rust/src/libcore/option.rs
2014-12-09 10:26:04 -08:00

868 lines
24 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Optional values
//!
//! Type `Option` represents an optional value: every `Option`
//! is either `Some` and contains a value, or `None`, and
//! does not. `Option` types are very common in Rust code, as
//! they have a number of uses:
//!
//! * Initial values
//! * Return values for functions that are not defined
//! over their entire input range (partial functions)
//! * Return value for otherwise reporting simple errors, where `None` is
//! returned on error
//! * Optional struct fields
//! * Struct fields that can be loaned or "taken"
//! * Optional function arguments
//! * Nullable pointers
//! * Swapping things out of difficult situations
//!
//! Options are commonly paired with pattern matching to query the presence
//! of a value and take action, always accounting for the `None` case.
//!
//! ```
//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
//! if denominator == 0.0 {
//! None
//! } else {
//! Some(numerator / denominator)
//! }
//! }
//!
//! // The return value of the function is an option
//! let result = divide(2.0, 3.0);
//!
//! // Pattern match to retrieve the value
//! match result {
//! // The division was valid
//! Some(x) => println!("Result: {}", x),
//! // The division was invalid
//! None => println!("Cannot divide by 0")
//! }
//! ```
//!
//
// FIXME: Show how `Option` is used in practice, with lots of methods
//
//! # Options and pointers ("nullable" pointers)
//!
//! Rust's pointer types must always point to a valid location; there are
//! no "null" pointers. Instead, Rust has *optional* pointers, like
//! the optional owned box, `Option<Box<T>>`.
//!
//! The following example uses `Option` to create an optional box of
//! `int`. Notice that in order to use the inner `int` value first the
//! `check_optional` function needs to use pattern matching to
//! determine whether the box has a value (i.e. it is `Some(...)`) or
//! not (`None`).
//!
//! ```
//! let optional: Option<Box<int>> = None;
//! check_optional(&optional);
//!
//! let optional: Option<Box<int>> = Some(box 9000);
//! check_optional(&optional);
//!
//! fn check_optional(optional: &Option<Box<int>>) {
//! match *optional {
//! Some(ref p) => println!("have value {}", p),
//! None => println!("have no value")
//! }
//! }
//! ```
//!
//! This usage of `Option` to create safe nullable pointers is so
//! common that Rust does special optimizations to make the
//! representation of `Option<Box<T>>` a single pointer. Optional pointers
//! in Rust are stored as efficiently as any other pointer type.
//!
//! # Examples
//!
//! Basic pattern matching on `Option`:
//!
//! ```
//! let msg = Some("howdy");
//!
//! // Take a reference to the contained string
//! match msg {
//! Some(ref m) => println!("{}", *m),
//! None => ()
//! }
//!
//! // Remove the contained string, destroying the Option
//! let unwrapped_msg = match msg {
//! Some(m) => m,
//! None => "default message"
//! };
//! ```
//!
//! Initialize a result to `None` before a loop:
//!
//! ```
//! enum Kingdom { Plant(uint, &'static str), Animal(uint, &'static str) }
//!
//! // A list of data to search through.
//! let all_the_big_things = [
//! Kingdom::Plant(250, "redwood"),
//! Kingdom::Plant(230, "noble fir"),
//! Kingdom::Plant(229, "sugar pine"),
//! Kingdom::Animal(25, "blue whale"),
//! Kingdom::Animal(19, "fin whale"),
//! Kingdom::Animal(15, "north pacific right whale"),
//! ];
//!
//! // We're going to search for the name of the biggest animal,
//! // but to start with we've just got `None`.
//! let mut name_of_biggest_animal = None;
//! let mut size_of_biggest_animal = 0;
//! for big_thing in all_the_big_things.iter() {
//! match *big_thing {
//! Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
//! // Now we've found the name of some big animal
//! size_of_biggest_animal = size;
//! name_of_biggest_animal = Some(name);
//! }
//! Kingdom::Animal(..) | Kingdom::Plant(..) => ()
//! }
//! }
//!
//! match name_of_biggest_animal {
//! Some(name) => println!("the biggest animal is {}", name),
//! None => println!("there are no animals :(")
//! }
//! ```
#![stable]
#[cfg(stage0)]
pub use self::Option::*;
#[cfg(not(stage0))]
use self::Option::*;
use cmp::{Eq, Ord};
use default::Default;
use iter::{Iterator, IteratorExt, DoubleEndedIterator, FromIterator};
use iter::{ExactSizeIterator};
use kinds::Copy;
use mem;
use result::Result;
use result::Result::{Ok, Err};
use slice;
use slice::AsSlice;
use clone::Clone;
use ops::Deref;
// Note that this is not a lang item per se, but it has a hidden dependency on
// `Iterator`, which is one. The compiler assumes that the `next` method of
// `Iterator` is an enumeration with one type parameter and two variants,
// which basically means it must be `Option`.
/// The `Option` type.
#[deriving(Clone, PartialEq, PartialOrd, Eq, Ord, Show)]
#[stable]
pub enum Option<T> {
/// No value
None,
/// Some value `T`
Some(T)
}
/////////////////////////////////////////////////////////////////////////////
// Type implementation
/////////////////////////////////////////////////////////////////////////////
impl<T> Option<T> {
/////////////////////////////////////////////////////////////////////////
// Querying the contained values
/////////////////////////////////////////////////////////////////////////
/// Returns `true` if the option is a `Some` value
///
/// # Example
///
/// ```
/// let x: Option<uint> = Some(2);
/// assert_eq!(x.is_some(), true);
///
/// let x: Option<uint> = None;
/// assert_eq!(x.is_some(), false);
/// ```
#[inline]
#[stable]
pub fn is_some(&self) -> bool {
match *self {
Some(_) => true,
None => false
}
}
/// Returns `true` if the option is a `None` value
///
/// # Example
///
/// ```
/// let x: Option<uint> = Some(2);
/// assert_eq!(x.is_none(), false);
///
/// let x: Option<uint> = None;
/// assert_eq!(x.is_none(), true);
/// ```
#[inline]
#[stable]
pub fn is_none(&self) -> bool {
!self.is_some()
}
/////////////////////////////////////////////////////////////////////////
// Adapter for working with references
/////////////////////////////////////////////////////////////////////////
/// Convert from `Option<T>` to `Option<&T>`
///
/// # Example
///
/// Convert an `Option<String>` into an `Option<int>`, preserving the original.
/// The `map` method takes the `self` argument by value, consuming the original,
/// so this technique uses `as_ref` to first take an `Option` to a reference
/// to the value inside the original.
///
/// ```
/// let num_as_str: Option<String> = Some("10".to_string());
/// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
/// // then consume *that* with `map`, leaving `num_as_str` on the stack.
/// let num_as_int: Option<uint> = num_as_str.as_ref().map(|n| n.len());
/// println!("still can print num_as_str: {}", num_as_str);
/// ```
#[inline]
#[stable]
pub fn as_ref<'r>(&'r self) -> Option<&'r T> {
match *self {
Some(ref x) => Some(x),
None => None
}
}
/// Convert from `Option<T>` to `Option<&mut T>`
///
/// # Example
///
/// ```
/// let mut x = Some(2u);
/// match x.as_mut() {
/// Some(v) => *v = 42,
/// None => {},
/// }
/// assert_eq!(x, Some(42u));
/// ```
#[inline]
#[unstable = "waiting for mut conventions"]
pub fn as_mut<'r>(&'r mut self) -> Option<&'r mut T> {
match *self {
Some(ref mut x) => Some(x),
None => None
}
}
/// Convert from `Option<T>` to `&mut [T]` (without copying)
///
/// # Example
///
/// ```
/// let mut x = Some("Diamonds");
/// {
/// let v = x.as_mut_slice();
/// assert!(v == ["Diamonds"]);
/// v[0] = "Dirt";
/// assert!(v == ["Dirt"]);
/// }
/// assert_eq!(x, Some("Dirt"));
/// ```
#[inline]
#[unstable = "waiting for mut conventions"]
pub fn as_mut_slice<'r>(&'r mut self) -> &'r mut [T] {
match *self {
Some(ref mut x) => {
let result: &mut [T] = slice::mut_ref_slice(x);
result
}
None => {
let result: &mut [T] = &mut [];
result
}
}
}
/////////////////////////////////////////////////////////////////////////
// Getting to contained values
/////////////////////////////////////////////////////////////////////////
/// Unwraps an option, yielding the content of a `Some`
///
/// # Panics
///
/// Panics if the value is a `None` with a custom panic message provided by
/// `msg`.
///
/// # Example
///
/// ```
/// let x = Some("value");
/// assert_eq!(x.expect("the world is ending"), "value");
/// ```
///
/// ```{.should_fail}
/// let x: Option<&str> = None;
/// x.expect("the world is ending"); // panics with `world is ending`
/// ```
#[inline]
#[unstable = "waiting for conventions"]
pub fn expect(self, msg: &str) -> T {
match self {
Some(val) => val,
None => panic!("{}", msg),
}
}
/// Returns the inner `T` of a `Some(T)`.
///
/// # Panics
///
/// Panics if the self value equals `None`.
///
/// # Safety note
///
/// In general, because this function may panic, its use is discouraged.
/// Instead, prefer to use pattern matching and handle the `None`
/// case explicitly.
///
/// # Example
///
/// ```
/// let x = Some("air");
/// assert_eq!(x.unwrap(), "air");
/// ```
///
/// ```{.should_fail}
/// let x: Option<&str> = None;
/// assert_eq!(x.unwrap(), "air"); // fails
/// ```
#[inline]
#[unstable = "waiting for conventions"]
pub fn unwrap(self) -> T {
match self {
Some(val) => val,
None => panic!("called `Option::unwrap()` on a `None` value"),
}
}
/// Returns the contained value or a default.
///
/// # Example
///
/// ```
/// assert_eq!(Some("car").unwrap_or("bike"), "car");
/// assert_eq!(None.unwrap_or("bike"), "bike");
/// ```
#[inline]
#[unstable = "waiting for conventions"]
pub fn unwrap_or(self, def: T) -> T {
match self {
Some(x) => x,
None => def
}
}
/// Returns the contained value or computes it from a closure.
///
/// # Example
///
/// ```
/// let k = 10u;
/// assert_eq!(Some(4u).unwrap_or_else(|| 2 * k), 4u);
/// assert_eq!(None.unwrap_or_else(|| 2 * k), 20u);
/// ```
#[inline]
#[unstable = "waiting for conventions"]
pub fn unwrap_or_else(self, f: || -> T) -> T {
match self {
Some(x) => x,
None => f()
}
}
/////////////////////////////////////////////////////////////////////////
// Transforming contained values
/////////////////////////////////////////////////////////////////////////
/// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value
///
/// # Example
///
/// Convert an `Option<String>` into an `Option<uint>`, consuming the original:
///
/// ```
/// let num_as_str: Option<String> = Some("10".to_string());
/// // `Option::map` takes self *by value*, consuming `num_as_str`
/// let num_as_int: Option<uint> = num_as_str.map(|n| n.len());
/// ```
#[inline]
#[unstable = "waiting for unboxed closures"]
pub fn map<U>(self, f: |T| -> U) -> Option<U> {
match self {
Some(x) => Some(f(x)),
None => None
}
}
/// Applies a function to the contained value or returns a default.
///
/// # Example
///
/// ```
/// let x = Some("foo");
/// assert_eq!(x.map_or(42u, |v| v.len()), 3u);
///
/// let x: Option<&str> = None;
/// assert_eq!(x.map_or(42u, |v| v.len()), 42u);
/// ```
#[inline]
#[unstable = "waiting for unboxed closures"]
pub fn map_or<U>(self, def: U, f: |T| -> U) -> U {
match self {
Some(t) => f(t),
None => def
}
}
/// Applies a function to the contained value or computes a default.
///
/// # Example
///
/// ```
/// let k = 21u;
///
/// let x = Some("foo");
/// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3u);
///
/// let x: Option<&str> = None;
/// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42u);
/// ```
#[inline]
#[unstable = "waiting for unboxed closures"]
pub fn map_or_else<U>(self, def: || -> U, f: |T| -> U) -> U {
match self {
Some(t) => f(t),
None => def()
}
}
/// Transforms the `Option<T>` into a `Result<T, E>`, mapping `Some(v)` to
/// `Ok(v)` and `None` to `Err(err)`.
///
/// # Example
///
/// ```
/// let x = Some("foo");
/// assert_eq!(x.ok_or(0i), Ok("foo"));
///
/// let x: Option<&str> = None;
/// assert_eq!(x.ok_or(0i), Err(0i));
/// ```
#[inline]
#[experimental]
pub fn ok_or<E>(self, err: E) -> Result<T, E> {
match self {
Some(v) => Ok(v),
None => Err(err),
}
}
/// Transforms the `Option<T>` into a `Result<T, E>`, mapping `Some(v)` to
/// `Ok(v)` and `None` to `Err(err())`.
///
/// # Example
///
/// ```
/// let x = Some("foo");
/// assert_eq!(x.ok_or_else(|| 0i), Ok("foo"));
///
/// let x: Option<&str> = None;
/// assert_eq!(x.ok_or_else(|| 0i), Err(0i));
/// ```
#[inline]
#[experimental]
pub fn ok_or_else<E>(self, err: || -> E) -> Result<T, E> {
match self {
Some(v) => Ok(v),
None => Err(err()),
}
}
/////////////////////////////////////////////////////////////////////////
// Iterator constructors
/////////////////////////////////////////////////////////////////////////
/// Returns an iterator over the possibly contained value.
///
/// # Example
///
/// ```
/// let x = Some(4u);
/// assert_eq!(x.iter().next(), Some(&4));
///
/// let x: Option<uint> = None;
/// assert_eq!(x.iter().next(), None);
/// ```
#[inline]
#[unstable = "waiting for iterator conventions"]
pub fn iter<'r>(&'r self) -> Item<&'r T> {
Item{opt: self.as_ref()}
}
/// Returns a mutable iterator over the possibly contained value.
///
/// # Example
///
/// ```
/// let mut x = Some(4u);
/// match x.iter_mut().next() {
/// Some(&ref mut v) => *v = 42u,
/// None => {},
/// }
/// assert_eq!(x, Some(42));
///
/// let mut x: Option<uint> = None;
/// assert_eq!(x.iter_mut().next(), None);
/// ```
#[inline]
#[unstable = "waiting for iterator conventions"]
pub fn iter_mut<'r>(&'r mut self) -> Item<&'r mut T> {
Item{opt: self.as_mut()}
}
/// Returns a consuming iterator over the possibly contained value.
///
/// # Example
///
/// ```
/// let x = Some("string");
/// let v: Vec<&str> = x.into_iter().collect();
/// assert_eq!(v, vec!["string"]);
///
/// let x = None;
/// let v: Vec<&str> = x.into_iter().collect();
/// assert!(v.is_empty());
/// ```
#[inline]
#[unstable = "waiting for iterator conventions"]
pub fn into_iter(self) -> Item<T> {
Item{opt: self}
}
/////////////////////////////////////////////////////////////////////////
// Boolean operations on the values, eager and lazy
/////////////////////////////////////////////////////////////////////////
/// Returns `None` if the option is `None`, otherwise returns `optb`.
///
/// # Example
///
/// ```
/// let x = Some(2u);
/// let y: Option<&str> = None;
/// assert_eq!(x.and(y), None);
///
/// let x: Option<uint> = None;
/// let y = Some("foo");
/// assert_eq!(x.and(y), None);
///
/// let x = Some(2u);
/// let y = Some("foo");
/// assert_eq!(x.and(y), Some("foo"));
///
/// let x: Option<uint> = None;
/// let y: Option<&str> = None;
/// assert_eq!(x.and(y), None);
/// ```
#[inline]
#[stable]
pub fn and<U>(self, optb: Option<U>) -> Option<U> {
match self {
Some(_) => optb,
None => None,
}
}
/// Returns `None` if the option is `None`, otherwise calls `f` with the
/// wrapped value and returns the result.
///
/// # Example
///
/// ```
/// fn sq(x: uint) -> Option<uint> { Some(x * x) }
/// fn nope(_: uint) -> Option<uint> { None }
///
/// assert_eq!(Some(2).and_then(sq).and_then(sq), Some(16));
/// assert_eq!(Some(2).and_then(sq).and_then(nope), None);
/// assert_eq!(Some(2).and_then(nope).and_then(sq), None);
/// assert_eq!(None.and_then(sq).and_then(sq), None);
/// ```
#[inline]
#[unstable = "waiting for unboxed closures"]
pub fn and_then<U>(self, f: |T| -> Option<U>) -> Option<U> {
match self {
Some(x) => f(x),
None => None,
}
}
/// Returns the option if it contains a value, otherwise returns `optb`.
///
/// # Example
///
/// ```
/// let x = Some(2u);
/// let y = None;
/// assert_eq!(x.or(y), Some(2u));
///
/// let x = None;
/// let y = Some(100u);
/// assert_eq!(x.or(y), Some(100u));
///
/// let x = Some(2u);
/// let y = Some(100u);
/// assert_eq!(x.or(y), Some(2u));
///
/// let x: Option<uint> = None;
/// let y = None;
/// assert_eq!(x.or(y), None);
/// ```
#[inline]
#[stable]
pub fn or(self, optb: Option<T>) -> Option<T> {
match self {
Some(_) => self,
None => optb
}
}
/// Returns the option if it contains a value, otherwise calls `f` and
/// returns the result.
///
/// # Example
///
/// ```
/// fn nobody() -> Option<&'static str> { None }
/// fn vikings() -> Option<&'static str> { Some("vikings") }
///
/// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
/// assert_eq!(None.or_else(vikings), Some("vikings"));
/// assert_eq!(None.or_else(nobody), None);
/// ```
#[inline]
#[unstable = "waiting for unboxed closures"]
pub fn or_else(self, f: || -> Option<T>) -> Option<T> {
match self {
Some(_) => self,
None => f()
}
}
/////////////////////////////////////////////////////////////////////////
// Misc
/////////////////////////////////////////////////////////////////////////
/// Takes the value out of the option, leaving a `None` in its place.
///
/// # Example
///
/// ```
/// let mut x = Some(2u);
/// x.take();
/// assert_eq!(x, None);
///
/// let mut x: Option<uint> = None;
/// x.take();
/// assert_eq!(x, None);
/// ```
#[inline]
#[stable]
pub fn take(&mut self) -> Option<T> {
mem::replace(self, None)
}
}
impl<'a, T: Clone, D: Deref<T>> Option<D> {
/// Maps an Option<D> to an Option<T> by dereffing and cloning the contents of the Option.
/// Useful for converting an Option<&T> to an Option<T>.
#[unstable = "recently added as part of collections reform"]
pub fn cloned(self) -> Option<T> {
self.map(|t| t.deref().clone())
}
}
impl<T: Default> Option<T> {
/// Returns the contained value or a default
///
/// Consumes the `self` argument then, if `Some`, returns the contained
/// value, otherwise if `None`, returns the default value for that
/// type.
///
/// # Example
///
/// Convert a string to an integer, turning poorly-formed strings
/// into 0 (the default value for integers). `from_str` converts
/// a string to any other type that implements `FromStr`, returning
/// `None` on error.
///
/// ```
/// let good_year_from_input = "1909";
/// let bad_year_from_input = "190blarg";
/// let good_year = from_str(good_year_from_input).unwrap_or_default();
/// let bad_year = from_str(bad_year_from_input).unwrap_or_default();
///
/// assert_eq!(1909i, good_year);
/// assert_eq!(0i, bad_year);
/// ```
#[inline]
#[unstable = "waiting for conventions"]
pub fn unwrap_or_default(self) -> T {
match self {
Some(x) => x,
None => Default::default()
}
}
}
/////////////////////////////////////////////////////////////////////////////
// Trait implementations
/////////////////////////////////////////////////////////////////////////////
impl<T> AsSlice<T> for Option<T> {
/// Convert from `Option<T>` to `&[T]` (without copying)
#[inline]
fn as_slice<'a>(&'a self) -> &'a [T] {
match *self {
Some(ref x) => slice::ref_slice(x),
None => {
let result: &[_] = &[];
result
}
}
}
}
#[stable]
impl<T> Default for Option<T> {
#[inline]
fn default() -> Option<T> { None }
}
/////////////////////////////////////////////////////////////////////////////
// The Option Iterator
/////////////////////////////////////////////////////////////////////////////
/// An `Option` iterator that yields either one or zero elements
///
/// The `Item` iterator is returned by the `iter`, `iter_mut` and `into_iter`
/// methods on `Option`.
#[deriving(Clone)]
#[unstable = "waiting for iterator conventions"]
pub struct Item<A> {
opt: Option<A>
}
impl<A> Iterator<A> for Item<A> {
#[inline]
fn next(&mut self) -> Option<A> {
self.opt.take()
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
match self.opt {
Some(_) => (1, Some(1)),
None => (0, Some(0)),
}
}
}
impl<A> DoubleEndedIterator<A> for Item<A> {
#[inline]
fn next_back(&mut self) -> Option<A> {
self.opt.take()
}
}
impl<A> ExactSizeIterator<A> for Item<A> {}
/////////////////////////////////////////////////////////////////////////////
// FromIterator
/////////////////////////////////////////////////////////////////////////////
#[stable]
impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
/// Takes each element in the `Iterator`: if it is `None`, no further
/// elements are taken, and the `None` is returned. Should no `None` occur, a
/// container with the values of each `Option` is returned.
///
/// Here is an example which increments every integer in a vector,
/// checking for overflow:
///
/// ```rust
/// use std::uint;
///
/// let v = vec!(1u, 2u);
/// let res: Option<Vec<uint>> = v.iter().map(|&x: &uint|
/// if x == uint::MAX { None }
/// else { Some(x + 1) }
/// ).collect();
/// assert!(res == Some(vec!(2u, 3u)));
/// ```
#[inline]
fn from_iter<I: Iterator<Option<A>>>(iter: I) -> Option<V> {
// FIXME(#11084): This could be replaced with Iterator::scan when this
// performance bug is closed.
struct Adapter<Iter> {
iter: Iter,
found_none: bool,
}
impl<T, Iter: Iterator<Option<T>>> Iterator<T> for Adapter<Iter> {
#[inline]
fn next(&mut self) -> Option<T> {
match self.iter.next() {
Some(Some(value)) => Some(value),
Some(None) => {
self.found_none = true;
None
}
None => None,
}
}
}
let mut adapter = Adapter { iter: iter, found_none: false };
let v: V = FromIterator::from_iter(adapter.by_ref());
if adapter.found_none {
None
} else {
Some(v)
}
}
}
impl<T:Copy> Copy for Option<T> {}