabase) -> AssocItemContainer {
let container = match self {
AssocItem::Function(it) => it.id.lookup(db.upcast()).container,
AssocItem::Const(it) => it.id.lookup(db.upcast()).container,
AssocItem::TypeAlias(it) => it.id.lookup(db.upcast()).container,
};
match container {
ItemContainerId::TraitId(id) => AssocItemContainer::Trait(id.into()),
ItemContainerId::ImplId(id) => AssocItemContainer::Impl(id.into()),
ItemContainerId::ModuleId(_) | ItemContainerId::ExternBlockId(_) => {
panic!("invalid AssocItem")
}
}
}
pub fn containing_trait(self, db: &dyn HirDatabase) -> Option<Trait> {
match self.container(db) {
AssocItemContainer::Trait(t) => Some(t),
_ => None,
}
}
pub fn containing_trait_impl(self, db: &dyn HirDatabase) -> Option<Trait> {
match self.container(db) {
AssocItemContainer::Impl(i) => i.trait_(db),
_ => None,
}
}
pub fn containing_trait_or_trait_impl(self, db: &dyn HirDatabase) -> Option<Trait> {
match self.container(db) {
AssocItemContainer::Trait(t) => Some(t),
AssocItemContainer::Impl(i) => i.trait_(db),
}
}
pub fn as_function(self) -> Option<Function> {
match self {
Self::Function(v) => Some(v),
_ => None,
}
}
pub fn as_const(self) -> Option<Const> {
match self {
Self::Const(v) => Some(v),
_ => None,
}
}
pub fn as_type_alias(self) -> Option<TypeAlias> {
match self {
Self::TypeAlias(v) => Some(v),
_ => None,
}
}
}
impl HasVisibility for AssocItem {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility {
match self {
AssocItem::Function(f) => f.visibility(db),
AssocItem::Const(c) => c.visibility(db),
AssocItem::TypeAlias(t) => t.visibility(db),
}
}
}
impl From<AssocItem> for ModuleDef {
fn from(assoc: AssocItem) -> Self {
match assoc {
AssocItem::Function(it) => ModuleDef::Function(it),
AssocItem::Const(it) => ModuleDef::Const(it),
AssocItem::TypeAlias(it) => ModuleDef::TypeAlias(it),
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
pub enum GenericDef {
Function(Function),
Adt(Adt),
Trait(Trait),
TraitAlias(TraitAlias),
TypeAlias(TypeAlias),
Impl(Impl),
// enum variants cannot have generics themselves, but their parent enums
// can, and this makes some code easier to write
Variant(Variant),
// consts can have type parameters from their parents (i.e. associated consts of traits)
Const(Const),
}
impl_from!(
Function,
Adt(Struct, Enum, Union),
Trait,
TraitAlias,
TypeAlias,
Impl,
Variant,
Const
for GenericDef
);
impl GenericDef {
pub fn params(self, db: &dyn HirDatabase) -> Vec<GenericParam> {
let generics = db.generic_params(self.into());
let ty_params = generics.type_or_consts.iter().map(|(local_id, _)| {
let toc = TypeOrConstParam { id: TypeOrConstParamId { parent: self.into(), local_id } };
match toc.split(db) {
Either::Left(it) => GenericParam::ConstParam(it),
Either::Right(it) => GenericParam::TypeParam(it),
}
});
self.lifetime_params(db)
.into_iter()
.map(GenericParam::LifetimeParam)
.chain(ty_params)
.collect()
}
pub fn lifetime_params(self, db: &dyn HirDatabase) -> Vec<LifetimeParam> {
let generics = db.generic_params(self.into());
generics
.lifetimes
.iter()
.map(|(local_id, _)| LifetimeParam {
id: LifetimeParamId { parent: self.into(), local_id },
})
.collect()
}
pub fn type_params(self, db: &dyn HirDatabase) -> Vec<TypeOrConstParam> {
let generics = db.generic_params(self.into());
generics
.type_or_consts
.iter()
.map(|(local_id, _)| TypeOrConstParam {
id: TypeOrConstParamId { parent: self.into(), local_id },
})
.collect()
}
}
/// A single local definition.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct Local {
pub(crate) parent: DefWithBodyId,
pub(crate) binding_id: BindingId,
}
pub struct LocalSource {
pub local: Local,
pub source: InFile<Either<ast::IdentPat, ast::SelfParam>>,
}
impl LocalSource {
pub fn as_ident_pat(&self) -> Option<&ast::IdentPat> {
match &self.source.value {
Either::Left(it) => Some(it),
Either::Right(_) => None,
}
}
pub fn into_ident_pat(self) -> Option<ast::IdentPat> {
match self.source.value {
Either::Left(it) => Some(it),
Either::Right(_) => None,
}
}
pub fn original_file(&self, db: &dyn HirDatabase) -> FileId {
self.source.file_id.original_file(db.upcast())
}
pub fn file(&self) -> HirFileId {
self.source.file_id
}
pub fn name(&self) -> Option<InFile<ast::Name>> {
self.source.as_ref().map(|it| it.name()).transpose()
}
pub fn syntax(&self) -> &SyntaxNode {
self.source.value.syntax()
}
pub fn syntax_ptr(self) -> InFile<SyntaxNodePtr> {
self.source.map(|it| SyntaxNodePtr::new(it.syntax()))
}
}
impl Local {
pub fn is_param(self, db: &dyn HirDatabase) -> bool {
// FIXME: This parses!
let src = self.primary_source(db);
match src.source.value {
Either::Left(pat) => pat
.syntax()
.ancestors()
.map(|it| it.kind())
.take_while(|&kind| ast::Pat::can_cast(kind) || ast::Param::can_cast(kind))
.any(ast::Param::can_cast),
Either::Right(_) => true,
}
}
pub fn as_self_param(self, db: &dyn HirDatabase) -> Option<SelfParam> {
match self.parent {
DefWithBodyId::FunctionId(func) if self.is_self(db) => Some(SelfParam { func }),
_ => None,
}
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
let body = db.body(self.parent);
body[self.binding_id].name.clone()
}
pub fn is_self(self, db: &dyn HirDatabase) -> bool {
self.name(db) == name![self]
}
pub fn is_mut(self, db: &dyn HirDatabase) -> bool {
let body = db.body(self.parent);
body[self.binding_id].mode == BindingAnnotation::Mutable
}
pub fn is_ref(self, db: &dyn HirDatabase) -> bool {
let body = db.body(self.parent);
matches!(body[self.binding_id].mode, BindingAnnotation::Ref | BindingAnnotation::RefMut)
}
pub fn parent(self, _db: &dyn HirDatabase) -> DefWithBody {
self.parent.into()
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
self.parent(db).module(db)
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
let def = self.parent;
let infer = db.infer(def);
let ty = infer[self.binding_id].clone();
Type::new(db, def, ty)
}
/// All definitions for this local. Example: `let (a$0, _) | (_, a$0) = it;`
pub fn sources(self, db: &dyn HirDatabase) -> Vec<LocalSource> {
let (body, source_map) = db.body_with_source_map(self.parent);
self.sources_(db, &body, &source_map).collect()
}
/// The leftmost definition for this local. Example: `let (a$0, _) | (_, a) = it;`
pub fn primary_source(self, db: &dyn HirDatabase) -> LocalSource {
let (body, source_map) = db.body_with_source_map(self.parent);
let src = self.sources_(db, &body, &source_map).next().unwrap();
src
}
fn sources_<'a>(
self,
db: &'a dyn HirDatabase,
body: &'a hir_def::body::Body,
source_map: &'a hir_def::body::BodySourceMap,
) -> impl Iterator<Item = LocalSource> + 'a {
body[self.binding_id]
.definitions
.iter()
.map(|&definition| {
let src = source_map.pat_syntax(definition).unwrap(); // Hmm...
let root = src.file_syntax(db.upcast());
src.map(|ast| match ast.to_node(&root) {
Either::Left(ast::Pat::IdentPat(it)) => Either::Left(it),
Either::Left(_) => unreachable!("local with non ident-pattern"),
Either::Right(it) => Either::Right(it),
})
})
.map(move |source| LocalSource { local: self, source })
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct DeriveHelper {
pub(crate) derive: MacroId,
pub(crate) idx: u32,
}
impl DeriveHelper {
pub fn derive(&self) -> Macro {
Macro { id: self.derive }
}
pub fn name(&self, db: &dyn HirDatabase) -> Name {
match self.derive {
MacroId::Macro2Id(it) => db
.macro2_data(it)
.helpers
.as_deref()
.and_then(|it| it.get(self.idx as usize))
.cloned(),
MacroId::MacroRulesId(_) => None,
MacroId::ProcMacroId(proc_macro) => db
.proc_macro_data(proc_macro)
.helpers
.as_deref()
.and_then(|it| it.get(self.idx as usize))
.cloned(),
}
.unwrap_or_else(|| Name::missing())
}
}
// FIXME: Wrong name? This is could also be a registered attribute
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct BuiltinAttr {
krate: Option<CrateId>,
idx: u32,
}
impl BuiltinAttr {
// FIXME: consider crates\hir_def\src\nameres\attr_resolution.rs?
pub(crate) fn by_name(db: &dyn HirDatabase, krate: Crate, name: &str) -> Option<Self> {
if let builtin @ Some(_) = Self::builtin(name) {
return builtin;
}
let idx =
db.crate_def_map(krate.id).registered_attrs().iter().position(|it| it == name)? as u32;
Some(BuiltinAttr { krate: Some(krate.id), idx })
}
fn builtin(name: &str) -> Option<Self> {
hir_def::attr::builtin::find_builtin_attr_idx(name)
.map(|idx| BuiltinAttr { krate: None, idx: idx as u32 })
}
pub fn name(&self, db: &dyn HirDatabase) -> SmolStr {
// FIXME: Return a `Name` here
match self.krate {
Some(krate) => db.crate_def_map(krate).registered_attrs()[self.idx as usize].clone(),
None => SmolStr::new(hir_def::attr::builtin::INERT_ATTRIBUTES[self.idx as usize].name),
}
}
pub fn template(&self, _: &dyn HirDatabase) -> Option<AttributeTemplate> {
match self.krate {
Some(_) => None,
None => Some(hir_def::attr::builtin::INERT_ATTRIBUTES[self.idx as usize].template),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct ToolModule {
krate: Option<CrateId>,
idx: u32,
}
impl ToolModule {
// FIXME: consider crates\hir_def\src\nameres\attr_resolution.rs?
pub(crate) fn by_name(db: &dyn HirDatabase, krate: Crate, name: &str) -> Option<Self> {
if let builtin @ Some(_) = Self::builtin(name) {
return builtin;
}
let idx =
db.crate_def_map(krate.id).registered_tools().iter().position(|it| it == name)? as u32;
Some(ToolModule { krate: Some(krate.id), idx })
}
fn builtin(name: &str) -> Option<Self> {
hir_def::attr::builtin::TOOL_MODULES
.iter()
.position(|&tool| tool == name)
.map(|idx| ToolModule { krate: None, idx: idx as u32 })
}
pub fn name(&self, db: &dyn HirDatabase) -> SmolStr {
// FIXME: Return a `Name` here
match self.krate {
Some(krate) => db.crate_def_map(krate).registered_tools()[self.idx as usize].clone(),
None => SmolStr::new(hir_def::attr::builtin::TOOL_MODULES[self.idx as usize]),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct Label {
pub(crate) parent: DefWithBodyId,
pub(crate) label_id: LabelId,
}
impl Label {
pub fn module(self, db: &dyn HirDatabase) -> Module {
self.parent(db).module(db)
}
pub fn parent(self, _db: &dyn HirDatabase) -> DefWithBody {
self.parent.into()
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
let body = db.body(self.parent);
body[self.label_id].name.clone()
}
pub fn source(self, db: &dyn HirDatabase) -> InFile<ast::Label> {
let (_body, source_map) = db.body_with_source_map(self.parent);
let src = source_map.label_syntax(self.label_id);
let root = src.file_syntax(db.upcast());
src.map(|ast| ast.to_node(&root))
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum GenericParam {
TypeParam(TypeParam),
ConstParam(ConstParam),
LifetimeParam(LifetimeParam),
}
impl_from!(TypeParam, ConstParam, LifetimeParam for GenericParam);
impl GenericParam {
pub fn module(self, db: &dyn HirDatabase) -> Module {
match self {
GenericParam::TypeParam(it) => it.module(db),
GenericParam::ConstParam(it) => it.module(db),
GenericParam::LifetimeParam(it) => it.module(db),
}
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
match self {
GenericParam::TypeParam(it) => it.name(db),
GenericParam::ConstParam(it) => it.name(db),
GenericParam::LifetimeParam(it) => it.name(db),
}
}
pub fn parent(self) -> GenericDef {
match self {
GenericParam::TypeParam(it) => it.id.parent().into(),
GenericParam::ConstParam(it) => it.id.parent().into(),
GenericParam::LifetimeParam(it) => it.id.parent.into(),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct TypeParam {
pub(crate) id: TypeParamId,
}
impl TypeParam {
pub fn merge(self) -> TypeOrConstParam {
TypeOrConstParam { id: self.id.into() }
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
self.merge().name(db)
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
self.id.parent().module(db.upcast()).into()
}
/// Is this type parameter implicitly introduced (eg. `Self` in a trait or an `impl Trait`
/// argument)?
pub fn is_implicit(self, db: &dyn HirDatabase) -> bool {
let params = db.generic_params(self.id.parent());
let data = &params.type_or_consts[self.id.local_id()];
match data.type_param().unwrap().provenance {
hir_def::generics::TypeParamProvenance::TypeParamList => false,
hir_def::generics::TypeParamProvenance::TraitSelf
| hir_def::generics::TypeParamProvenance::ArgumentImplTrait => true,
}
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
let resolver = self.id.parent().resolver(db.upcast());
let ty =
TyKind::Placeholder(hir_ty::to_placeholder_idx(db, self.id.into())).intern(Interner);
Type::new_with_resolver_inner(db, &resolver, ty)
}
/// FIXME: this only lists trait bounds from the item defining the type
/// parameter, not additional bounds that might be added e.g. by a method if
/// the parameter comes from an impl!
pub fn trait_bounds(self, db: &dyn HirDatabase) -> Vec<Trait> {
db.generic_predicates_for_param(self.id.parent(), self.id.into(), None)
.iter()
.filter_map(|pred| match &pred.skip_binders().skip_binders() {
hir_ty::WhereClause::Implemented(trait_ref) => {
Some(Trait::from(trait_ref.hir_trait_id()))
}
_ => None,
})
.collect()
}
pub fn default(self, db: &dyn HirDatabase) -> Option<Type> {
let ty = generic_arg_from_param(db, self.id.into())?;
let resolver = self.id.parent().resolver(db.upcast());
match ty.data(Interner) {
GenericArgData::Ty(it) => {
Some(Type::new_with_resolver_inner(db, &resolver, it.clone()))
}
_ => None,
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct LifetimeParam {
pub(crate) id: LifetimeParamId,
}
impl LifetimeParam {
pub fn name(self, db: &dyn HirDatabase) -> Name {
let params = db.generic_params(self.id.parent);
params.lifetimes[self.id.local_id].name.clone()
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
self.id.parent.module(db.upcast()).into()
}
pub fn parent(self, _db: &dyn HirDatabase) -> GenericDef {
self.id.parent.into()
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct ConstParam {
pub(crate) id: ConstParamId,
}
impl ConstParam {
pub fn merge(self) -> TypeOrConstParam {
TypeOrConstParam { id: self.id.into() }
}
pub fn name(self, db: &dyn HirDatabase) -> Name {
let params = db.generic_params(self.id.parent());
match params.type_or_consts[self.id.local_id()].name() {
Some(it) => it.clone(),
None => {
never!();
Name::missing()
}
}
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
self.id.parent().module(db.upcast()).into()
}
pub fn parent(self, _db: &dyn HirDatabase) -> GenericDef {
self.id.parent().into()
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
Type::new(db, self.id.parent(), db.const_param_ty(self.id))
}
pub fn default(self, db: &dyn HirDatabase) -> Option<ast::ConstArg> {
let arg = generic_arg_from_param(db, self.id.into())?;
known_const_to_ast(arg.constant(Interner)?, db)
}
}
fn generic_arg_from_param(db: &dyn HirDatabase, id: TypeOrConstParamId) -> Option<GenericArg> {
let params = db.generic_defaults(id.parent);
let local_idx = hir_ty::param_idx(db, id)?;
let ty = params.get(local_idx)?.clone();
let subst = TyBuilder::placeholder_subst(db, id.parent);
Some(ty.substitute(Interner, &subst))
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct TypeOrConstParam {
pub(crate) id: TypeOrConstParamId,
}
impl TypeOrConstParam {
pub fn name(self, db: &dyn HirDatabase) -> Name {
let params = db.generic_params(self.id.parent);
match params.type_or_consts[self.id.local_id].name() {
Some(n) => n.clone(),
_ => Name::missing(),
}
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
self.id.parent.module(db.upcast()).into()
}
pub fn parent(self, _db: &dyn HirDatabase) -> GenericDef {
self.id.parent.into()
}
pub fn split(self, db: &dyn HirDatabase) -> Either<ConstParam, TypeParam> {
let params = db.generic_params(self.id.parent);
match &params.type_or_consts[self.id.local_id] {
hir_def::generics::TypeOrConstParamData::TypeParamData(_) => {
Either::Right(TypeParam { id: TypeParamId::from_unchecked(self.id) })
}
hir_def::generics::TypeOrConstParamData::ConstParamData(_) => {
Either::Left(ConstParam { id: ConstParamId::from_unchecked(self.id) })
}
}
}
pub fn ty(self, db: &dyn HirDatabase) -> Type {
match self.split(db) {
Either::Left(it) => it.ty(db),
Either::Right(it) => it.ty(db),
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Impl {
pub(crate) id: ImplId,
}
impl Impl {
pub fn all_in_crate(db: &dyn HirDatabase, krate: Crate) -> Vec<Impl> {
let inherent = db.inherent_impls_in_crate(krate.id);
let trait_ = db.trait_impls_in_crate(krate.id);
inherent.all_impls().chain(trait_.all_impls()).map(Self::from).collect()
}
pub fn all_for_type(db: &dyn HirDatabase, Type { ty, env }: Type) -> Vec<Impl> {
let def_crates = match method_resolution::def_crates(db, &ty, env.krate) {
Some(def_crates) => def_crates,
None => return Vec::new(),
};
let filter = |impl_def: &Impl| {
let self_ty = impl_def.self_ty(db);
let rref = self_ty.remove_ref();
ty.equals_ctor(rref.as_ref().map_or(&self_ty.ty, |it| &it.ty))
};
let fp = TyFingerprint::for_inherent_impl(&ty);
let fp = match fp {
Some(fp) => fp,
None => return Vec::new(),
};
let mut all = Vec::new();
def_crates.iter().for_each(|&id| {
all.extend(
db.inherent_impls_in_crate(id)
.for_self_ty(&ty)
.iter()
.cloned()
.map(Self::from)
.filter(filter),
)
});
for id in def_crates
.iter()
.flat_map(|&id| Crate { id }.transitive_reverse_dependencies(db))
.map(|Crate { id }| id)
.chain(def_crates.iter().copied())
.unique()
{
all.extend(
db.trait_impls_in_crate(id)
.for_self_ty_without_blanket_impls(fp)
.map(Self::from)
.filter(filter),
);
}
all
}
pub fn all_for_trait(db: &dyn HirDatabase, trait_: Trait) -> Vec<Impl> {
let krate = trait_.module(db).krate();
let mut all = Vec::new();
for Crate { id } in krate.transitive_reverse_dependencies(db) {
let impls = db.trait_impls_in_crate(id);
all.extend(impls.for_trait(trait_.id).map(Self::from))
}
all
}
pub fn trait_(self, db: &dyn HirDatabase) -> Option<Trait> {
let trait_ref = db.impl_trait(self.id)?;
let id = trait_ref.skip_binders().hir_trait_id();
Some(Trait { id })
}
pub fn trait_ref(self, db: &dyn HirDatabase) -> Option<TraitRef> {
let substs = TyBuilder::placeholder_subst(db, self.id);
let trait_ref = db.impl_trait(self.id)?.substitute(Interner, &substs);
let resolver = self.id.resolver(db.upcast());
Some(TraitRef::new_with_resolver(db, &resolver, trait_ref))
}
pub fn self_ty(self, db: &dyn HirDatabase) -> Type {
let resolver = self.id.resolver(db.upcast());
let substs = TyBuilder::placeholder_subst(db, self.id);
let ty = db.impl_self_ty(self.id).substitute(Interner, &substs);
Type::new_with_resolver_inner(db, &resolver, ty)
}
pub fn items(self, db: &dyn HirDatabase) -> Vec<AssocItem> {
db.impl_data(self.id).items.iter().map(|it| (*it).into()).collect()
}
pub fn is_negative(self, db: &dyn HirDatabase) -> bool {
db.impl_data(self.id).is_negative
}
pub fn is_unsafe(self, db: &dyn HirDatabase) -> bool {
db.impl_data(self.id).is_unsafe
}
pub fn module(self, db: &dyn HirDatabase) -> Module {
self.id.lookup(db.upcast()).container.into()
}
pub fn as_builtin_derive_path(self, db: &dyn HirDatabase) -> Option<InMacroFile<ast::Path>> {
let src = self.source(db)?;
let macro_file = src.file_id.macro_file()?;
let loc = macro_file.macro_call_id.lookup(db.upcast());
let (derive_attr, derive_index) = match loc.kind {
MacroCallKind::Derive { ast_id, derive_attr_index, derive_index } => {
let module_id = self.id.lookup(db.upcast()).container;
(
db.crate_def_map(module_id.krate())[module_id.local_id]
.scope
.derive_macro_invoc(ast_id, derive_attr_index)?,
derive_index,
)
}
_ => return None,
};
let file_id = MacroFileId { macro_call_id: derive_attr };
let path = db
.parse_macro_expansion(file_id)
.value
.0
.syntax_node()
.children()
.nth(derive_index as usize)
.and_then(<ast::Attr as AstNode>::cast)
.and_then(|it| it.path())?;
Some(InMacroFile { file_id, value: path })
}
pub fn check_orphan_rules(self, db: &dyn HirDatabase) -> bool {
check_orphan_rules(db, self.id)
}
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct TraitRef {
env: Arc<TraitEnvironment>,
trait_ref: hir_ty::TraitRef,
}
impl TraitRef {
pub(crate) fn new_with_resolver(
db: &dyn HirDatabase,
resolver: &Resolver,
trait_ref: hir_ty::TraitRef,
) -> TraitRef {
let env = resolver
.generic_def()
.map_or_else(|| TraitEnvironment::empty(resolver.krate()), |d| db.trait_environment(d));
TraitRef { env, trait_ref }
}
pub fn trait_(&self) -> Trait {
let id = self.trait_ref.hir_trait_id();
Trait { id }
}
pub fn self_ty(&self) -> Type {
let ty = self.trait_ref.self_type_parameter(Interner);
Type { env: self.env.clone(), ty }
}
/// Returns `idx`-th argument of this trait reference if it is a type argument. Note that the
/// first argument is the `Self` type.
pub fn get_type_argument(&self, idx: usize) -> Option<Type> {
self.trait_ref
.substitution
.as_slice(Interner)
.get(idx)
.and_then(|arg| arg.ty(Interner))
.cloned()
.map(|ty| Type { env: self.env.clone(), ty })
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Closure {
id: ClosureId,
subst: Substitution,
}
impl From<Closure> for ClosureId {
fn from(value: Closure) -> Self {
value.id
}
}
impl Closure {
fn as_ty(self) -> Ty {
TyKind::Closure(self.id, self.subst).intern(Interner)
}
pub fn display_with_id(&self, db: &dyn HirDatabase) -> String {
self.clone().as_ty().display(db).with_closure_style(ClosureStyle::ClosureWithId).to_string()
}
pub fn display_with_impl(&self, db: &dyn HirDatabase) -> String {
self.clone().as_ty().display(db).with_closure_style(ClosureStyle::ImplFn).to_string()
}
pub fn captured_items(&self, db: &dyn HirDatabase) -> Vec<ClosureCapture> {
let owner = db.lookup_intern_closure((self.id).into()).0;
let infer = &db.infer(owner);
let info = infer.closure_info(&self.id);
info.0
.iter()
.cloned()
.map(|capture| ClosureCapture { owner, closure: self.id, capture })
.collect()
}
pub fn capture_types(&self, db: &dyn HirDatabase) -> Vec<Type> {
let owner = db.lookup_intern_closure((self.id).into()).0;
let infer = &db.infer(owner);
let (captures, _) = infer.closure_info(&self.id);
captures
.iter()
.map(|capture| Type {
env: db.trait_environment_for_body(owner),
ty: capture.ty(&self.subst),
})
.collect()
}
pub fn fn_trait(&self, db: &dyn HirDatabase) -> FnTrait {
let owner = db.lookup_intern_closure((self.id).into()).0;
let infer = &db.infer(owner);
let info = infer.closure_info(&self.id);
info.1
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct ClosureCapture {
owner: DefWithBodyId,
closure: ClosureId,
capture: hir_ty::CapturedItem,
}
impl ClosureCapture {
pub fn local(&self) -> Local {
Local { parent: self.owner, binding_id: self.capture.local() }
}
pub fn kind(&self) -> CaptureKind {
match self.capture.kind() {
hir_ty::CaptureKind::ByRef(
hir_ty::mir::BorrowKind::Shallow | hir_ty::mir::BorrowKind::Shared,
) => CaptureKind::SharedRef,
hir_ty::CaptureKind::ByRef(hir_ty::mir::BorrowKind::Unique) => {
CaptureKind::UniqueSharedRef
}
hir_ty::CaptureKind::ByRef(hir_ty::mir::BorrowKind::Mut { .. }) => {
CaptureKind::MutableRef
}
hir_ty::CaptureKind::ByValue => CaptureKind::Move,
}
}
pub fn display_place(&self, db: &dyn HirDatabase) -> String {
self.capture.display_place(self.owner, db)
}
}
pub enum CaptureKind {
SharedRef,
UniqueSharedRef,
MutableRef,
Move,
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Type {
env: Arc<TraitEnvironment>,
ty: Ty,
}
impl Type {
pub(crate) fn new_with_resolver(db: &dyn HirDatabase, resolver: &Resolver, ty: Ty) -> Type {
Type::new_with_resolver_inner(db, resolver, ty)
}
pub(crate) fn new_with_resolver_inner(
db: &dyn HirDatabase,
resolver: &Resolver,
ty: Ty,
) -> Type {
let environment = resolver
.generic_def()
.map_or_else(|| TraitEnvironment::empty(resolver.krate()), |d| db.trait_environment(d));
Type { env: environment, ty }
}
pub(crate) fn new_for_crate(krate: CrateId, ty: Ty) -> Type {
Type { env: TraitEnvironment::empty(krate), ty }
}
pub fn reference(inner: &Type, m: Mutability) -> Type {
inner.derived(
TyKind::Ref(
if m.is_mut() { hir_ty::Mutability::Mut } else { hir_ty::Mutability::Not },
hir_ty::static_lifetime(),
inner.ty.clone(),
)
.intern(Interner),
)
}
fn new(db: &dyn HirDatabase, lexical_env: impl HasResolver, ty: Ty) -> Type {
let resolver = lexical_env.resolver(db.upcast());
let environment = resolver
.generic_def()
.map_or_else(|| TraitEnvironment::empty(resolver.krate()), |d| db.trait_environment(d));
Type { env: environment, ty }
}
fn from_def(db: &dyn HirDatabase, def: impl Into<TyDefId> + HasResolver) -> Type {
let ty = db.ty(def.into());
let substs = TyBuilder::unknown_subst(
db,
match def.into() {
TyDefId::AdtId(it) => GenericDefId::AdtId(it),
TyDefId::TypeAliasId(it) => GenericDefId::TypeAliasId(it),
TyDefId::BuiltinType(_) => return Type::new(db, def, ty.skip_binders().clone()),
},
);
Type::new(db, def, ty.substitute(Interner, &substs))
}
fn from_value_def(db: &dyn HirDatabase, def: impl Into<ValueTyDefId> + HasResolver) -> Type {
let Some(ty) = db.value_ty(def.into()) else {
return Type::new(db, def, TyKind::Error.intern(Interner));
};
let substs = TyBuilder::unknown_subst(
db,
match def.into() {
ValueTyDefId::ConstId(it) => GenericDefId::ConstId(it),
ValueTyDefId::FunctionId(it) => GenericDefId::FunctionId(it),
ValueTyDefId::StructId(it) => GenericDefId::AdtId(AdtId::StructId(it)),
ValueTyDefId::UnionId(it) => GenericDefId::AdtId(AdtId::UnionId(it)),
ValueTyDefId::EnumVariantId(it) => GenericDefId::EnumVariantId(it),
ValueTyDefId::StaticId(_) => return Type::new(db, def, ty.skip_binders().clone()),
},
);
Type::new(db, def, ty.substitute(Interner, &substs))
}
pub fn new_slice(ty: Type) -> Type {
Type { env: ty.env, ty: TyBuilder::slice(ty.ty) }
}
pub fn is_unit(&self) -> bool {
matches!(self.ty.kind(Interner), TyKind::Tuple(0, ..))
}
pub fn is_bool(&self) -> bool {
matches!(self.ty.kind(Interner), TyKind::Scalar(Scalar::Bool))
}
pub fn is_never(&self) -> bool {
matches!(self.ty.kind(Interner), TyKind::Never)
}
pub fn is_mutable_reference(&self) -> bool {
matches!(self.ty.kind(Interner), TyKind::Ref(hir_ty::Mutability::Mut, ..))
}
pub fn is_reference(&self) -> bool {
matches!(self.ty.kind(Interner), TyKind::Ref(..))
}
pub fn as_reference(&self) -> Option<(Type, Mutability)> {
let (ty, _lt, m) = self.ty.as_reference()?;
let m = Mutability::from_mutable(matches!(m, hir_ty::Mutability::Mut));
Some((self.derived(ty.clone()), m))
}
pub fn is_slice(&self) -> bool {
matches!(self.ty.kind(Interner), TyKind::Slice(..))
}
pub fn is_usize(&self) -> bool {
matches!(self.ty.kind(Interner), TyKind::Scalar(Scalar::Uint(UintTy::Usize)))
}
pub fn is_float(&self) -> bool {
matches!(self.ty.kind(Interner), TyKind::Scalar(Scalar::Float(_)))
}
pub fn is_char(&self) -> bool {
matches!(self.ty.kind(Interner), TyKind::Scalar(Scalar::Char))
}
pub fn is_int_or_uint(&self) -> bool {
match self.ty.kind(Interner) {
TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)) => true,
_ => false,
}
}
pub fn is_scalar(&self) -> bool {
matches!(self.ty.kind(Interner), TyKind::Scalar(_))
}
pub fn is_tuple(&self) -> bool {
matches!(self.ty.kind(Interner), TyKind::Tuple(..))
}
pub fn remove_ref(&self) -> Option<Type> {
match &self.ty.kind(Interner) {
TyKind::Ref(.., ty) => Some(self.derived(ty.clone())),
_ => None,
}
}
pub fn as_slice(&self) -> Option<Type> {
match &self.ty.kind(Interner) {
TyKind::Slice(ty) => Some(self.derived(ty.clone())),
_ => None,
}
}
pub fn strip_references(&self) -> Type {
self.derived(self.ty.strip_references().clone())
}
pub fn strip_reference(&self) -> Type {
self.derived(self.ty.strip_reference().clone())
}
pub fn is_unknown(&self) -> bool {
self.ty.is_unknown()
}
/// Checks that particular type `ty` implements `std::future::IntoFuture` or
/// `std::future::Future`.
/// This function is used in `.await` syntax completion.
pub fn impls_into_future(&self, db: &dyn HirDatabase) -> bool {
let trait_ = db
.lang_item(self.env.krate, LangItem::IntoFutureIntoFuture)
.and_then(|it| {
let into_future_fn = it.as_function()?;
let assoc_item = as_assoc_item(db, AssocItem::Function, into_future_fn)?;
let into_future_trait = assoc_item.containing_trait_or_trait_impl(db)?;
Some(into_future_trait.id)
})
.or_else(|| {
let future_trait = db.lang_item(self.env.krate, LangItem::Future)?;
future_trait.as_trait()
});
let trait_ = match trait_ {
Some(it) => it,
None => return false,
};
let canonical_ty =
Canonical { value: self.ty.clone(), binders: CanonicalVarKinds::empty(Interner) };
method_resolution::implements_trait(&canonical_ty, db, self.env.clone(), trait_)
}
/// Checks that particular type `ty` implements `std::ops::FnOnce`.
///
/// This function can be used to check if a particular type is callable, since FnOnce is a
/// supertrait of Fn and FnMut, so all callable types implements at least FnOnce.
pub fn impls_fnonce(&self, db: &dyn HirDatabase) -> bool {
let fnonce_trait = match FnTrait::FnOnce.get_id(db, self.env.krate) {
Some(it) => it,
None => return false,
};
let canonical_ty =
Canonical { value: self.ty.clone(), binders: CanonicalVarKinds::empty(Interner) };
method_resolution::implements_trait_unique(
&canonical_ty,
db,
self.env.clone(),
fnonce_trait,
)
}
pub fn impls_trait(&self, db: &dyn HirDatabase, trait_: Trait, args: &[Type]) -> bool {
let mut it = args.iter().map(|t| t.ty.clone());
let trait_ref = TyBuilder::trait_ref(db, trait_.id)
.push(self.ty.clone())
.fill(|x| {
let r = it.next().unwrap();
match x {
ParamKind::Type => r.cast(Interner),
ParamKind::Const(ty) => {
// FIXME: this code is not covered in tests.
unknown_const_as_generic(ty.clone())
}
}
})
.build();
let goal = Canonical {
value: hir_ty::InEnvironment::new(&self.env.env, trait_ref.cast(Interner)),
binders: CanonicalVarKinds::empty(Interner),
};
db.trait_solve(self.env.krate, self.env.block, goal).is_some()
}
pub fn normalize_trait_assoc_type(
&self,
db: &dyn HirDatabase,
args: &[Type],
alias: TypeAlias,
) -> Option<Type> {
let mut args = args.iter();
let trait_id = match alias.id.lookup(db.upcast()).container {
ItemContainerId::TraitId(id) => id,
_ => unreachable!("non assoc type alias reached in normalize_trait_assoc_type()"),
};
let parent_subst = TyBuilder::subst_for_def(db, trait_id, None)
.push(self.ty.clone())
.fill(|it| {
// FIXME: this code is not covered in tests.
match it {
ParamKind::Type => args.next().unwrap().ty.clone().cast(Interner),
ParamKind::Const(ty) => unknown_const_as_generic(ty.clone()),
}
})
.build();
// FIXME: We don't handle GATs yet.
let projection = TyBuilder::assoc_type_projection(db, alias.id, Some(parent_subst)).build();
let ty = db.normalize_projection(projection, self.env.clone());
if ty.is_unknown() {
None
} else {
Some(self.derived(ty))
}
}
pub fn is_copy(&self, db: &dyn HirDatabase) -> bool {
let lang_item = db.lang_item(self.env.krate, LangItem::Copy);
let copy_trait = match lang_item {
Some(LangItemTarget::Trait(it)) => it,
_ => return false,
};
self.impls_trait(db, copy_trait.into(), &[])
}
pub fn as_callable(&self, db: &dyn HirDatabase) -> Option<Callable> {
let mut the_ty = &self.ty;
let callee = match self.ty.kind(Interner) {
TyKind::Ref(_, _, ty) if ty.as_closure().is_some() => {
the_ty = ty;
Callee::Closure(ty.as_closure().unwrap())
}
TyKind::Closure(id, _) => Callee::Closure(*id),
TyKind::Function(_) => Callee::FnPtr,
TyKind::FnDef(..) => Callee::Def(self.ty.callable_def(db)?),
_ => {
let sig = hir_ty::callable_sig_from_fnonce(&self.ty, self.env.clone(), db)?;
return Some(Callable {
ty: self.clone(),
sig,
callee: Callee::Other,
is_bound_method: false,
});
}
};
let sig = the_ty.callable_sig(db)?;
Some(Callable { ty: self.clone(), sig, callee, is_bound_method: false })
}
pub fn is_closure(&self) -> bool {
matches!(self.ty.kind(Interner), TyKind::Closure { .. })
}
pub fn as_closure(&self) -> Option<Closure> {
match self.ty.kind(Interner) {
TyKind::Closure(id, subst) => Some(Closure { id: *id, subst: subst.clone() }),
_ => None,
}
}
pub fn is_fn(&self) -> bool {
matches!(self.ty.kind(Interner), TyKind::FnDef(..) | TyKind::Function { .. })
}
pub fn is_array(&self) -> bool {
matches!(self.ty.kind(Interner), TyKind::Array(..))
}
pub fn is_packed(&self, db: &dyn HirDatabase) -> bool {
let adt_id = match *self.ty.kind(Interner) {
TyKind::Adt(hir_ty::AdtId(adt_id), ..) => adt_id,
_ => return false,
};
let adt = adt_id.into();
match adt {
Adt::Struct(s) => s.repr(db).unwrap_or_default().pack.is_some(),
_ => false,
}
}
pub fn is_raw_ptr(&self) -> bool {
matches!(self.ty.kind(Interner), TyKind::Raw(..))
}
pub fn remove_raw_ptr(&self) -> Option<Type> {
if let TyKind::Raw(_, ty) = self.ty.kind(Interner) {
Some(self.derived(ty.clone()))
} else {
None
}
}
pub fn contains_unknown(&self) -> bool {
// FIXME: When we get rid of `ConstScalar::Unknown`, we can just look at precomputed
// `TypeFlags` in `TyData`.
return go(&self.ty);
fn go(ty: &Ty) -> bool {
match ty.kind(Interner) {
TyKind::Error => true,
TyKind::Adt(_, substs)
| TyKind::AssociatedType(_, substs)
| TyKind::Tuple(_, substs)
| TyKind::OpaqueType(_, substs)
| TyKind::FnDef(_, substs)
| TyKind::Closure(_, substs) => {
substs.iter(Interner).filter_map(|a| a.ty(Interner)).any(go)
}
TyKind::Array(_ty, len) if len.is_unknown() => true,
TyKind::Array(ty, _)
| TyKind::Slice(ty)
| TyKind::Raw(_, ty)
| TyKind::Ref(_, _, ty) => go(ty),
TyKind::Scalar(_)
| TyKind::Str
| TyKind::Never
| TyKind::Placeholder(_)
| TyKind::BoundVar(_)
| TyKind::InferenceVar(_, _)
| TyKind::Dyn(_)
| TyKind::Function(_)
| TyKind::Alias(_)
| TyKind::Foreign(_)
| TyKind::Coroutine(..)
| TyKind::CoroutineWitness(..) => false,
}
}
}
pub fn fields(&self, db: &dyn HirDatabase) -> Vec<(Field, Type)> {
let (variant_id, substs) = match self.ty.kind(Interner) {
TyKind::Adt(hir_ty::AdtId(AdtId::StructId(s)), substs) => ((*s).into(), substs),
TyKind::Adt(hir_ty::AdtId(AdtId::UnionId(u)), substs) => ((*u).into(), substs),
_ => return Vec::new(),
};
db.field_types(variant_id)
.iter()
.map(|(local_id, ty)| {
let def = Field { parent: variant_id.into(), id: local_id };
let ty = ty.clone().substitute(Interner, substs);
(def, self.derived(ty))
})
.collect()
}
pub fn tuple_fields(&self, _db: &dyn HirDatabase) -> Vec<Type> {
if let TyKind::Tuple(_, substs) = &self.ty.kind(Interner) {
substs
.iter(Interner)
.map(|ty| self.derived(ty.assert_ty_ref(Interner).clone()))
.collect()
} else {
Vec::new()
}
}
pub fn as_array(&self, db: &dyn HirDatabase) -> Option<(Type, usize)> {
if let TyKind::Array(ty, len) = &self.ty.kind(Interner) {
try_const_usize(db, len).map(|it| (self.derived(ty.clone()), it as usize))
} else {
None
}
}
pub(crate) fn canonical(&self) -> Canonical<Ty> {
hir_ty::replace_errors_with_variables(&self.ty)
}
/// Returns types that this type dereferences to (including this type itself). The returned
/// iterator won't yield the same type more than once even if the deref chain contains a cycle.
pub fn autoderef(&self, db: &dyn HirDatabase) -> impl Iterator<Item = Type> + '_ {
self.autoderef_(db).map(move |ty| self.derived(ty))
}
fn autoderef_(&self, db: &dyn HirDatabase) -> impl Iterator<Item = Ty> {
// There should be no inference vars in types passed here
let canonical = hir_ty::replace_errors_with_variables(&self.ty);
autoderef(db, self.env.clone(), canonical)
}
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplDefs`.
pub fn iterate_assoc_items<T>(
&self,
db: &dyn HirDatabase,
krate: Crate,
mut callback: impl FnMut(AssocItem) -> Option<T>,
) -> Option<T> {
let mut slot = None;
self.iterate_assoc_items_dyn(db, krate, &mut |assoc_item_id| {
slot = callback(assoc_item_id.into());
slot.is_some()
});
slot
}
fn iterate_assoc_items_dyn(
&self,
db: &dyn HirDatabase,
krate: Crate,
callback: &mut dyn FnMut(AssocItemId) -> bool,
) {
let def_crates = match method_resolution::def_crates(db, &self.ty, krate.id) {
Some(it) => it,
None => return,
};
for krate in def_crates {
let impls = db.inherent_impls_in_crate(krate);
for impl_def in impls.for_self_ty(&self.ty) {
for &item in db.impl_data(*impl_def).items.iter() {
if callback(item) {
return;
}
}
}
}
}
/// Iterates its type arguments
///
/// It iterates the actual type arguments when concrete types are used
/// and otherwise the generic names.
/// It does not include `const` arguments.
///
/// For code, such as:
/// ```text
/// struct Foo<T, U>
///
/// impl<U> Foo<String, U>
/// ```
///
/// It iterates:
/// ```text
/// - "String"
/// - "U"
/// ```
pub fn type_arguments(&self) -> impl Iterator<Item = Type> + '_ {
self.ty
.strip_references()
.as_adt()
.into_iter()
.flat_map(|(_, substs)| substs.iter(Interner))
.filter_map(|arg| arg.ty(Interner).cloned())
.map(move |ty| self.derived(ty))
}
/// Iterates its type and const arguments
///
/// It iterates the actual type and const arguments when concrete types
/// are used and otherwise the generic names.
///
/// For code, such as:
/// ```text
/// struct Foo<T, const U: usize, const X: usize>
///
/// impl<U> Foo<String, U, 12>
/// ```
///
/// It iterates:
/// ```text
/// - "String"
/// - "U"
/// - "12"
/// ```
pub fn type_and_const_arguments<'a>(
&'a self,
db: &'a dyn HirDatabase,
) -> impl Iterator<Item = SmolStr> + 'a {
self.ty
.strip_references()
.as_adt()
.into_iter()
.flat_map(|(_, substs)| substs.iter(Interner))
.filter_map(|arg| {
// arg can be either a `Ty` or `constant`
if let Some(ty) = arg.ty(Interner) {
Some(format_smolstr!("{}", ty.display(db)))
} else if let Some(const_) = arg.constant(Interner) {
Some(format_smolstr!("{}", const_.display(db)))
} else {
None
}
})
}
/// Combines lifetime indicators, type and constant parameters into a single `Iterator`
pub fn generic_parameters<'a>(
&'a self,
db: &'a dyn HirDatabase,
) -> impl Iterator<Item = SmolStr> + 'a {
// iterate the lifetime
self.as_adt()
.and_then(|a| a.lifetime(db).and_then(|lt| Some((&lt.name).to_smol_str())))
.into_iter()
// add the type and const parameters
.chain(self.type_and_const_arguments(db))
}
pub fn iterate_method_candidates_with_traits<T>(
&self,
db: &dyn HirDatabase,
scope: &SemanticsScope<'_>,
traits_in_scope: &FxHashSet<TraitId>,
with_local_impls: Option<Module>,
name: Option<&Name>,
mut callback: impl FnMut(Function) -> Option<T>,
) -> Option<T> {
let _p = profile::span("iterate_method_candidates");
let mut slot = None;
self.iterate_method_candidates_dyn(
db,
scope,
traits_in_scope,
with_local_impls,
name,
&mut |assoc_item_id| {
if let AssocItemId::FunctionId(func) = assoc_item_id {
if let Some(res) = callback(func.into()) {
slot = Some(res);
return ControlFlow::Break(());
}
}
ControlFlow::Continue(())
},
);
slot
}
pub fn iterate_method_candidates<T>(
&self,
db: &dyn HirDatabase,
scope: &SemanticsScope<'_>,
with_local_impls: Option<Module>,
name: Option<&Name>,
callback: impl FnMut(Function) -> Option<T>,
) -> Option<T> {
self.iterate_method_candidates_with_traits(
db,
scope,
&scope.visible_traits().0,
with_local_impls,
name,
callback,
)
}
fn iterate_method_candidates_dyn(
&self,
db: &dyn HirDatabase,
scope: &SemanticsScope<'_>,
traits_in_scope: &FxHashSet<TraitId>,
with_local_impls: Option<Module>,
name: Option<&Name>,
callback: &mut dyn FnMut(AssocItemId) -> ControlFlow<()>,
) {
// There should be no inference vars in types passed here
let canonical = hir_ty::replace_errors_with_variables(&self.ty);
let krate = scope.krate();
let environment = scope
.resolver()
.generic_def()
.map_or_else(|| TraitEnvironment::empty(krate.id), |d| db.trait_environment(d));
method_resolution::iterate_method_candidates_dyn(
&canonical,
db,
environment,
traits_in_scope,
with_local_impls.and_then(|b| b.id.containing_block()).into(),
name,
method_resolution::LookupMode::MethodCall,
&mut |_adj, id, _| callback(id),
);
}
pub fn iterate_path_candidates<T>(
&self,
db: &dyn HirDatabase,
scope: &SemanticsScope<'_>,
traits_in_scope: &FxHashSet<TraitId>,
with_local_impls: Option<Module>,
name: Option<&Name>,
mut callback: impl FnMut(AssocItem) -> Option<T>,
) -> Option<T> {
let _p = profile::span("iterate_path_candidates");
let mut slot = None;
self.iterate_path_candidates_dyn(
db,
scope,
traits_in_scope,
with_local_impls,
name,
&mut |assoc_item_id| {
if let Some(res) = callback(assoc_item_id.into()) {
slot = Some(res);
return ControlFlow::Break(());
}
ControlFlow::Continue(())
},
);
slot
}
fn iterate_path_candidates_dyn(
&self,
db: &dyn HirDatabase,
scope: &SemanticsScope<'_>,
traits_in_scope: &FxHashSet<TraitId>,
with_local_impls: Option<Module>,
name: Option<&Name>,
callback: &mut dyn FnMut(AssocItemId) -> ControlFlow<()>,
) {
let canonical = hir_ty::replace_errors_with_variables(&self.ty);
let krate = scope.krate();
let environment = scope
.resolver()
.generic_def()
.map_or_else(|| TraitEnvironment::empty(krate.id), |d| db.trait_environment(d));
method_resolution::iterate_path_candidates(
&canonical,
db,
environment,
traits_in_scope,
with_local_impls.and_then(|b| b.id.containing_block()).into(),
name,
&mut |id| callback(id),
);
}
pub fn as_adt(&self) -> Option<Adt> {
let (adt, _subst) = self.ty.as_adt()?;
Some(adt.into())
}
pub fn as_builtin(&self) -> Option<BuiltinType> {
self.ty.as_builtin().map(|inner| BuiltinType { inner })
}
pub fn as_dyn_trait(&self) -> Option<Trait> {
self.ty.dyn_trait().map(Into::into)
}
/// If a type can be represented as `dyn Trait`, returns all traits accessible via this type,
/// or an empty iterator otherwise.
pub fn applicable_inherent_traits<'a>(
&'a self,
db: &'a dyn HirDatabase,
) -> impl Iterator<Item = Trait> + 'a {
let _p = profile::span("applicable_inherent_traits");
self.autoderef_(db)
.filter_map(|ty| ty.dyn_trait())
.flat_map(move |dyn_trait_id| hir_ty::all_super_traits(db.upcast(), dyn_trait_id))
.map(Trait::from)
}
pub fn env_traits<'a>(&'a self, db: &'a dyn HirDatabase) -> impl Iterator<Item = Trait> + 'a {
let _p = profile::span("env_traits");
self.autoderef_(db)
.filter(|ty| matches!(ty.kind(Interner), TyKind::Placeholder(_)))
.flat_map(|ty| {
self.env
.traits_in_scope_from_clauses(ty)
.flat_map(|t| hir_ty::all_super_traits(db.upcast(), t))
})
.map(Trait::from)
}
pub fn as_impl_traits(&self, db: &dyn HirDatabase) -> Option<impl Iterator<Item = Trait>> {
self.ty.impl_trait_bounds(db).map(|it| {
it.into_iter().filter_map(|pred| match pred.skip_binders() {
hir_ty::WhereClause::Implemented(trait_ref) => {
Some(Trait::from(trait_ref.hir_trait_id()))
}
_ => None,
})
})
}
pub fn as_associated_type_parent_trait(&self, db: &dyn HirDatabase) -> Option<Trait> {
self.ty.associated_type_parent_trait(db).map(Into::into)
}
fn derived(&self, ty: Ty) -> Type {
Type { env: self.env.clone(), ty }
}
/// Visits every type, including generic arguments, in this type. `cb` is called with type
/// itself first, and then with its generic arguments.
pub fn walk(&self, db: &dyn HirDatabase, mut cb: impl FnMut(Type)) {
fn walk_substs(
db: &dyn HirDatabase,
type_: &Type,
substs: &Substitution,
cb: &mut impl FnMut(Type),
) {
for ty in substs.iter(Interner).filter_map(|a| a.ty(Interner)) {
walk_type(db, &type_.derived(ty.clone()), cb);
}
}
fn walk_bounds(
db: &dyn HirDatabase,
type_: &Type,
bounds: &[QuantifiedWhereClause],
cb: &mut impl FnMut(Type),
) {
for pred in bounds {
if let WhereClause::Implemented(trait_ref) = pred.skip_binders() {
cb(type_.clone());
// skip the self type. it's likely the type we just got the bounds from
for ty in
trait_ref.substitution.iter(Interner).skip(1).filter_map(|a| a.ty(Interner))
{
walk_type(db, &type_.derived(ty.clone()), cb);
}
}
}
}
fn walk_type(db: &dyn HirDatabase, type_: &Type, cb: &mut impl FnMut(Type)) {
let ty = type_.ty.strip_references();
match ty.kind(Interner) {
TyKind::Adt(_, substs) => {
cb(type_.derived(ty.clone()));
walk_substs(db, type_, substs, cb);
}
TyKind::AssociatedType(_, substs) => {
if ty.associated_type_parent_trait(db).is_some() {
cb(type_.derived(ty.clone()));
}
walk_substs(db, type_, substs, cb);
}
TyKind::OpaqueType(_, subst) => {
if let Some(bounds) = ty.impl_trait_bounds(db) {
walk_bounds(db, &type_.derived(ty.clone()), &bounds, cb);
}
walk_substs(db, type_, subst, cb);
}
TyKind::Alias(AliasTy::Opaque(opaque_ty)) => {
if let Some(bounds) = ty.impl_trait_bounds(db) {
walk_bounds(db, &type_.derived(ty.clone()), &bounds, cb);
}
walk_substs(db, type_, &opaque_ty.substitution, cb);
}
TyKind::Placeholder(_) => {
if let Some(bounds) = ty.impl_trait_bounds(db) {
walk_bounds(db, &type_.derived(ty.clone()), &bounds, cb);
}
}
TyKind::Dyn(bounds) => {
walk_bounds(
db,
&type_.derived(ty.clone()),
bounds.bounds.skip_binders().interned(),
cb,
);
}
TyKind::Ref(_, _, ty)
| TyKind::Raw(_, ty)
| TyKind::Array(ty, _)
| TyKind::Slice(ty) => {
walk_type(db, &type_.derived(ty.clone()), cb);
}
TyKind::FnDef(_, substs)
| TyKind::Tuple(_, substs)
| TyKind::Closure(.., substs) => {
walk_substs(db, type_, substs, cb);
}
TyKind::Function(hir_ty::FnPointer { substitution, .. }) => {
walk_substs(db, type_, &substitution.0, cb);
}
_ => {}
}
}
walk_type(db, self, &mut cb);
}
pub fn could_unify_with(&self, db: &dyn HirDatabase, other: &Type) -> bool {
let tys = hir_ty::replace_errors_with_variables(&(self.ty.clone(), other.ty.clone()));
hir_ty::could_unify(db, self.env.clone(), &tys)
}
pub fn could_coerce_to(&self, db: &dyn HirDatabase, to: &Type) -> bool {
let tys = hir_ty::replace_errors_with_variables(&(self.ty.clone(), to.ty.clone()));
hir_ty::could_coerce(db, self.env.clone(), &tys)
}
pub fn as_type_param(&self, db: &dyn HirDatabase) -> Option<TypeParam> {
match self.ty.kind(Interner) {
TyKind::Placeholder(p) => Some(TypeParam {
id: TypeParamId::from_unchecked(hir_ty::from_placeholder_idx(db, *p)),
}),
_ => None,
}
}
/// Returns unique `GenericParam`s contained in this type.
pub fn generic_params(&self, db: &dyn HirDatabase) -> FxHashSet<GenericParam> {
hir_ty::collect_placeholders(&self.ty, db)
.into_iter()
.map(|id| TypeOrConstParam { id }.split(db).either_into())
.collect()
}
pub fn layout(&self, db: &dyn HirDatabase) -> Result<Layout, LayoutError> {
db.layout_of_ty(self.ty.clone(), self.env.clone())
.map(|layout| Layout(layout, db.target_data_layout(self.env.krate).unwrap()))
}
}
// FIXME: Document this
#[derive(Debug)]
pub struct Callable {
ty: Type,
sig: CallableSig,
callee: Callee,
/// Whether this is a method that was called with method call syntax.
pub(crate) is_bound_method: bool,
}
#[derive(Debug)]
enum Callee {
Def(CallableDefId),
Closure(ClosureId),
FnPtr,
Other,
}
pub enum CallableKind {
Function(Function),
TupleStruct(Struct),
TupleEnumVariant(Variant),
Closure,
FnPtr,
/// Some other type that implements `FnOnce`.
Other,
}
impl Callable {
pub fn kind(&self) -> CallableKind {
use Callee::*;
match self.callee {
Def(CallableDefId::FunctionId(it)) => CallableKind::Function(it.into()),
Def(CallableDefId::StructId(it)) => CallableKind::TupleStruct(it.into()),
Def(CallableDefId::EnumVariantId(it)) => CallableKind::TupleEnumVariant(it.into()),
Closure(_) => CallableKind::Closure,
FnPtr => CallableKind::FnPtr,
Other => CallableKind::Other,
}
}
pub fn receiver_param(&self, db: &dyn HirDatabase) -> Option<(SelfParam, Type)> {
let func = match self.callee {
Callee::Def(CallableDefId::FunctionId(it)) if self.is_bound_method => it,
_ => return None,
};
let func = Function { id: func };
Some((func.self_param(db)?, self.ty.derived(self.sig.params()[0].clone())))
}
pub fn n_params(&self) -> usize {
self.sig.params().len() - if self.is_bound_method { 1 } else { 0 }
}
pub fn params(
&self,
db: &dyn HirDatabase,
) -> Vec<(Option<Either<ast::SelfParam, ast::Pat>>, Type)> {
let types = self
.sig
.params()
.iter()
.skip(if self.is_bound_method { 1 } else { 0 })
.map(|ty| self.ty.derived(ty.clone()));
let map_param = |it: ast::Param| it.pat().map(Either::Right);
let patterns = match self.callee {
Callee::Def(CallableDefId::FunctionId(func)) => {
let src = func.lookup(db.upcast()).source(db.upcast());
src.value.param_list().map(|param_list| {
param_list
.self_param()
.map(|it| Some(Either::Left(it)))
.filter(|_| !self.is_bound_method)
.into_iter()
.chain(param_list.params().map(map_param))
})
}
Callee::Closure(closure_id) => match closure_source(db, closure_id) {
Some(src) => src.param_list().map(|param_list| {
param_list
.self_param()
.map(|it| Some(Either::Left(it)))
.filter(|_| !self.is_bound_method)
.into_iter()
.chain(param_list.params().map(map_param))
}),
None => None,
},
_ => None,
};
patterns.into_iter().flatten().chain(iter::repeat(None)).zip(types).collect()
}
pub fn return_type(&self) -> Type {
self.ty.derived(self.sig.ret().clone())
}
pub fn sig(&self) -> &CallableSig {
&self.sig
}
}
fn closure_source(db: &dyn HirDatabase, closure: ClosureId) -> Option<ast::ClosureExpr> {
let (owner, expr_id) = db.lookup_intern_closure(closure.into());
let (_, source_map) = db.body_with_source_map(owner);
let ast = source_map.expr_syntax(expr_id).ok()?;
let root = ast.file_syntax(db.upcast());
let expr = ast.value.to_node(&root);
match expr {
ast::Expr::ClosureExpr(it) => Some(it),
_ => None,
}
}
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Layout(Arc<TyLayout>, Arc<TargetDataLayout>);
impl Layout {
pub fn size(&self) -> u64 {
self.0.size.bytes()
}
pub fn align(&self) -> u64 {
self.0.align.abi.bytes()
}
pub fn niches(&self) -> Option<u128> {
Some(self.0.largest_niche?.available(&*self.1))
}
pub fn field_offset(&self, field: Field) -> Option<u64> {
match self.0.fields {
layout::FieldsShape::Primitive => None,
layout::FieldsShape::Union(_) => Some(0),
layout::FieldsShape::Array { stride, count } => {
let i = u64::try_from(field.index()).ok()?;
(i < count).then_some((stride * i).bytes())
}
layout::FieldsShape::Arbitrary { ref offsets, .. } => {
Some(offsets.get(RustcFieldIdx(field.id))?.bytes())
}
}
}
pub fn tuple_field_offset(&self, field: usize) -> Option<u64> {
match self.0.fields {
layout::FieldsShape::Primitive => None,
layout::FieldsShape::Union(_) => Some(0),
layout::FieldsShape::Array { stride, count } => {
let i = u64::try_from(field).ok()?;
(i < count).then_some((stride * i).bytes())
}
layout::FieldsShape::Arbitrary { ref offsets, .. } => {
Some(offsets.get(RustcFieldIdx::new(field))?.bytes())
}
}
}
pub fn enum_tag_size(&self) -> Option<usize> {
let tag_size =
if let layout::Variants::Multiple { tag, tag_encoding, .. } = &self.0.variants {
match tag_encoding {
TagEncoding::Direct => tag.size(&*self.1).bytes_usize(),
TagEncoding::Niche { .. } => 0,
}
} else {
return None;
};
Some(tag_size)
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum BindingMode {
Move,
Ref(Mutability),
}
/// For IDE only
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum ScopeDef {
ModuleDef(ModuleDef),
GenericParam(GenericParam),
ImplSelfType(Impl),
AdtSelfType(Adt),
Local(Local),
Label(Label),
Unknown,
}
impl ScopeDef {
pub fn all_items(def: PerNs) -> ArrayVec<Self, 3> {
let mut items = ArrayVec::new();
match (def.take_types(), def.take_values()) {
(Some(m1), None) => items.push(ScopeDef::ModuleDef(m1.into())),
(None, Some(m2)) => items.push(ScopeDef::ModuleDef(m2.into())),
(Some(m1), Some(m2)) => {
// Some items, like unit structs and enum variants, are
// returned as both a type and a value. Here we want
// to de-duplicate them.
if m1 != m2 {
items.push(ScopeDef::ModuleDef(m1.into()));
items.push(ScopeDef::ModuleDef(m2.into()));
} else {
items.push(ScopeDef::ModuleDef(m1.into()));
}
}
(None, None) => {}
};
if let Some(macro_def_id) = def.take_macros() {
items.push(ScopeDef::ModuleDef(ModuleDef::Macro(macro_def_id.into())));
}
if items.is_empty() {
items.push(ScopeDef::Unknown);
}
items
}
pub fn attrs(&self, db: &dyn HirDatabase) -> Option<AttrsWithOwner> {
match self {
ScopeDef::ModuleDef(it) => it.attrs(db),
ScopeDef::GenericParam(it) => Some(it.attrs(db)),
ScopeDef::ImplSelfType(_)
| ScopeDef::AdtSelfType(_)
| ScopeDef::Local(_)
| ScopeDef::Label(_)
| ScopeDef::Unknown => None,
}
}
pub fn krate(&self, db: &dyn HirDatabase) -> Option<Crate> {
match self {
ScopeDef::ModuleDef(it) => it.module(db).map(|m| m.krate()),
ScopeDef::GenericParam(it) => Some(it.module(db).krate()),
ScopeDef::ImplSelfType(_) => None,
ScopeDef::AdtSelfType(it) => Some(it.module(db).krate()),
ScopeDef::Local(it) => Some(it.module(db).krate()),
ScopeDef::Label(it) => Some(it.module(db).krate()),
ScopeDef::Unknown => None,
}
}
}
impl From<ItemInNs> for ScopeDef {
fn from(item: ItemInNs) -> Self {
match item {
ItemInNs::Types(id) => ScopeDef::ModuleDef(id),
ItemInNs::Values(id) => ScopeDef::ModuleDef(id),
ItemInNs::Macros(id) => ScopeDef::ModuleDef(ModuleDef::Macro(id)),
}
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Adjustment {
pub source: Type,
pub target: Type,
pub kind: Adjust,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Adjust {
/// Go from ! to any type.
NeverToAny,
/// Dereference once, producing a place.
Deref(Option<OverloadedDeref>),
/// Take the address and produce either a `&` or `*` pointer.
Borrow(AutoBorrow),
Pointer(PointerCast),
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum AutoBorrow {
/// Converts from T to &T.
Ref(Mutability),
/// Converts from T to *T.
RawPtr(Mutability),
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct OverloadedDeref(pub Mutability);
pub trait HasVisibility {
fn visibility(&self, db: &dyn HirDatabase) -> Visibility;
fn is_visible_from(&self, db: &dyn HirDatabase, module: Module) -> bool {
let vis = self.visibility(db);
vis.is_visible_from(db.upcast(), module.id)
}
}
/// Trait for obtaining the defining crate of an item.
pub trait HasCrate {
fn krate(&self, db: &dyn HirDatabase) -> Crate;
}
impl<T: hir_def::HasModule> HasCrate for T {
fn krate(&self, db: &dyn HirDatabase) -> Crate {
self.module(db.upcast()).krate().into()
}
}
impl HasCrate for AssocItem {
fn krate(&self, db: &dyn HirDatabase) -> Crate {
self.module(db).krate()
}
}
impl HasCrate for Struct {
fn krate(&self, db: &dyn HirDatabase) -> Crate {
self.module(db).krate()
}
}
impl HasCrate for Union {
fn krate(&self, db: &dyn HirDatabase) -> Crate {
self.module(db).krate()
}
}
impl HasCrate for Enum {
fn krate(&self, db: &dyn HirDatabase) -> Crate {
self.module(db).krate()
}
}
impl HasCrate for Field {
fn krate(&self, db: &dyn HirDatabase) -> Crate {
self.parent_def(db).module(db).krate()
}
}
impl HasCrate for Variant {
fn krate(&self, db: &dyn HirDatabase) -> Crate {
self.module(db).krate()
}
}
impl HasCrate for Function {
fn krate(&self, db: &dyn HirDatabase) -> Crate {
self.module(db).krate()
}
}
impl HasCrate for Const {
fn krate(&self, db: &dyn HirDatabase) -> Crate {
self.module(db).krate()
}
}
impl HasCrate for TypeAlias {
fn krate(&self, db: &dyn HirDatabase) -> Crate {
self.module(db).krate()
}
}
impl HasCrate for Type {
fn krate(&self, _db: &dyn HirDatabase) -> Crate {
self.env.krate.into()
}
}
impl HasCrate for Macro {
fn krate(&self, db: &dyn HirDatabase) -> Crate {
self.module(db).krate()
}
}
impl HasCrate for Trait {
fn krate(&self, db: &dyn HirDatabase) -> Crate {
self.module(db).krate()
}
}
impl HasCrate for TraitAlias {
fn krate(&self, db: &dyn HirDatabase) -> Crate {
self.module(db).krate()
}
}
impl HasCrate for Static {
fn krate(&self, db: &dyn HirDatabase) -> Crate {
self.module(db).krate()
}
}
impl HasCrate for Adt {
fn krate(&self, db: &dyn HirDatabase) -> Crate {
self.module(db).krate()
}
}
impl HasCrate for Module {
fn krate(&self, _: &dyn HirDatabase) -> Crate {
Module::krate(*self)
}
}
pub trait HasContainer {
fn container(&self, db: &dyn HirDatabase) -> ItemContainer;
}
impl HasContainer for ExternCrateDecl {
fn container(&self, db: &dyn HirDatabase) -> ItemContainer {
container_id_to_hir(self.id.lookup(db.upcast()).container.into())
}
}
impl HasContainer for Module {
fn container(&self, db: &dyn HirDatabase) -> ItemContainer {
// FIXME: handle block expressions as modules (their parent is in a different DefMap)
let def_map = self.id.def_map(db.upcast());
match def_map[self.id.local_id].parent {
Some(parent_id) => ItemContainer::Module(Module { id: def_map.module_id(parent_id) }),
None => ItemContainer::Crate(def_map.krate()),
}
}
}
impl HasContainer for Function {
fn container(&self, db: &dyn HirDatabase) -> ItemContainer {
container_id_to_hir(self.id.lookup(db.upcast()).container)
}
}
impl HasContainer for Struct {
fn container(&self, db: &dyn HirDatabase) -> ItemContainer {
ItemContainer::Module(Module { id: self.id.lookup(db.upcast()).container })
}
}
impl HasContainer for Union {
fn container(&self, db: &dyn HirDatabase) -> ItemContainer {
ItemContainer::Module(Module { id: self.id.lookup(db.upcast()).container })
}
}
impl HasContainer for Enum {
fn container(&self, db: &dyn HirDatabase) -> ItemContainer {
ItemContainer::Module(Module { id: self.id.lookup(db.upcast()).container })
}
}
impl HasContainer for TypeAlias {
fn container(&self, db: &dyn HirDatabase) -> ItemContainer {
container_id_to_hir(self.id.lookup(db.upcast()).container)
}
}
impl HasContainer for Const {
fn container(&self, db: &dyn HirDatabase) -> ItemContainer {
container_id_to_hir(self.id.lookup(db.upcast()).container)
}
}
impl HasContainer for Static {
fn container(&self, db: &dyn HirDatabase) -> ItemContainer {
container_id_to_hir(self.id.lookup(db.upcast()).container)
}
}
impl HasContainer for Trait {
fn container(&self, db: &dyn HirDatabase) -> ItemContainer {
ItemContainer::Module(Module { id: self.id.lookup(db.upcast()).container })
}
}
impl HasContainer for TraitAlias {
fn container(&self, db: &dyn HirDatabase) -> ItemContainer {
ItemContainer::Module(Module { id: self.id.lookup(db.upcast()).container })
}
}
fn container_id_to_hir(c: ItemContainerId) -> ItemContainer {
match c {
ItemContainerId::ExternBlockId(_id) => ItemContainer::ExternBlock(),
ItemContainerId::ModuleId(id) => ItemContainer::Module(Module { id }),
ItemContainerId::ImplId(id) => ItemContainer::Impl(Impl { id }),
ItemContainerId::TraitId(id) => ItemContainer::Trait(Trait { id }),
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum ItemContainer {
Trait(Trait),
Impl(Impl),
Module(Module),
ExternBlock(),
Crate(CrateId),
}
/// Subset of `ide_db::Definition` that doc links can resolve to.
pub enum DocLinkDef {
ModuleDef(ModuleDef),
Field(Field),
SelfType(Trait),
}