rust/src/rustllvm/RustWrapper.cpp
2013-06-13 21:25:12 -07:00

583 lines
20 KiB
C++

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#include "rustllvm.h"
//===----------------------------------------------------------------------===
//
// This file defines alternate interfaces to core functions that are more
// readily callable by Rust's FFI.
//
//===----------------------------------------------------------------------===
using namespace llvm;
using namespace llvm::sys;
static const char *LLVMRustError;
extern cl::opt<bool> EnableARMEHABI;
extern "C" LLVMMemoryBufferRef
LLVMRustCreateMemoryBufferWithContentsOfFile(const char *Path) {
LLVMMemoryBufferRef MemBuf = NULL;
LLVMCreateMemoryBufferWithContentsOfFile(Path, &MemBuf,
const_cast<char **>(&LLVMRustError));
return MemBuf;
}
extern "C" const char *LLVMRustGetLastError(void) {
return LLVMRustError;
}
extern "C" void LLVMAddBasicAliasAnalysisPass(LLVMPassManagerRef PM);
extern "C" void LLVMRustAddPrintModulePass(LLVMPassManagerRef PMR,
LLVMModuleRef M,
const char* path) {
PassManager *PM = unwrap<PassManager>(PMR);
std::string ErrorInfo;
raw_fd_ostream OS(path, ErrorInfo, raw_fd_ostream::F_Binary);
formatted_raw_ostream FOS(OS);
PM->add(createPrintModulePass(&FOS));
PM->run(*unwrap(M));
}
void LLVMInitializeX86TargetInfo();
void LLVMInitializeX86Target();
void LLVMInitializeX86TargetMC();
void LLVMInitializeX86AsmPrinter();
void LLVMInitializeX86AsmParser();
void LLVMInitializeARMTargetInfo();
void LLVMInitializeARMTarget();
void LLVMInitializeARMTargetMC();
void LLVMInitializeARMAsmPrinter();
void LLVMInitializeARMAsmParser();
void LLVMInitializeMipsTargetInfo();
void LLVMInitializeMipsTarget();
void LLVMInitializeMipsTargetMC();
void LLVMInitializeMipsAsmPrinter();
void LLVMInitializeMipsAsmParser();
// Only initialize the platforms supported by Rust here,
// because using --llvm-root will have multiple platforms
// that rustllvm doesn't actually link to and it's pointless to put target info
// into the registry that Rust can not generate machine code for.
void LLVMRustInitializeTargets() {
LLVMInitializeX86TargetInfo();
LLVMInitializeX86Target();
LLVMInitializeX86TargetMC();
LLVMInitializeX86AsmPrinter();
LLVMInitializeX86AsmParser();
LLVMInitializeARMTargetInfo();
LLVMInitializeARMTarget();
LLVMInitializeARMTargetMC();
LLVMInitializeARMAsmPrinter();
LLVMInitializeARMAsmParser();
LLVMInitializeMipsTargetInfo();
LLVMInitializeMipsTarget();
LLVMInitializeMipsTargetMC();
LLVMInitializeMipsAsmPrinter();
LLVMInitializeMipsAsmParser();
}
// Custom memory manager for MCJITting. It needs special features
// that the generic JIT memory manager doesn't entail. Based on
// code from LLI, change where needed for Rust.
class RustMCJITMemoryManager : public JITMemoryManager {
public:
SmallVector<sys::MemoryBlock, 16> AllocatedDataMem;
SmallVector<sys::MemoryBlock, 16> AllocatedCodeMem;
SmallVector<sys::MemoryBlock, 16> FreeCodeMem;
void* __morestack;
DenseSet<DynamicLibrary*> crates;
RustMCJITMemoryManager(void* sym) : __morestack(sym) { }
~RustMCJITMemoryManager();
bool loadCrate(const char*, std::string*);
virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID);
virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID, bool isReadOnly);
virtual bool applyPermissions(std::string *Str);
virtual void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true);
// Invalidate instruction cache for code sections. Some platforms with
// separate data cache and instruction cache require explicit cache flush,
// otherwise JIT code manipulations (like resolved relocations) will get to
// the data cache but not to the instruction cache.
virtual void invalidateInstructionCache();
// The MCJITMemoryManager doesn't use the following functions, so we don't
// need implement them.
virtual void setMemoryWritable() {
llvm_unreachable("Unimplemented call");
}
virtual void setMemoryExecutable() {
llvm_unreachable("Unimplemented call");
}
virtual void setPoisonMemory(bool poison) {
llvm_unreachable("Unimplemented call");
}
virtual void AllocateGOT() {
llvm_unreachable("Unimplemented call");
}
virtual uint8_t *getGOTBase() const {
llvm_unreachable("Unimplemented call");
return 0;
}
virtual uint8_t *startFunctionBody(const Function *F,
uintptr_t &ActualSize){
llvm_unreachable("Unimplemented call");
return 0;
}
virtual uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
unsigned Alignment) {
llvm_unreachable("Unimplemented call");
return 0;
}
virtual void endFunctionBody(const Function *F, uint8_t *FunctionStart,
uint8_t *FunctionEnd) {
llvm_unreachable("Unimplemented call");
}
virtual uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
llvm_unreachable("Unimplemented call");
return 0;
}
virtual uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
llvm_unreachable("Unimplemented call");
return 0;
}
virtual void deallocateFunctionBody(void *Body) {
llvm_unreachable("Unimplemented call");
}
virtual uint8_t* startExceptionTable(const Function* F,
uintptr_t &ActualSize) {
llvm_unreachable("Unimplemented call");
return 0;
}
virtual void endExceptionTable(const Function *F, uint8_t *TableStart,
uint8_t *TableEnd, uint8_t* FrameRegister) {
llvm_unreachable("Unimplemented call");
}
virtual void deallocateExceptionTable(void *ET) {
llvm_unreachable("Unimplemented call");
}
};
bool RustMCJITMemoryManager::loadCrate(const char* file, std::string* err) {
DynamicLibrary crate = DynamicLibrary::getPermanentLibrary(file,
err);
if(crate.isValid()) {
crates.insert(&crate);
return true;
}
return false;
}
uint8_t *RustMCJITMemoryManager::allocateDataSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID,
bool isReadOnly) {
if (!Alignment)
Alignment = 16;
uint8_t *Addr = (uint8_t*)calloc((Size + Alignment - 1)/Alignment, Alignment);
AllocatedDataMem.push_back(sys::MemoryBlock(Addr, Size));
return Addr;
}
bool RustMCJITMemoryManager::applyPermissions(std::string *Str) {
// Empty.
return true;
}
uint8_t *RustMCJITMemoryManager::allocateCodeSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID) {
if (!Alignment)
Alignment = 16;
unsigned NeedAllocate = Alignment * ((Size + Alignment - 1)/Alignment + 1);
uintptr_t Addr = 0;
// Look in the list of free code memory regions and use a block there if one
// is available.
for (int i = 0, e = FreeCodeMem.size(); i != e; ++i) {
sys::MemoryBlock &MB = FreeCodeMem[i];
if (MB.size() >= NeedAllocate) {
Addr = (uintptr_t)MB.base();
uintptr_t EndOfBlock = Addr + MB.size();
// Align the address.
Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
// Store cutted free memory block.
FreeCodeMem[i] = sys::MemoryBlock((void*)(Addr + Size),
EndOfBlock - Addr - Size);
return (uint8_t*)Addr;
}
}
// No pre-allocated free block was large enough. Allocate a new memory region.
sys::MemoryBlock MB = sys::Memory::AllocateRWX(NeedAllocate, 0, 0);
AllocatedCodeMem.push_back(MB);
Addr = (uintptr_t)MB.base();
uintptr_t EndOfBlock = Addr + MB.size();
// Align the address.
Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
// The AllocateRWX may allocate much more memory than we need. In this case,
// we store the unused memory as a free memory block.
unsigned FreeSize = EndOfBlock-Addr-Size;
if (FreeSize > 16)
FreeCodeMem.push_back(sys::MemoryBlock((void*)(Addr + Size), FreeSize));
// Return aligned address
return (uint8_t*)Addr;
}
void RustMCJITMemoryManager::invalidateInstructionCache() {
for (int i = 0, e = AllocatedCodeMem.size(); i != e; ++i)
sys::Memory::InvalidateInstructionCache(AllocatedCodeMem[i].base(),
AllocatedCodeMem[i].size());
}
void *RustMCJITMemoryManager::getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure) {
#ifdef __linux__
// Force the following functions to be linked in to anything that uses the
// JIT. This is a hack designed to work around the all-too-clever Glibc
// strategy of making these functions work differently when inlined vs. when
// not inlined, and hiding their real definitions in a separate archive file
// that the dynamic linker can't see. For more info, search for
// 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
if (Name == "stat") return (void*)(intptr_t)&stat;
if (Name == "fstat") return (void*)(intptr_t)&fstat;
if (Name == "lstat") return (void*)(intptr_t)&lstat;
if (Name == "stat64") return (void*)(intptr_t)&stat64;
if (Name == "fstat64") return (void*)(intptr_t)&fstat64;
if (Name == "lstat64") return (void*)(intptr_t)&lstat64;
if (Name == "atexit") return (void*)(intptr_t)&atexit;
if (Name == "mknod") return (void*)(intptr_t)&mknod;
#endif
if (Name == "__morestack" || Name == "___morestack") return &__morestack;
const char *NameStr = Name.c_str();
// Look through loaded crates and main for symbols.
void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
if (Ptr) return Ptr;
// If it wasn't found and if it starts with an underscore ('_') character,
// try again without the underscore.
if (NameStr[0] == '_') {
Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
if (Ptr) return Ptr;
}
if (AbortOnFailure)
report_fatal_error("Program used external function '" + Name +
"' which could not be resolved!");
return 0;
}
RustMCJITMemoryManager::~RustMCJITMemoryManager() {
for (unsigned i = 0, e = AllocatedCodeMem.size(); i != e; ++i)
sys::Memory::ReleaseRWX(AllocatedCodeMem[i]);
for (unsigned i = 0, e = AllocatedDataMem.size(); i != e; ++i)
free(AllocatedDataMem[i].base());
}
extern "C" void*
LLVMRustPrepareJIT(void* __morestack) {
// An execution engine will take ownership of this later
// and clean it up for us.
return (void*) new RustMCJITMemoryManager(__morestack);
}
extern "C" bool
LLVMRustLoadCrate(void* mem, const char* crate) {
RustMCJITMemoryManager* manager = (RustMCJITMemoryManager*) mem;
std::string Err;
assert(manager);
if(!manager->loadCrate(crate, &Err)) {
LLVMRustError = Err.c_str();
return false;
}
return true;
}
extern "C" void*
LLVMRustExecuteJIT(void* mem,
LLVMPassManagerRef PMR,
LLVMModuleRef M,
CodeGenOpt::Level OptLevel,
bool EnableSegmentedStacks) {
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();
std::string Err;
TargetOptions Options;
Options.JITExceptionHandling = true;
Options.JITEmitDebugInfo = true;
Options.NoFramePointerElim = true;
Options.EnableSegmentedStacks = EnableSegmentedStacks;
PassManager *PM = unwrap<PassManager>(PMR);
RustMCJITMemoryManager* MM = (RustMCJITMemoryManager*) mem;
assert(MM);
PM->add(createBasicAliasAnalysisPass());
PM->add(createInstructionCombiningPass());
PM->add(createReassociatePass());
PM->add(createGVNPass());
PM->add(createCFGSimplificationPass());
PM->add(createFunctionInliningPass());
PM->add(createPromoteMemoryToRegisterPass());
PM->run(*unwrap(M));
ExecutionEngine* EE = EngineBuilder(unwrap(M))
.setErrorStr(&Err)
.setTargetOptions(Options)
.setJITMemoryManager(MM)
.setOptLevel(OptLevel)
.setUseMCJIT(true)
.setAllocateGVsWithCode(false)
.create();
if(!EE || Err != "") {
LLVMRustError = Err.c_str();
return 0;
}
MM->invalidateInstructionCache();
Function* func = EE->FindFunctionNamed("_rust_main");
if(!func || Err != "") {
LLVMRustError = Err.c_str();
return 0;
}
void* entry = EE->getPointerToFunction(func);
assert(entry);
return entry;
}
extern "C" bool
LLVMRustWriteOutputFile(LLVMPassManagerRef PMR,
LLVMModuleRef M,
const char *triple,
const char *feature,
const char *path,
TargetMachine::CodeGenFileType FileType,
CodeGenOpt::Level OptLevel,
bool EnableSegmentedStacks) {
LLVMRustInitializeTargets();
// Initializing the command-line options more than once is not
// allowed. So, check if they've already been initialized.
// (This could happen if we're being called from rustpkg, for
// example.)
if (!EnableARMEHABI) {
int argc = 3;
const char* argv[] = {"rustc", "-arm-enable-ehabi",
"-arm-enable-ehabi-descriptors"};
cl::ParseCommandLineOptions(argc, argv);
}
TargetOptions Options;
Options.NoFramePointerElim = true;
Options.EnableSegmentedStacks = EnableSegmentedStacks;
Options.FixedStackSegmentSize = 2 * 1024 * 1024; // XXX: This is too big.
PassManager *PM = unwrap<PassManager>(PMR);
std::string Err;
std::string Trip(Triple::normalize(triple));
std::string FeaturesStr(feature);
std::string CPUStr("generic");
const Target *TheTarget = TargetRegistry::lookupTarget(Trip, Err);
TargetMachine *Target =
TheTarget->createTargetMachine(Trip, CPUStr, FeaturesStr,
Options, Reloc::PIC_,
CodeModel::Default, OptLevel);
Target->addAnalysisPasses(*PM);
bool NoVerify = false;
std::string ErrorInfo;
raw_fd_ostream OS(path, ErrorInfo,
raw_fd_ostream::F_Binary);
if (ErrorInfo != "") {
LLVMRustError = ErrorInfo.c_str();
return false;
}
formatted_raw_ostream FOS(OS);
bool foo = Target->addPassesToEmitFile(*PM, FOS, FileType, NoVerify);
assert(!foo);
(void)foo;
PM->run(*unwrap(M));
delete Target;
return true;
}
extern "C" LLVMModuleRef LLVMRustParseAssemblyFile(LLVMContextRef C,
const char *Filename) {
SMDiagnostic d;
Module *m = ParseAssemblyFile(Filename, d, *unwrap(C));
if (m) {
return wrap(m);
} else {
LLVMRustError = d.getMessage().str().c_str();
return NULL;
}
}
extern "C" LLVMModuleRef LLVMRustParseBitcode(LLVMMemoryBufferRef MemBuf) {
LLVMModuleRef M;
return LLVMParseBitcode(MemBuf, &M, const_cast<char **>(&LLVMRustError))
? NULL : M;
}
extern "C" LLVMValueRef LLVMRustConstSmallInt(LLVMTypeRef IntTy, unsigned N,
LLVMBool SignExtend) {
return LLVMConstInt(IntTy, (unsigned long long)N, SignExtend);
}
extern "C" LLVMValueRef LLVMRustConstInt(LLVMTypeRef IntTy,
unsigned N_hi,
unsigned N_lo,
LLVMBool SignExtend) {
unsigned long long N = N_hi;
N <<= 32;
N |= N_lo;
return LLVMConstInt(IntTy, N, SignExtend);
}
extern bool llvm::TimePassesIsEnabled;
extern "C" void LLVMRustEnableTimePasses() {
TimePassesIsEnabled = true;
}
extern "C" void LLVMRustPrintPassTimings() {
raw_fd_ostream OS (2, false); // stderr.
TimerGroup::printAll(OS);
}
extern "C" LLVMValueRef LLVMGetOrInsertFunction(LLVMModuleRef M,
const char* Name,
LLVMTypeRef FunctionTy) {
return wrap(unwrap(M)->getOrInsertFunction(Name,
unwrap<FunctionType>(FunctionTy)));
}
extern "C" LLVMTypeRef LLVMMetadataTypeInContext(LLVMContextRef C) {
return wrap(Type::getMetadataTy(*unwrap(C)));
}
extern "C" LLVMValueRef LLVMBuildAtomicLoad(LLVMBuilderRef B,
LLVMValueRef source,
const char* Name,
AtomicOrdering order,
unsigned alignment) {
LoadInst* li = new LoadInst(unwrap(source),0);
li->setVolatile(true);
li->setAtomic(order);
li->setAlignment(alignment);
return wrap(unwrap(B)->Insert(li, Name));
}
extern "C" LLVMValueRef LLVMBuildAtomicStore(LLVMBuilderRef B,
LLVMValueRef val,
LLVMValueRef target,
AtomicOrdering order,
unsigned alignment) {
StoreInst* si = new StoreInst(unwrap(val),unwrap(target));
si->setVolatile(true);
si->setAtomic(order);
si->setAlignment(alignment);
return wrap(unwrap(B)->Insert(si));
}
extern "C" LLVMValueRef LLVMBuildAtomicCmpXchg(LLVMBuilderRef B,
LLVMValueRef target,
LLVMValueRef old,
LLVMValueRef source,
AtomicOrdering order) {
return wrap(unwrap(B)->CreateAtomicCmpXchg(unwrap(target), unwrap(old),
unwrap(source), order));
}
extern "C" LLVMValueRef LLVMBuildAtomicRMW(LLVMBuilderRef B,
AtomicRMWInst::BinOp op,
LLVMValueRef target,
LLVMValueRef source,
AtomicOrdering order) {
return wrap(unwrap(B)->CreateAtomicRMW(op,
unwrap(target), unwrap(source),
order));
}
extern "C" void LLVMSetDebug(int Enabled) {
#ifndef NDEBUG
DebugFlag = Enabled;
#endif
}
extern "C" LLVMValueRef LLVMInlineAsm(LLVMTypeRef Ty,
char *AsmString,
char *Constraints,
LLVMBool HasSideEffects,
LLVMBool IsAlignStack,
unsigned Dialect) {
return wrap(InlineAsm::get(unwrap<FunctionType>(Ty), AsmString,
Constraints, HasSideEffects,
IsAlignStack, (InlineAsm::AsmDialect) Dialect));
}
/**
* This function is intended to be a threadsafe interface into enabling a
* multithreaded LLVM. This is invoked at the start of the translation phase of
* compilation to ensure that LLVM is ready.
*
* All of trans properly isolates LLVM with the use of a different
* LLVMContextRef per task, thus allowing parallel compilation of different
* crates in the same process. At the time of this writing, the use case for
* this is unit tests for rusti, but there are possible other applications.
*/
extern "C" bool LLVMRustStartMultithreading() {
static Mutex lock;
bool ret = true;
assert(lock.acquire());
if (!LLVMIsMultithreaded()) {
ret = LLVMStartMultithreaded();
}
assert(lock.release());
return ret;
}