Go to file
bors 1a44875af9 auto merge of #19176 : aturon/rust/stab-iter, r=alexcrichton
This is an initial pass at stabilizing the `iter` module. The module is
fairly large, but is also pretty polished, so most of the stabilization
leaves things as they are.

Some changes:

* Due to the new object safety rules, various traits needs to be split
  into object-safe traits and extension traits. This includes `Iterator`
  itself. While splitting up the traits adds some complexity, it will
  also increase flexbility: once we have automatic impls of `Trait` for
  trait objects over `Trait`, then things like the iterator adapters
  will all work with trait objects.

* Iterator adapters that use up the entire iterator now take it by
  value, which makes the semantics more clear and helps catch bugs. Due
  to the splitting of Iterator, this does not affect trait objects. If
  the underlying iterator is still desired for some reason, `by_ref` can
  be used. (Note: this change had no fallout in the Rust distro except
  for the useless mut lint.)

* In general, extension traits new and old are following an [in-progress
  convention](rust-lang/rfcs#445). As such, they
  are marked `unstable`.

* As usual, anything involving closures is `unstable` pending unboxed
  closures.

* A few of the more esoteric/underdeveloped iterator forms (like
  `RandomAccessIterator` and `MutableDoubleEndedIterator`, along with
  various unfolds) are left experimental for now.

* The `order` submodule is left `experimental` because it will hopefully
  be replaced by generalized comparison traits.

* "Leaf" iterators (like `Repeat` and `Counter`) are uniformly
  constructed by free fns at the module level. That's because the types
  are not otherwise of any significance (if we had `impl Trait`, you
  wouldn't want to define a type at all).

Closes #17701

Due to renamings and splitting of traits, this is a:

[breaking-change]
2014-11-26 17:42:07 +00:00
man
mk Merge libsync into libstd 2014-11-24 10:51:39 -08:00
src auto merge of #19176 : aturon/rust/stab-iter, r=alexcrichton 2014-11-26 17:42:07 +00:00
.gitattributes
.gitignore
.gitmodules
.mailmap
.travis.yml
AUTHORS.txt Add myself as an author 2014-11-19 13:18:34 -05:00
configure rollup merge of #19239: jauhien/fix-libdir 2014-11-23 14:12:03 -05:00
CONTRIBUTING.md
COPYRIGHT
LICENSE-APACHE
LICENSE-MIT
Makefile.in
README.md
RELEASES.md

The Rust Programming Language

This is a compiler for Rust, including standard libraries, tools and documentation.

Quick Start

  1. Download a binary installer for your platform.
  2. Read the guide.
  3. Enjoy!

Note: Windows users can read the detailed using Rust on Windows notes on the wiki.

Building from Source

  1. Make sure you have installed the dependencies:

    • g++ 4.7 or clang++ 3.x
    • python 2.6 or later (but not 3.x)
    • perl 5.0 or later
    • GNU make 3.81 or later
    • curl
    • git
  2. Download and build Rust:

    You can either download a tarball or build directly from the repo.

    To build from the tarball do:

     $ curl -O https://static.rust-lang.org/dist/rust-nightly.tar.gz
     $ tar -xzf rust-nightly.tar.gz
     $ cd rust-nightly
    

    Or to build from the repo do:

     $ git clone https://github.com/rust-lang/rust.git
     $ cd rust
    

    Now that you have Rust's source code, you can configure and build it:

     $ ./configure
     $ make && make install
    

    Note: You may need to use sudo make install if you do not normally have permission to modify the destination directory. The install locations can be adjusted by passing a --prefix argument to configure. Various other options are also supported, pass --help for more information on them.

    When complete, make install will place several programs into /usr/local/bin: rustc, the Rust compiler, and rustdoc, the API-documentation tool.

  3. Read the guide.

  4. Enjoy!

Building on Windows

To easily build on windows we can use MSYS2:

  1. Grab the latest MSYS2 installer and go through the installer.

  2. Now from the MSYS2 terminal we want to install the mingw64 toolchain and the other tools we need.

     $ pacman -S mingw-w64-i686-toolchain
     $ pacman -S base-devel
    
  3. With that now start mingw32_shell.bat from where you installed MSYS2 (i.e. C:\msys).

  4. From there just navigate to where you have Rust's source code, configure and build it:

     $ ./configure
     $ make && make install
    

Notes

Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier state of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.

Snapshot binaries are currently built and tested on several platforms:

  • Windows (7, 8, Server 2008 R2), x86 and x86-64 (64-bit support added in Rust 0.12.0)
  • Linux (2.6.18 or later, various distributions), x86 and x86-64
  • OSX 10.7 (Lion) or greater, x86 and x86-64

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

Rust currently needs about 1.5 GiB of RAM to build without swapping; if it hits swap, it will take a very long time to build.

There is a lot more documentation in the wiki.

Getting help and getting involved

The Rust community congregates in a few places:

License

Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.

See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.